Twinning in Czochralski-Grown 36°-RY LiTaO3 Single Crystals
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Characteristics of Lineages in Single Crystals
3.1.1. 3D Distribution of Lineages
3.1.2. Structural Properties of Lineages
3.2. Formation of Twin Lamellae at Lineages
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Persson, K. Materials Data on LiTaO3 (SG:161) by Materials Project; Creative Commons: Mountain View, CA, USA, 2014. [Google Scholar] [CrossRef]
- Lines, M.E.; Glass, A.M. Principles and Applications of Ferroelectrics and Related Materials; Clearndon Press: Oxford, UK, 1977. [Google Scholar]
- Yu, N.E.; Kurimura, S.; Nomura, Y.; Nakamura, M.; Kitamura, K.; Sakuma, J.; Otani, Y.; Shiratori, A. Periodically poled near-stoichiometric lithium tantalate for optical parametric oscillation. Appl. Phys. Lett. 2004, 84, 1662–1664. [Google Scholar] [CrossRef]
- Rimeika, R.; Belovickis, J.; Ciplys, D. Leaky-surface-wave generated acoustic beam displacement upon reflection in lithium tantalate crystals. Appl. Phys. Lett. 2013, 102, 031601. [Google Scholar] [CrossRef]
- Roundy, C.B.; Byer, R.L. Sensitive LiTa03 pyroelectric detector. J. Appl. Phys. 1973, 44, 929–931. [Google Scholar] [CrossRef]
- Glass, A.M.; Abrams, R.L. Study of piezoelectric oscillations in wideband pyroelectric LiTaO3 detectors. J. Appl. Phys. 1970, 41, 4455–4459. [Google Scholar] [CrossRef]
- Saglamyurek, E.; Sinclair, N.; Jin, J.; Slater, J.A.; Oblak, D.; Bussieres, F.; George, M.; Ricken, R.; Sohler, W.; Tittel, W. Broadband waveguide quantum memory for entangled photons. Nature 2011, 469, 512–515. [Google Scholar] [CrossRef] [Green Version]
- Furst, J.U.; Strekalov, D.V.; Elser, D.; Lassen, M.; Andersen, U.L.; Marquardt, C.; Leuchs, G. Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator. Phys. Rev. Lett. 2010, 104, 153901. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Kitamura, K.; Takekawa, S.; Nakamura, M.; Furukawa, Y.; Hatano, H. Nonvolatile two-color holographic recording in nondoped near-stoichiometric lithium tantalate crystals with continuous-wave lasers. Appl. Phys. Lett. 2003, 82, 4218–4220. [Google Scholar] [CrossRef]
- Yue, X.; Adibi, A.; Hudson, T.; Buse, K. Role of cerium in lithium niobate for holographic recording. J. Appl. Phys. 2000, 87, 4051–4055. [Google Scholar] [CrossRef] [Green Version]
- McMillen, D.K.; Hudson, T.D.; Wagner, J. Holographic recording in specially doped lithium niobate crystals. Opt. Express 1998, 2, 491–502. [Google Scholar] [CrossRef] [PubMed]
- Naranjo, B.; Gimzewski, J.; Putterman, S. Observation of nuclear fusion driven by a pyroelectric crystal. Nature 2005, 434, 1115–1117. [Google Scholar] [CrossRef]
- Ballman, A.A. Growth of piezoelectric and ferroelectric materials by the Czochralski technique. J. Am. Ceram. Soc. 1965, 48, 112–113. [Google Scholar] [CrossRef]
- Carruthers, J.; Peterson, G.; Grasso, M. Nonstoichiometry and crystal growth of lithium niobate. J. Appl. Phys. 1971, 42, 1846–1851. [Google Scholar] [CrossRef]
- Nassau, K.; Levinstein, H.J.; Loiacono, G.M. Ferroelectric lithium niobate. 1. Growth, domain structure, dislocations and etching. J. Phys. Chem. Solids 1966, 27, 983–988. [Google Scholar] [CrossRef]
- Bhagavannarayana, G.; Ananthamurthy, R.V.; Budakoti, G.C.; Kumar, B.; Bartwal, K.S. A study of the effect of annealing on Fe-doped LiNbO3 by HRXRD, XRT and FT–IR. J. Appl. Crystallogr. 2005, 38, 768–771. [Google Scholar] [CrossRef]
- Kumaragurubaran, S.; Takekawa, S.; Nakamura, M.; Kitamura, K. Growth of 4-in diameter near-stoichiometric lithium tantalate single crystals. J. Cryst. Growth 2005, 285, 88–95. [Google Scholar] [CrossRef]
- Okada, Y.; Iizuka, T. An x-ray topographic study of dislocations in a LiNbO3 crystal. J. Appl. Cryst. 1976, 9, 375–377. [Google Scholar] [CrossRef] [Green Version]
- Park, B.M.; Kitamura, K.; Terabe, K.; Furukawa, Y.; Ji, Y.; Suzuki, E. Mechanical twinning in stoichiometric lithium niobate single crystal. J. Cryst. Growth 1997, 180, 101–104. [Google Scholar] [CrossRef]
- Vere, A.W. Mechanical twinning and crack nucleation in lithium niobate. J. Mater. Sci. 1968, 3, 617–621. [Google Scholar] [CrossRef]
- Park, B.M.; Kitamura, K.; Furukawa, Y.; Ji, Y. Relation between mechanical twinning and cracking in stoichiometric lithium niobate single crystals. J. Am. Ceram. Soc. 1997, 80, 2689–2692. [Google Scholar] [CrossRef]
- Yang, J.; Sun, J.; Xu, J.; Li, Q.; Shang, J.; Zhang, L.; Liu, S.; Huang, C. Twin defects in thick stoichiometric lithium tantalate crystals prepared by a vapor transport equilibration method. J. Cryst. Growth 2016, 433, 31–35. [Google Scholar] [CrossRef]
- Louchev, O.A.; Kumaragurubaran, S.; Takekawa, S.; Kitamura, K. Thermal stress inhibition in double crucible Czochralski large diameter crystal growth. J. Cryst. Growth 2004, 274, 307–316. [Google Scholar] [CrossRef]
- Moriyama, K.; Ozeki, A.; Haba, S.; Mori, M. The Effect of Slurry pH and Particle Size on LiTaO3 Polishing. Technical Paper of Nitta DuPont Incorporated. 2017. Available online: https://www.nittadupont.co.jp/en/technical/692/ (accessed on 1 October 2020).
- Murphy, D. Differential Interference Contrast Microscopy and Modulation Contrast Microscopy in Fundamentals of Light Microscopy and Digital Imaging; Wiley-Liss: New York, NY, USA, 2001; pp. 173–198. [Google Scholar]
- Ohno, Y.; Kubouchi, Y. Analysis method for dislocations in lithium tantalate. JPN Patent Application 2018-013246, 30 January 2018. [Google Scholar]
- Ohno, Y.; Tajima, K.; Kutsukake, K.; Usami, N. Generation of dislocation clusters at triple junctions of random angle grain boundaries during cast growth of silicon ingots. Appl. Phys. Express 2020, 13, 105505. [Google Scholar] [CrossRef]
- Ohno, Y.; Taishi, T.; Bamba, N.; Yonenaga, I. Microstructure of striae in <04-41>-oriented lithium niobate single crystal grown by Czochralski method. J. Cryst. Growth 2014, 393, 171–174. [Google Scholar] [CrossRef]
- Ohno, Y.; Yoshida, H.; Kamiuchi, N.; Aso, R.; Takeda, S.; Shimizu, Y.; Nagai, Y.; Liang, J.; Shigekawa, N. Impact of focused ion beam on structural and compositional analysis of interfaces fabricated by surface activated bonding. Jpn. J. Appl. Phys. 2020, 59, SBBB05. [Google Scholar] [CrossRef]
- Williams, D.B.; Carter, C.B. Transmission Electron Microscopy; Plenum Press: New York, NY, USA; London, UK, 1996; pp. 441–481. [Google Scholar]
- Peter, A.; Fries, E.; Riviere, J.P. TEM observation of plastically induced dislocations in lithium niobate LiNbO3 single crystals. Phys. Status Solidi A 1991, 128, 45–53. [Google Scholar] [CrossRef]
- Furushima, Y.; Nakamura, A.; Tochigi, E.; Ikuharpa, Y.; Toyoura, K.; Matsunaga, K. Dislocation structures and electrical conduction properties of low angle tilt grain boundaries in LiNbO3. J. Appl. Phys. 2016, 120, 142107. [Google Scholar] [CrossRef]
- Cerva, H.; Pongratz, P.; Skalicky, P. Lattice defects in single-crystal lithium niobate I. transmission electron microscopy. Philos. Mag. A 1986, 54, 185–197. [Google Scholar] [CrossRef]
- Cottrell, A.H.; Bilby, B.A. LX. A mechanism for the growth of deformation twins in crystals. Philos. Mag. 1951, 42, 573–581. [Google Scholar] [CrossRef]
- Eknoyan, O.; Taylor, H.F.; Tang, Z.; Swenson, V.P.; Marx, J.M. Strain induced optical waveguides in lithium niobate, lithium tantalate and barium titanate. Appl. Phys. Lett. 1992, 60, 407–409. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ohno, Y.; Kubouchi, Y.; Yoshida, H.; Kochiya, T.; Kajigaya, T. Twinning in Czochralski-Grown 36°-RY LiTaO3 Single Crystals. Crystals 2020, 10, 1009. https://doi.org/10.3390/cryst10111009
Ohno Y, Kubouchi Y, Yoshida H, Kochiya T, Kajigaya T. Twinning in Czochralski-Grown 36°-RY LiTaO3 Single Crystals. Crystals. 2020; 10(11):1009. https://doi.org/10.3390/cryst10111009
Chicago/Turabian StyleOhno, Yutaka, Yuta Kubouchi, Hideto Yoshida, Toshio Kochiya, and Tomio Kajigaya. 2020. "Twinning in Czochralski-Grown 36°-RY LiTaO3 Single Crystals" Crystals 10, no. 11: 1009. https://doi.org/10.3390/cryst10111009
APA StyleOhno, Y., Kubouchi, Y., Yoshida, H., Kochiya, T., & Kajigaya, T. (2020). Twinning in Czochralski-Grown 36°-RY LiTaO3 Single Crystals. Crystals, 10(11), 1009. https://doi.org/10.3390/cryst10111009