Crystal Chemistry of Alkali–Aluminum–Iron Sulfates from the Burnt Mine Dumps of the Chelyabinsk Coal Basin, South Urals, Russia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Chemical Composition
2.3. Single-Crystal X-ray Diffraction
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Krivovichev, S.V.; Shcherbakova, E.P.; Nishanbaev, T.P. The crystal structure of β-CaMg2(SO4)3, a mineral phase from coal dumps of the Chelyabinsk coal basin, Russia. Can. Mineral. 2010, 48, 1469–1475. [Google Scholar] [CrossRef]
- Krivovichev, S.V.; Shcherbakova, E.P.; Nishanbaev, T.P. The crystal structure of svyatoslavite and evolution of complexity during crystallization of a CaAl2Si2O8 melt: A structural automata description. Can. Mineral. 2012, 50, 585–592. [Google Scholar] [CrossRef]
- Zolotarev, A.A.; Krivovichev, S.V.; Panikorovskii, T.L.; Gurzhiy, V.V.; Bocharov, V.N.; Rassomakhin, M.A. Dmisteinbergite, CaAl2Si2O8, a metastable polymorph of anorthite: Crystal-structure and Raman spectroscopic study of the holotype specimen. Minerals 2019, 9, 570. [Google Scholar] [CrossRef] [Green Version]
- Zolotarev, A.A.; Zhitova, E.S.; Krzhizhanovskaya, M.G.; Rassomakhin, M.A.; Shilovskikh, V.V.; Krivovichev, S.V. Crystal chemistry and high-temperature behaviour of ammonium phases NH4MgCl3·6H2O and (NH4)2Fe3+Cl5·H2O from the burned dumps of the Chelyabinsk coal basin. Minerals 2019, 9, 486. [Google Scholar] [CrossRef] [Green Version]
- Zolotarev, A.A.; Krivovichev, S.V.; Avdontceva, M.S.; Zhitova, E.S.; Pekov, I.V.; Shchipalkina, N.V. Crystal chemistry of technogenic SFCA from burned dumps of the Chelyabinsk coal basin. Crystallogr. Rep. 2021, in press. [Google Scholar]
- Hawthorne, F.C.; Krivovichev, S.V.; Burns, P.C. The crystal chemistry of sulfate minerals. Rev. Miner. Geochem. 2000, 40, 1–112. [Google Scholar] [CrossRef]
- Pekov, I.V.; Shchipalkina, N.V.; Zubkova, N.V.; Gurzhiy, V.V.; Agakhanov, A.A.; Belakovskiy, D.I.; Chukanov, N.V.; Lykova, I.S.; Vigasina, M.F.; Koshlyakova, N.N.; et al. Alkali sulfates with aphthitalite-like structures from fumaroles of the Tolbachik volcano, Kamchatka, Russia. I. Metathenardite, a natural high-temperature modification of Na2SO4. Can. Mineral. 2019, 57, 885–901. [Google Scholar] [CrossRef]
- Pekov, I.V.; Agakhanov, A.A.; Zubkova, N.V.; Koshlyakova, N.V.; Shchipalkina, N.V.; Sandalov, F.D.; Yapaskurt, V.O.; Turchkova, A.G.; Sidorov, E.G. Oxidizing-type fumaroles of the Tolbachik Volcano, a mineralogical and geochemical unique. Russ. Geol. Geophys. 2020, 61, 675–688. [Google Scholar] [CrossRef]
- Filatov, S.K.; Shablinskii, A.P.; Vergasova, L.P.; Saprikina, O.Y.; Bubnova, R.S.; Moskaleva, S.V.; Belousov, A.B. Belomarinaite KNa(SO4): A new sulfate from 2012–2013 Tolbachik Fissure eruption, Kamchatka Peninsula, Russia. Mineral. Mag. 2019, 83, 569–575. [Google Scholar] [CrossRef] [Green Version]
- Nazarchuk, E.V.; Siidra, O.I.; Nekrasova, D.O.; Shilovskikh, V.V.; Borisov, A.S.; Avdontseva, E.Y. Glikinite, Zn3O(SO4)2, a new anhydrous zinc oxysulfate mineral structurally based on OZn4 tetrahedra. Mineral. Mag. 2020, 84, 563–567. [Google Scholar] [CrossRef]
- Shchipalkina, N.V.; Pekov, I.V.; Chukanov, N.V.; Belakovskiy, D.I.; Zubkova, N.V.; Koshlyakova, N.N.; Britvin, S.N.; Sidorov, E.G. Alkali sulfates with aphthitalite-like structures from fumaroles of the Tolbachik volcano, Kamchatka, Russia. II. A new mineral, natroaphthitalite, and new data on belomarinaite. Can. Mineral. 2020, 58, 167–181. [Google Scholar] [CrossRef]
- Chesnokov, B.V.; Bazhenova, L.F.; Bushmakin, A.F.; Kotlyarov, V.A.; Belogub, E.V. New minerals from burnt dumps of the Chelyabinsk coal basin (communication seven). Ural. Mineral. Sbornik 1995, 4, 3–28. (In Russian) [Google Scholar]
- Chesnokov, B.V.; Shcherbakova, E.P.; Nishanbaev, T.P. Minerals of Burnt Dumps of the Chelyabinsk Coal Basin; Ural Branch of RAS: Miass, Russia, 2008; pp. 1–139. (In Russian) [Google Scholar]
- Murashko, M.N.; Pekov, I.V.; Krivovichev, S.V.; Chernyatyeva, A.P.; Yapaskurt, V.O.; Zadov, A.E.; Zelensky, M.E. Steklite, KAl(SO4)2: A finding at the Tolbachik Volcano, Kamchatka, Russia, validating its status as a mineral species and crystal structure. Geol. Ore Depos. 2013, 55, 594–600. [Google Scholar] [CrossRef]
- Mizutani, Y. Volcanic sublimates and incrustations from Showashinzan. J. Earth Sci. Nagoya Univ. 1962, 10, 135–148. [Google Scholar]
- Stoiber, R.E.; Rose, W.I. Fumarole incrustations at active Central American volcanoes. Geochim. Cosmochim. Acta 1974, 38, 495–516. [Google Scholar] [CrossRef]
- Lapham, D.M.; Barns, J.H.; Downey, W., Jr.; Finkelman, R.B. Mineralogy associated with burning anthracite deposits of eastern Pennsylvania. In Reports of the Common Wealth of Pennsylvania; Dept. of Environmental Resources, Bureau of Topographic and Geologic Survey, Mineral Resources: Pennsylvania, PA, USA, 1980; Volume 78, pp. 1–82. [Google Scholar]
- Tvrdý, J.; Sejkora, J. Novotvořené minerální fáze na hořícím odvalu dolu Kateřina v Radvanicích. Uhlí Rudy Geol. Průzkum 2000, 7, 19–24. (In Czech) [Google Scholar]
- Ciesielczuk, J.; Krzykawski, T.; Misz-Kennan, M. Minerals formed by exhalation on the burning coal-waste dumps of the Upper Silesian Coal Basin, Poland. Mineral. Spec. Pap. 2010, 36, 74. [Google Scholar]
- Košek, F.; Culka, A.; Jehlička, J. Raman spectroscopic study of six synthetic anhydrous sulfates relevant to the mineralogy of fumaroles. J. Raman Spectrosc. 2018, 49, 1–12. [Google Scholar] [CrossRef]
- Parafiniuk, J.; Hatert, F. New IMA CNMNC guidelines on combustion products from burning coal dumps. Eur. J. Mineral. 2020, 32, 215–217. [Google Scholar] [CrossRef] [Green Version]
- Bruker-AXS. APEX2, Version 2014.11-0; Bruker-AXS: Madison, WI, USA, 2014. [Google Scholar]
- Sheldrick, G.M. SADABS; University of Goettingen: Goettingen, Germany, 2007. [Google Scholar]
- Stoe & Cie. X-AREA (Version 1.16) and X-RED (Version 1.22); Stoe & Cie: Darmstadt, Germany, 2001. [Google Scholar]
- Stoe & Cie. X-SHAPE, Version 1.06; Stoe & Cie: Darmstadt, Germany, 1999. [Google Scholar]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8. [Google Scholar]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. Olex2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Brese, N.E.; O’Keeffe, M. Bond-valence parameters for solids. Acta Crystallogr. 1991, B47, 192–197. [Google Scholar] [CrossRef]
- Manoli, J.M.; Herpin, P.; Pannetier, G. Structure cristalline du sulfate double d’aluminium et de potassium. Bull. Soc. Chim. Fr. 1970, 1, 98–101. (In French) [Google Scholar]
- Graeber, E.J.; Rosenzweig, A. The crystal structures of yavapaiite, KFe(SO4)2, and goldichite, KFe(SO4)2(H2O)4. Am. Mineral. 1971, 56, 1917–1933. [Google Scholar]
- Anthony, J.W.; McLean, W.J.; Laughon, R.B. The crystal structure of yavapaiite: A discussion. Am. Mineral. 1972, 57, 1546–1549. [Google Scholar]
- Alkemper, J.; Fuess, H. The crystal structures of NaMgPO4, Na2CaMg(PO4)2 and Na18Ca13Mg5(PO4)18: New examples for glaserite related structures. Z. Kristal. 1998, 213, 282–287. [Google Scholar] [CrossRef]
- Krivovichev, S.V. Structural Crystallography of Inorganic Oxysalts; University Press: Oxford, UK, 2009. [Google Scholar]
- Krivovichev, S.V. Comparative study of flexibilities of structural units in uranyl sulfates, chromates and molybdates. Radiochemistry 2004, 46, 434–437. [Google Scholar] [CrossRef]
- West, D.V.; Huang, Q.; Zandbergen, H.W.; McQueen, T.M.; Cava, R.J. Structural disorder, octahedral coordination and two-dimensional ferromagnetism in anhydrous alums. J. Solid State Chem. 2008, 181, 2768–2775. [Google Scholar] [CrossRef] [Green Version]
- Yogev-Einot, D.; Avnir, D. Pressure and temperature effects on the degree of symmetry and chirality of the molecular building blocks of low quartz. Acta Crystallogr. 2004, B60, 163–173. [Google Scholar] [CrossRef]
- Raade, G.; Mladeck, M.H.; Kristiansen, R.; Din, V.K. Kaatialaite, a new ferric arsenate mineral from Finland. Am. Mineral. 1984, 69, 383–387. [Google Scholar]
- Mackintosh, J.B. Notes on some native iron sulphates from Chili. Am. J. Sci. 1889, 38, 242–245. [Google Scholar] [CrossRef]
- Scordari, F. The crystal structure of ferrinatrite, Na3(H2O)3[Fe(SO4)3] and its relationship to Maus’s salt, (H3O)2K2{K0.5(H2O)0.5}6[Fe3O(H2O)3(SO4)6](OH)2. Mineral. Mag. 1977, 41, 375–383. [Google Scholar] [CrossRef]
- Demartin, F.; Castellano, C.; Gramaccioli, C.M.; Campostrini, I. Aluminocoquimbite, AlFe(SO4)3·9H2O, a new aluminum iron sulfate from Grotta dell’Allume, Vulcano, Aeolian Islands, Italy. Can. Mineral. 2010, 48, 1465–1468. [Google Scholar] [CrossRef]
- Demartin, F.; Gramaccioli, C.M.; Campostrini, I. Pyracmonite, (NH4)3Fe(SO4)3, a new ammonium iron sulfate from La Fossa crater, Vulcano, Aeolian Islands, Italy. Can. Mineral. 2010, 48, 307–313. [Google Scholar] [CrossRef]
Phase | Steklite KAl(SO4)2 | (K,Na)3Na3(Fe,Al)2(SO4)6 |
---|---|---|
Crystal system | trigonal | trigonal |
Space group | P | R |
a, Å | 4.7277(3) | 13.932(2) |
c, Å | 7.9871(5) | 17.992(2) |
V, Å3 | 154.60(2) | 3024.4(7) |
Z | 1 | 6 |
Dcalc, g cm−3 | 2.801 | 2.784 |
μ, mm−1 | 1.873 | 2.354 |
F(000) | 129.0 | 2497.0 |
Radiation | MoKα (λ = 0.71073) | MoKα (λ = 0.71073) |
2Θ range for data collection, ° | 5.1 to 81.742 | 4.06 to 53.98 |
Index ranges | −8 ≤ h ≤ 5, −7 ≤ k ≤ 8, −14 ≤ l ≤ 14 | −17 ≤ h ≤ 17, −17 ≤ k ≤ 17, −19 ≤ l ≤ 22 |
Reflections collected | 1948 | 6934 |
Independent reflections | 650 [Rint = 0.0208] | 1466 [Rint = 0.088] |
Data/restraints/parameters | 650/0/21 | 1466/0/116 |
Goodness-of-fit on F2 | 1.107 | 1.184 |
Final R indexes [I ≥ 2σ (I)] | R1 = 0.0262, wR2 = 0.0680 | R1 = 0.0728, wR2 = 0.1075 |
Final R indexes [all data] | R1 = 0.0314, wR2 = 0.0712 | R1 = 0.0914, wR2 = 0.1130 |
Largest diff. peak/hole/e Å−3 | 1.09/−0.42 | 0.76/−0.56 |
Atom | x | y | z | Ueq | Occupancy | BVS * |
---|---|---|---|---|---|---|
Steklite KAl(SO4)2 | ||||||
K | 0 | 0 | 0 | 0.0235(1) | K | 1.09 |
Al | 0 | 0 | ½ | 0.0089(2) | Al0.90Fe0.10 | 3.15 |
S | ⅓ | ⅔ | 0.29602(4) | 0.0092(1) | S | 6.06 |
O1 | ⅓ | ⅔ | 0.1153(1) | 0.0188(3) | O | 1.76 |
O2 | 0.2805(2) | 0.9312(2) | 0.35885(9) | 0.0133(1) | O | 2.06 |
(K,Na)3Na3(Fe,Al)2(SO4)6 | ||||||
Fe1 | 0 | 0 | 0 | 0.0075(4) | Fe0.78Al0.22 | 2.92 |
Fe2 | ⅓ | ⅔ | −0.08861(9) | 0.0083(3) | Fe0.66Al0.34 | 3.06 |
Fe3 | ⅓ | ⅔ | 1/6 | 0.0090(4) | Fe0.78Al0.22 | 2.95 |
S1 | 0.31822(11) | 0.49209(11) | 0.03634(7) | 0.0150(3) | S | 6.08 |
S2 | 0.04720(11) | 0.19237(10) | 0.12854(7) | 0.0142(3) | S | 6.04 |
K | 0.29774(13) | 0.22033(12) | 0.07635(9) | 0.0265(4) | K0.73Na0.27 | 0.94 |
Na | 0.4390(2) | 0.3950(2) | −0.0843(2) | 0.0308(6) | Na | 1.06 |
O1 | 0.0604(4) | 0.1398(3) | 0.0596(2) | 0.0237(9) | O | 2.02 |
O2 | 0.1557(3) | 0.2626(4) | 0.1594(2) | 0.0235(9) | O | 2.05 |
O3 | 0.4613(3) | 0.6927(3) | −0.1522(2) | 0.0199(8) | O | 1.97 |
O4 | 0.2515(4) | 0.2621(4) | −0.1097(3) | 0.029(1) | O | 2.01 |
O5 | 0.3590(4) | 0.5619(4) | 0.1053(2) | 0.0243(9) | O | 1.99 |
O6 | 0.3705(4) | 0.4246(4) | 0.0351(2) | 0.0253(9) | O | 2.05 |
O7 | 0.1989(3) | 0.4289(4) | 0.0351(3) | 0.0259(9) | O | 2.02 |
O8 | 0.3626(4) | 0.5673(4) | −0.0286(2) | 0.0255(9) | O | 2.00 |
Atom | U11 | U22 | U33 | U23 | U13 | U12 |
---|---|---|---|---|---|---|
Steklite KAl(SO4)2 | ||||||
K | 0.0212(2) | =U11 | 0.0280(2) | 0 | 0 | 0.01062(9) |
S | 0.0076(1) | =U11 | 0.0123(1) | 0 | 0 | 0.00380(6) |
Al | 0.0065(2) | =U11 | 0.0136(3) | 0 | 0 | 0.033(1) |
O1 | 0.0220(4) | =U11 | 0.0124(4) | 0 | 0 | 0.0110(2) |
O2 | 0.0107(3) | 0.0087(3) | 0.0216(3) | −0.0002(2) | 0.0020(2) | 0.0056(2) |
(K,Na)3Na3(Fe,Al)2(SO4)6 | ||||||
Fe1 | 0.0090(5) | =U11 | 0.0045(9) | 0 | 0 | 0.0045(3) |
Fe2 | 0.0103(4) | =U11 | 0.0041(6) | 0 | 0 | 0.0052(2) |
Fe3 | 0.0107(6) | =U11 | 0.0056(9) | 0 | 0 | 0.0053(3) |
S1 | 0.0155(6) | 0.0143(6) | 0.0151(7) | −0.0001(5) | −0.0001(5) | 0.0073(5) |
S2 | 0.0155(6) | 0.0127(6) | 0.0143(6) | −0.0013(5) | −0.0003(5) | 0.0069(5) |
K | 0.0287(8) | 0.0187(7) | 0.0335(9) | 0.0041(6) | 0.0114(7) | 0.0129(6) |
Na | 0.0258(13) | 0.0296(13) | 0.0348(14) | 0.0109(12) | −0.0027(11) | 0.0121(11) |
O1 | 0.029(2) | 0.018(2) | 0.020(2) | −0.0016(17) | 0.0008(18) | 0.0081(18) |
O2 | 0.021(2) | 0.021(2) | 0.021(2) | −0.0080(17) | −0.0043(17) | 0.0055(17) |
O3 | 0.021(2) | 0.020(2) | 0.019(2) | −0.0020(16) | 0.0030(16) | 0.0103(17) |
O4 | 0.026(2) | 0.018(2) | 0.042(3) | −0.0081(19) | −0.009(2) | 0.0086(18) |
O5 | 0.028(2) | 0.030(2) | 0.019(2) | −0.0091(18) | −0.0046(18) | 0.0184(19) |
O6 | 0.033(2) | 0.025(2) | 0.027(2) | −0.0024(18) | −0.001(2) | 0.021(2) |
O7 | 0.018(2) | 0.024(2) | 0.029(2) | −0.0041(19) | −0.0030(19) | 0.0055(18) |
O8 | 0.027(2) | 0.028(2) | 0.022(2) | 0.0083(19) | 0.0050(18) | 0.0141(19) |
Steklite KAl(SO4)2 | |||||
---|---|---|---|---|---|
K-O2 | 3.2421(7) ×6 | S-O2 | 1.4799(7) ×3 | Al-O2 | 1.8888(7) ×6 |
K-O1 | 2.8808(4) ×6 | S-O1 | 1.4431(11) | ||
<K-O> | 3.0614 | <S-O> | 1.4707 | ||
(K,Na)3Na3(Fe,Al)2(SO4)6 | |||||
Fe1-O1 | 2.004(4) ×6 | S2-O2 | 1.439(4) | K-O6 | 2.606(5) |
S2-O4 | 1.450(4) | K-O7 | 2.671(5) | ||
Fe2-O8 | 1.953(4) ×3 | S2-O3 | 1.495(4) | K-O2 | 2.768(5) |
Fe2-O3 | 1.993(4) ×3 | S2-O1 | 1.497(4) | K-O4 | 2.774(5) |
<Fe2-O> | 1.973 | <S2-O> | 1.470 | K-O1 | 2.928(5) |
K-O4 | 3.025(5) | ||||
Fe3-O5 | 2.000(4) ×6 | Na-O2 | 2.277(5) | K-O3 | 3.174(4) |
Na-O4 | 2.373(5) | K-O1 | 3.219(5) | ||
S1-O7 | 1.441(4) | Na-O7 | 2.400(5) | K-O3 | 3.245(4) |
S1-O6 | 1.449(4) | Na-O6 | 2.467(5) | <K-O> | 2.934 |
S1-O8 | 1.482(4) | Na-O5 | 2.594(5) | ||
S1-O5 | 1.501(4) | Na-O6 | 2.733(5) | ||
<S1-O> | 1.468 | <Na-O> | 2.474 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zolotarev, A.A.; Krivovichev, S.V.; Avdontceva, M.S.; Shilovskikh, V.V.; Rassomakhin, M.A.; Yapaskurt, V.O.; Pekov, I.V. Crystal Chemistry of Alkali–Aluminum–Iron Sulfates from the Burnt Mine Dumps of the Chelyabinsk Coal Basin, South Urals, Russia. Crystals 2020, 10, 1062. https://doi.org/10.3390/cryst10111062
Zolotarev AA, Krivovichev SV, Avdontceva MS, Shilovskikh VV, Rassomakhin MA, Yapaskurt VO, Pekov IV. Crystal Chemistry of Alkali–Aluminum–Iron Sulfates from the Burnt Mine Dumps of the Chelyabinsk Coal Basin, South Urals, Russia. Crystals. 2020; 10(11):1062. https://doi.org/10.3390/cryst10111062
Chicago/Turabian StyleZolotarev, Andrey A., Sergey V. Krivovichev, Margarita S. Avdontceva, Vladimir V. Shilovskikh, Mikhail A. Rassomakhin, Vasiliy O. Yapaskurt, and Igor V. Pekov. 2020. "Crystal Chemistry of Alkali–Aluminum–Iron Sulfates from the Burnt Mine Dumps of the Chelyabinsk Coal Basin, South Urals, Russia" Crystals 10, no. 11: 1062. https://doi.org/10.3390/cryst10111062
APA StyleZolotarev, A. A., Krivovichev, S. V., Avdontceva, M. S., Shilovskikh, V. V., Rassomakhin, M. A., Yapaskurt, V. O., & Pekov, I. V. (2020). Crystal Chemistry of Alkali–Aluminum–Iron Sulfates from the Burnt Mine Dumps of the Chelyabinsk Coal Basin, South Urals, Russia. Crystals, 10(11), 1062. https://doi.org/10.3390/cryst10111062