Molecular Packing Interaction in DNA Crystals
Abstract
:1. Introduction
2. Methods
2.1. Data Collection and Extraction
2.2. Crystal Packing
2.3. DNA Crystal Packing Type
2.4. Packing Interactions and Factor Analyses
2.5. Solvent Content
2.6. Structural Visualization
3. Results
3.1. Data Extraction
3.2. Packing Interaction
3.3. Packing Types
3.4. Correlation Among Factors Affecting Crystal Quality
3.4.1. Packing vs. Other Factors
3.4.2. Sequence vs. Other Factors
3.4.3. Resolution vs. Other Factors
3.4.4. Symmetry vs. Other Factors
3.4.5. Metal/Ligands vs. Other Factors
3.4.6. Solvent vs. Other Factors
3.5. Comparison of Molecular Interactions in The Preferred Space Groups
4. Discussions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Drew, H.R.; Wing, R.M.; Takano, T.; Broka, C.A.; Tanaka, S.; Itakura, K.; Dickerson, R.E. Structure of a B-DNA dodecamer: Conformation and dynamics. Proc. Natl. Acad. Sci. USA 1981, 78, 2179–2183. [Google Scholar] [CrossRef] [Green Version]
- Arnott, S.; Hukins, D. Optimised parameters for A-DNA and B-DNA. Biochem. Biophys. Res. Commun. 1972, 47, 1504–1509. [Google Scholar] [CrossRef]
- Ravichandran, S.; Subramani, V.K.; Kim, K.K. Z-DNA in the genome: From structure to disease. Biophys. Rev. 2019, 11, 383–387. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Majima, T. Conformational changes of non-B DNA. Chem. Soc. Rev. 2011, 40, 5893–5909. [Google Scholar] [CrossRef] [PubMed]
- Zeraati, M.; Langley, D.B.; Schofield, P.; Moye, A.L.; Rouet, R.; Hughes, W.E.; Bryan, T.M.; Dinger, M.E.; Christ, D. I-motif DNA structures are formed in the nuclei of human cells. Nat. Chem. 2018, 10, 631–637. [Google Scholar] [CrossRef] [PubMed]
- Parveen, N.; Shamim, A.; Cho, S.; Kim, K.K. Computational Approaches to Predict the Non-canonical DNAs. Curr. Bioinform. 2019, 14, 470–479. [Google Scholar] [CrossRef]
- Spiegel, J.; Adhikari, S.; Kendrick, S. The Structure and Function of DNA G-Quadruplexes. Trends Chem. 2020, 2, 123–136. [Google Scholar] [CrossRef] [Green Version]
- Ravichandran, S.; Ahn, J.-H.; Kim, K.K. Unraveling the Regulatory G-Quadruplex Puzzle: Lessons From Genome and Transcriptome-Wide Studies. Front. Genet. 2019, 10, 1002. [Google Scholar] [CrossRef]
- Zheng, J.; Birktoft, J.J.; Chen, Y.; Wang, T.; Sha, R.; Constantinou, P.E.; Ginell, S.L.; Mao, C.; Seeman, N.C. From molecular to macroscopic via the rational design of a self-assembled 3D DNA crystal. Nat. Cell Biol. 2009, 461, 74–77. [Google Scholar] [CrossRef]
- Zhang, W.; Szostak, J.W.; Huang, Z. Nucleic acid crystallization and X-ray crystallography facilitated by single selenium atom. Front. Chem. Sci. Eng. 2016, 10, 196–202. [Google Scholar] [CrossRef]
- Saenger, W. Principles of Nucleic Acid Structure; Springer: Berlin/Heidelberg, Germany, 1984. [Google Scholar] [CrossRef]
- Egli, M. Nucleic acid crystallography: Current progress. Curr. Opin. Chem. Biol. 2004, 8, 580–591. [Google Scholar] [CrossRef] [PubMed]
- Narayanan, B.C.; Westbrook, J.; Ghosh, S.; Petrov, A.I.; Sweeney, B.; Zirbel, C.L.; Leontis, N.B.; Berman, H.M. The Nucleic Acid Database: New features and capabilities. Nucleic Acids Res. 2013, 42, D114–D122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burley, S.K.; Berman, H.M.; Christie, C.; Duarte, J.M.; Feng, Z.; Westbrook, J.; Young, J.; Zardecki, C. RCSB Protein Data Bank: Sustaining a living digital data resource that enables breakthroughs in scientific research and biomedical education. Protein Sci. 2018, 27, 316–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krissinel, E.; Henrick, K. Inference of Macromolecular Assemblies from Crystalline State. J. Mol. Biol. 2007, 372, 774–797. [Google Scholar] [CrossRef] [PubMed]
- Weichenberger, C.X.; Rupp, B. Ten years of probabilistic estimates of biocrystal solvent content: New insights via nonparametric kernel density estimate. Acta Crystallogr. Sect. D Biol. Crystallogr. 2014, 70, 1579–1588. [Google Scholar] [CrossRef]
- Matthews, B. Solvent content of protein crystals. J. Mol. Biol. 1968, 33, 491–497. [Google Scholar] [CrossRef]
- McNicholas, S.; Potterton, E.; Wilson, K.S.; Noble, M.E.M. Presenting your structures: The CCP4mg molecular-graphics software. Acta Crystallogr D Biol Crystallogr. 2011, 67, 386–394. [Google Scholar] [CrossRef] [Green Version]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef]
- Kuzmanic, A.; Dans, P.D.; Garcia-Lopez, A. An In-Depth Look at DNA Crystals through the Prism of Molecular Dynamics Simulations. Chem 2019, 5, 649–663. [Google Scholar] [CrossRef] [Green Version]
- Padmaja, N.; Ramakumar, S.; Viswamitra, M.A. Space-group frequencies of proteins and of organic compounds with more than one formula unit in the asymmetric unit. Acta Crystallogr. Sect. A Found. Crystallogr. 1990, 46, 725–730. [Google Scholar] [CrossRef]
- Wukovitz, S.W.; Yeates, T.O. Why Protein Crystals Favor Some Space-Groups over Others. Nat. Struct. Biol. 1995, 2, 1062–1067. [Google Scholar] [CrossRef]
- Schwarzenbach, D. Acta Crystallographica Section A: Foundations of Crystallography. Acta Crystallogr. Sect. A Found. Crystallogr. 2008, 64, 167. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.-G.; Sriram, M.; Wang, A.H.-J. Crystallographic studies of metal ion—DNA interactions: Different binding modes of cobalt(II), copper(II) and barium(II) to N7of guanines in Z-DNA and a drug-DNA complex. Nucleic Acids Res. 1993, 21, 4093–4101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Intermolecular Interacting Sites | Moiety Involved in Hydrogen Bond | Interaction Category | Hydrogen Bond |
---|---|---|---|
Terminal end-Terminal end | Base - Base | C1 | N-H---O or N |
Terminal end-Terminal end | Sugar-Phosphate Base-Phosphate Sugar-Base | C2 | 3′OH---OP1 or OP2 5′OH---OP1 or OP2 N-H---OP1 or OP2 3′OH---O or N |
Mid-region-Terminal end | Sugar-Phosphate Base-Phosphate | C3 | 3′OH---OP1 or OP2 5′OH---OP1 or OP2 N-H---OP1 or OP2 |
Mid-region-Terminal end | Sugar-Phosphate | C4 | 3′OH---OP1 or OP2 5′OH---OP1 or OP2 |
Packing Type | Conformation | Structures in NDB (Count) | Structures in NDB (%) |
---|---|---|---|
Type 1 | A-DNA | 2 | 0.4% |
B-DNA | 27 | 5.3% | |
Z-DNA | 4 | 0.8% | |
Type 1 Total | 33 | 6.5% | |
Type 2 | A-DNA | 32 | 6.3% |
B-DNA | 49 | 9.6% | |
Z-DNA | 32 | 6.3% | |
Type 2 Total | 113 | 22% | |
Type 3 | A-DNA | 95 | 18.7% |
B-DNA | 228 | 44.8% | |
Z-DNA | 35 | 6.9% | |
Type 3 Total | 358 | 70.3% | |
Type 4 | A-DNA | 0 | 0.0% |
B-DNA | 0 | 0.0% | |
Z-DNA | 5 | 1.0% | |
Type 4 Total | 5 | 1.0% | |
Grand Total | 509 | 100.0% |
Sequence Length | Packing Type | Grand Total | Conformation | Grand Total | |||||
---|---|---|---|---|---|---|---|---|---|
Type 1 | Type 2 | Type 3 | Type 4 | B-DNA | A-DNA | Z-DNA | |||
12 | 13 | 7 | 209 | 0 | 229 | 217 | 10 | 2 | 229 |
10 | 9 | 46 | 84 | 0 | 139 | 66 | 72 | 1 | 139 |
6 | 2 | 35 | 44 | 5 | 86 | 12 | 10 | 64 | 86 |
8 | 0 | 17 | 9 | 0 | 26 | 0 | 26 | 0 | 26 |
14 | 0 | 0 | 7 | 0 | 7 | 0 | 7 | 0 | 7 |
7 | 5 | 0 | 1 | 0 | 6 | 2 | 0 | 4 | 6 |
4 | 0 | 4 | 2 | 0 | 6 | 1 | 0 | 5 | 6 |
9 | 2 | 2 | 2 | 0 | 6 | 2 | 4 | 0 | 6 |
11 | 2 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 2 |
20 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 |
13 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 |
Grand Total | 33 | 113 | 358 | 5 | 509 | 304 | 129 | 76 | 509 |
Resolution (Å) | Packing Type | Grand Total | Conformation | Grand Total | |||||
---|---|---|---|---|---|---|---|---|---|
Type 1 | Type 2 | Type 3 | Type 4 | B-DNA | A-DNA | Z-DNA | |||
<1.4 | 3 | 16 | 62 | 1 | 82 | 38 | 18 | 26 | 82 |
1.4–1.6 | 1 | 20 | 60 | 1 | 82 | 41 | 29 | 12 | 82 |
1.6–1.8 | 6 | 20 | 49 | 1 | 76 | 28 | 29 | 19 | 76 |
1.8–2.0 | 5 | 17 | 48 | 1 | 71 | 44 | 21 | 6 | 71 |
2.0–2.2 | 5 | 11 | 47 | 0 | 63 | 47 | 13 | 3 | 63 |
2.2–2.4 | 4 | 11 | 34 | 0 | 49 | 41 | 7 | 1 | 49 |
2.4–2.6 | 3 | 8 | 35 | 1 | 47 | 35 | 9 | 3 | 47 |
2.8–3.0 | 4 | 4 | 9 | 0 | 17 | 13 | 2 | 2 | 17 |
2.6–2.8 | 1 | 5 | 11 | 0 | 17 | 13 | 1 | 3 | 17 |
>3.0 | 1 | 1 | 3 | 0 | 5 | 4 | 0 | 1 | 5 |
Grand Total | 33 | 113 | 358 | 5 | 509 | 304 | 129 | 76 | 509 |
Symmetry | Packing Type | Grand Total | Conformation | Grand Total | |||||
---|---|---|---|---|---|---|---|---|---|
Type 1 | Type 2 | Type 3 | Type 4 | B-DNA | A-DNA | Z-DNA | |||
P 21 21 21 | 17 | 30 | 277 | 4 | 328 | 210 | 69 | 49 | 328 |
P 61 | 0 | 18 | 9 | 0 | 27 | 3 | 24 | 0 | 27 |
P 32 2 1 | 1 | 10 | 10 | 0 | 21 | 8 | 10 | 3 | 21 |
H 3 | 8 | 3 | 8 | 0 | 19 | 18 | 1 | 0 | 19 |
P 1 21 1 | 1 | 9 | 6 | 0 | 16 | 3 | 3 | 10 | 16 |
C 1 2 1 | 0 | 7 | 5 | 0 | 12 | 11 | 0 | 1 | 12 |
C 2 2 21 | 0 | 6 | 6 | 0 | 12 | 4 | 6 | 2 | 12 |
P 1 | 0 | 4 | 5 | 0 | 9 | 9 | 0 | 0 | 9 |
P 32 | 3 | 4 | 1 | 0 | 8 | 4 | 0 | 4 | 8 |
P 41 21 2 | 1 | 0 | 5 | 0 | 6 | 2 | 4 | 0 | 6 |
P 43 | 0 | 2 | 4 | 0 | 6 | 2 | 4 | 0 | 6 |
P 65 | 0 | 3 | 2 | 0 | 5 | 2 | 0 | 3 | 5 |
P 31 | 0 | 2 | 2 | 0 | 4 | 4 | 0 | 0 | 4 |
P 6 | 0 | 4 | 0 | 0 | 4 | 4 | 0 | 0 | 4 |
P 32 1 2 | 0 | 2 | 1 | 0 | 3 | 3 | 0 | 0 | 3 |
P 43 21 2 | 0 | 1 | 2 | 0 | 3 | 1 | 1 | 1 | 3 |
P -1 | 0 | 3 | 0 | 0 | 3 | 3 | 0 | 0 | 3 |
P 21 21 2 | 0 | 1 | 1 | 0 | 2 | 1 | 1 | 0 | 2 |
P 65 2 2 | 0 | 1 | 1 | 0 | 2 | 1 | 1 | 0 | 2 |
P 61 2 2 | 0 | 0 | 2 | 0 | 2 | 0 | 2 | 0 | 2 |
P 41 | 0 | 0 | 2 | 0 | 2 | 0 | 2 | 0 | 2 |
P 1 1 21 | 0 | 1 | 0 | 1 | 2 | 0 | 0 | 2 | 2 |
P 41 2 2 | 0 | 0 | 2 | 0 | 2 | 2 | 0 | 0 | 2 |
B 2 21 2 | 0 | 1 | 1 | 0 | 2 | 1 | 0 | 1 | 2 |
P b c a | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 |
P 1 21/n 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 |
P 1 21/c 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 |
I 2 3 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 |
C 2 2 2 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 |
P 31 2 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 |
I 2 2 2 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 |
I 41 2 2 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 |
P 3 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
Grand Total | 33 | 113 | 358 | 5 | 509 | 304 | 129 | 76 | 509 |
Metal / Ligand | Packing Type | Grand Total | Conformation | Grand Total | |||||
---|---|---|---|---|---|---|---|---|---|
Type 1 | Type 2 | Type 3 | Type 4 | B-DNA | A-DNA | Z-DNA | |||
(blank) | 5 | 53 | 119 | 5 | 182 | 72 | 76 | 34 | 182 |
MG | 6 | 16 | 91 | 0 | 113 | 91 | 14 | 8 | 113 |
CA | 9 | 5 | 10 | 0 | 24 | 21 | 2 | 1 | 24 |
SPM | 1 | 4 | 15 | 0 | 20 | 4 | 11 | 5 | 20 |
NT | 2 | 3 | 7 | 0 | 12 | 12 | 0 | 0 | 12 |
HT | 0 | 0 | 12 | 0 | 12 | 12 | 0 | 0 | 12 |
NCO | 1 | 4 | 5 | 0 | 10 | 3 | 1 | 6 | 10 |
NA | 0 | 5 | 5 | 0 | 10 | 4 | 6 | 0 | 10 |
BA | 0 | 0 | 7 | 0 | 7 | 2 | 2 | 3 | 7 |
K | 0 | 0 | 7 | 0 | 7 | 4 | 3 | 0 | 7 |
CO | 1 | 4 | 1 | 0 | 6 | 6 | 0 | 0 | 6 |
CU | 0 | 4 | 1 | 0 | 5 | 0 | 0 | 5 | 5 |
SR | 0 | 0 | 5 | 0 | 5 | 2 | 3 | 0 | 5 |
ZN | 1 | 2 | 2 | 0 | 5 | 2 | 2 | 1 | 5 |
MN | 1 | 2 | 1 | 0 | 4 | 1 | 1 | 2 | 4 |
DAP | 1 | 0 | 3 | 0 | 4 | 4 | 0 | 0 | 4 |
RB | 0 | 0 | 3 | 0 | 3 | 1 | 2 | 0 | 3 |
IA | 0 | 0 | 3 | 0 | 3 | 3 | 0 | 0 | 3 |
NI | 3 | 0 | 0 | 0 | 3 | 3 | 0 | 0 | 3 |
DMY | 2 | 0 | 1 | 0 | 3 | 3 | 0 | 0 | 3 |
HT1 | 0 | 0 | 3 | 0 | 3 | 3 | 0 | 0 | 3 |
IB | 0 | 0 | 3 | 0 | 3 | 3 | 0 | 0 | 3 |
RO2 | 0 | 0 | 2 | 0 | 2 | 2 | 0 | 0 | 2 |
PTN | 0 | 0 | 2 | 0 | 2 | 1 | 0 | 1 | 2 |
NRU | 0 | 2 | 0 | 0 | 2 | 0 | 0 | 2 | 2 |
IPY | 0 | 2 | 0 | 0 | 2 | 2 | 0 | 0 | 2 |
CL | 0 | 1 | 1 | 0 | 2 | 1 | 1 | 0 | 2 |
HG | 0 | 0 | 2 | 0 | 2 | 2 | 0 | 0 | 2 |
TNT | 0 | 0 | 2 | 0 | 2 | 2 | 0 | 0 | 2 |
BBZ | 0 | 0 | 2 | 0 | 2 | 2 | 0 | 0 | 2 |
ILT | 0 | 0 | 2 | 0 | 2 | 2 | 0 | 0 | 2 |
BRN | 0 | 0 | 2 | 0 | 2 | 2 | 0 | 0 | 2 |
Others | 0 | 6 | 39 | 0 | 45 | 32 | 5 | 8 | 45 |
Grand Total | 33 | 113 | 358 | 5 | 509 | 304 | 129 | 76 | 509 |
Solvent Content (%) | DXPI Type | Grand Total | Conformation | Grand Total | |||||
---|---|---|---|---|---|---|---|---|---|
Type 1 | Type 2 | Type 3 | Type 4 | B-DNA | A-DNA | Z-DNA | |||
70–80 | 0 | 1 | 1 | 0 | 2 | 0 | 2 | 0 | 2 |
60–70 | 3 | 4 | 15 | 0 | 22 | 13 | 9 | 0 | 22 |
50–60 | 6 | 29 | 37 | 0 | 72 | 44 | 25 | 3 | 72 |
40–50 | 15 | 37 | 209 | 0 | 261 | 203 | 52 | 6 | 261 |
30–40 | 9 | 20 | 61 | 0 | 90 | 35 | 38 | 17 | 90 |
20–30 | 0 | 14 | 27 | 5 | 46 | 4 | 2 | 40 | 46 |
10–20 | 0 | 2 | 1 | 0 | 3 | 0 | 0 | 3 | 3 |
0–10 | 0 | 0 | 2 | 0 | 2 | 0 | 0 | 2 | 2 |
(blank) | 0 | 6 | 5 | 0 | 11 | 4 | 1 | 6 | 11 |
Grand Total | 33 | 113 | 358 | 5 | 509 | 303 | 129 | 77 | 509 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shamim, A.; Parveen, N.; Subramani, V.K.; Kim, K.K. Molecular Packing Interaction in DNA Crystals. Crystals 2020, 10, 1093. https://doi.org/10.3390/cryst10121093
Shamim A, Parveen N, Subramani VK, Kim KK. Molecular Packing Interaction in DNA Crystals. Crystals. 2020; 10(12):1093. https://doi.org/10.3390/cryst10121093
Chicago/Turabian StyleShamim, Amen, Nazia Parveen, Vinod Kumar Subramani, and Kyeong Kyu Kim. 2020. "Molecular Packing Interaction in DNA Crystals" Crystals 10, no. 12: 1093. https://doi.org/10.3390/cryst10121093
APA StyleShamim, A., Parveen, N., Subramani, V. K., & Kim, K. K. (2020). Molecular Packing Interaction in DNA Crystals. Crystals, 10(12), 1093. https://doi.org/10.3390/cryst10121093