Synthesis of Metal Nanoparticles by Microorganisms
Abstract
:1. Introduction
2. Nanoparticle Synthesis by Microorganisms
2.1. Silver Nanoparticles
2.2. Au Nanoparticles
Metal | Microorganism | Classification | Active Molecules | Size (nm) | Techniques Used for Detection | Ref. |
---|---|---|---|---|---|---|
Au | Verticillium sp. AAT-TS-4 | Bacteria | ca. 20 | TEM, SEM, EDS, UV-vis, XRD | [7] | |
Au | Rhodococcus sp. | Bacteria | 5–15 | TEM, UV-vis, XRD | [35] | |
Au | Escherichia coli DH5α | Bacteria | ca. 25 | TEM, SEM, UV-vis, XRD cyclic voltammograms | [42] | |
Au | Rhodopseudomonas capsulata | Bacteria | NADH | 10–20 | TEM, UV-vis, XRD | [43] |
Au | Shewanella algae | Bacteria | 10–20 | TEM, EDS, XANES | [33,45] | |
Au | Rhodopseudomonas capsulata (CFE) | Bacteria | 10–21 | TEM, EDS, UV-vis | [44] | |
Au | Aspergillus niger NCIM 616 | Fungi | protein | ca. 12.8 | TEM, SEM, UV-vis, XRD Zeta potential measurement | [46] |
Au | Cupriavidus metallidurans CH34 | Bacteria | 100 | TEM, SEM, EDS, XANES, µXRF | [47] | |
Au | Rhizopus oryzae MTCC 262 | fungi | 10 | TEM, EDS, UV-vis, AFM | [40] | |
Au | Bacillus licheniformis | bacteria | 10–100 | SEM, UV-vis, XRD | [49] | |
Au | Stenotrophomonas maltophilia AuRed02 | bacteria | NADPH | 40 | TEM, SEM, EDS, UV-vis | [50] |
Au | Hormoconis resinae MTCC 368 | Fungi | 3–20 | TEM, EDS, UV-vis, XRD | [51] | |
Au | Marinobacter sp. RS11 | bacteria | <10 | TEM, SEM, UV-vis, DLS | [52] | |
Au | Lactobacillus kimchicus DCY51 | bacteria | amino acid residues surface-bound proteins | 5~30 | TEM,, EDS, UV-vis, XRD, DLS | [53] |
Au | Delftia acidovorans | bacteria | Delftibactin | N.D. | TEM, UV-vis | [54] |
Au | Streptomyces sp. NK52 | bacteria | 10–100 | SEM, UV-vis, XRD | [55] | |
Au | Azospirillum brasilense Sp245 | bacteria | 5–50 | TEM, UV-vis, DLS | [37] | |
Au | Thermus scotoductus SA-01 | bacteria | ABC transporter | <50 | TEM, EDS, UV-vis, XRD | [56] |
Au | Bacillus niabensis 45 | bacteria | cyclic peptide | N.D. | TEM, SEM, EDS, UV-vis, XRD | [57] |
Au | Serratia marcescens | bacteria | prodigiosin | 20–120 | TEM, SEM, EDS, UV-vis, XRD DLS, XPS, He ion microscopy | [58] |
Au | Lactobcills casei JCM1134 | bacteria | DGDG/lactic acidlacto-N-triose | ca. 29.6 | TEM, SEM, EDS, UV-vis, XRD | [29,59] |
Au | Bacillus marisflavi YCIS MN 5 | bacteria | protein | ca. 13.5 | TEM, SEM, UV-vis, XRD, DLS | [60] |
2.3. Cadmium Sulfide Nanoparticles
2.4. Cadmium Selenide Nanoparticles
2.5. Other Metal Nanoparticles
3. Active Molecules in Metal Nanoparticle Synthesis by Microorganisms
4. Purification of NPs Synthesized by Microorganisms
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gahlawat, G.; Shikha, S.; Chaddha, B.S.; Chaudhuri, S.R.; Mayilraj, S.; Choudhury, A.R. Microbial glycolipoprotein-capped silver nanoparticles as emerging antibacterial agents against cholera. Microb. Cell Factories 2016, 15, 25. [Google Scholar] [CrossRef] [Green Version]
- Kaur, A.; Gupta, U. A review on applications of nanoparticles for the preconcentration of environmental pollutants. J. Mater. Chem. 2009, 19, 8279. [Google Scholar] [CrossRef]
- Li, X.; Xu, H.; Chen, Z.; Chen, G. Biosynthesis of Nanoparticles by Microorganisms and Their Applications. J. Nanomater. 2011, 2011, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Lohse, S.E.; Murphy, C.J. Applications of colloidal inorganic nanoparticles: From medicine to energy. J. Am. Chem. Soc. 2012, 134, 15607–15620. [Google Scholar] [CrossRef]
- Chao, J.; Liu, J.; Yu, S.; Feng, Y.; Tan, Z.; Liu, R.; Yin, Y. Speciation Analysis of Silver Nanoparticles and Silver Ions in Antibacterial Products and Environmental Waters via Cloud Point Extraction-Based Separation. Anal. Chem. 2011, 83, 6875–6882. [Google Scholar] [CrossRef]
- Storhoff, J.J.; Lazarides, A.A.; Mucic, R.C.; Mirkin, C.A.; Letsinger, R.L.; Schatz, G.C. What Controls the Optical Properties of DNA-Linked Gold Nanoparticle Assemblies? J. Am. Chem. Soc. 2000, 122, 4640–4650. [Google Scholar] [CrossRef]
- Deplanche, K.; Bennett, J.A.; Mikheenko, I.P.; Omajali, J.; Wells, A.S.; Meadows, R.E.; Wood, J.; Macaskie, L.E. Catalytic activity of biomass-supported Pd nanoparticles: Influence of the biological component in catalytic efficacy and potential application in ‘green’ synthesis of fine chemicals and pharmaceuticals. Appl. Catal. B Environ. 2014, 147, 651–665. [Google Scholar] [CrossRef] [Green Version]
- Jukk, K.; Kongi, N.; Matisen, L.; Kallio, T.; Kontturi, K.; Tammeveski, K. Electroreduction of oxygen on palladium nanoparticles supported on nitrogen-doped graphene nanosheets. Electrochim. Acta 2014, 137, 206–212. [Google Scholar] [CrossRef]
- Safavi, A.; Maleki, N.; Farjami, F.; Farjami, E. Electrocatalytic oxidation of formaldehyde on palladium nanoparticles electrodeposited on carbon ionic liquid composite electrode. J. Electroanal. Chem. 2009, 626, 75–79. [Google Scholar] [CrossRef]
- García-Domínguez, P.; Nevado, C. Au–Pd bimetallic catalysis: The importance of anionic ligands in catalyst speciation. J. Am. Chem. Soc. 2016, 138, 3266–3269. [Google Scholar] [CrossRef]
- Xu, J.; White, T.; Li, P.; He, C.; Yu, J.; Yuan, W.; Han, Y. Biphasic Pd−Au alloy catalyst for low-temperature CO oxidation. J. Am. Chem. Soc. 2010, 132, 10398–10406. [Google Scholar] [CrossRef]
- Cheong, S.; Graham, L.; Brett, G.L.; Henning, A.M.; Watt, J.; Miedziak, P.J.; Song, M.; Takeda, Y.; Taylor, S.H.; Tilley, R.D. Au–Pd core–Shell nanoparticles as alcohol oxidation catalysts: Effect of shape and composition. ChemSusChem 2013, 6, 1858–1862. [Google Scholar] [CrossRef]
- Su, R.; Tiruvalam, R.; He, Q.; Dimitratos, N.; Kesavan, L.; Hammond, C.; Lopez-Sanchez, J.A.; Bechstein, R.; Kiely, C.J.; Hutchings, G.J. Promotion of phenol photodecomposition over TiO2 using Au, Pd, and Au–Pd nanoparticles. ACS Nano 2012, 6, 6284–6292. [Google Scholar] [CrossRef] [PubMed]
- Hamasaki, T.; Kashiwagi, T.; Imada, T.; Nakamichi, N.; Aramaki, S.; Toh, K.; Morisawa, S.; Shimakoshi, H.; Hisaeda, Y.; Shirahata, S. Kinetic Analysis of Superoxide Anion Radical-Scavenging and Hydroxyl Radical-Scavenging Activities of Platinum Nanoparticles. Langmuir 2008, 24, 7354–7364. [Google Scholar] [CrossRef]
- Jin, T.; Yan, M.; Yamamoto, Y. Click Chemistry of Alkyne–Azide Cycloaddition using Nanostructured Copper Catalysts. ChemCatChem 2012, 4, 1217–1229. [Google Scholar] [CrossRef]
- Kessler, R. Engineered Nanoparticles in Consumer Products: Understanding a New Ingredient. Environ. Health Perspect. 2011, 119, A120–A125. [Google Scholar] [CrossRef]
- Prasad, K.; Jha, A.; Kulkarni, A. Lactobacillus assisted synthesis of titanium nanoparticles. Nanoscale Res. Lett. 2007, 2, 248–250. [Google Scholar] [CrossRef] [Green Version]
- Prasad, K.; Jha, A.K. Biosynthesis of CdS nanoparticles: An improved green and rapid procedure. J. Colloid Interface Sci. 2010, 342, 68–72. [Google Scholar] [CrossRef] [PubMed]
- Compeán-Jasso, M.E.; Ruiz, F.; Martínez, J.R.; Herrera-Gómez, A. Magnetic properties of magnetite nanoparticles synthesized by forced hydrolysis. Mater. Lett. 2008, 62, 4248–4250. [Google Scholar] [CrossRef]
- Kim, H.; Kang, Y.; Park, H.; Lee, K.; Yang, S.; Jung, H.; Seo, D. Effects of the dispersion of zirconium dioxide nanoparticles on high performance electro-optic properties in liquid crystal devices. Liquid Cryst. 2011, 38, 871–875. [Google Scholar] [CrossRef]
- Trindade, T.; O’Brien, P.; Pickett, N.L. Nanocrystalline Semiconductors: Synthesis, Properties, and Perspectives. Chem. Mater. 2001, 13, 3843–3858. [Google Scholar] [CrossRef] [Green Version]
- Faraon, A.; Englund, D.; Fushman, I.; Vučković, J.; Stoltz, N.; Petroff, P. Local quantum dot tuning on photonic crystal chips. Appl. Phys. Lett. 2007, 90, 213110. [Google Scholar] [CrossRef] [Green Version]
- Muthalif, M.P.A.; Sunesh, C.D.; Choe, Y. Enhanced light absorption and charge recombination control in quantum dot sensitized solar cells using tin doped cadmium sulfide quantum dots. J. Colloid Interface Sci. 2019, 534, 291–300. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Li, X.; Zheng, L.; Qin, L.; Li, S.; Ye, P.; Li, Y.; Zou, J. Size-controlled synthesis of CdS nanoparticles confined on covalent triazine-based frameworks for durable photocatalytic hydrogen evolution under visible light. Nanoscale 2018, 10, 19509–19516. [Google Scholar] [CrossRef] [PubMed]
- Frens, G. Controlled Nucleation for the Regulation of the Particle Size in Monodisperse Gold Suspensions. Nat. Phys. Sci. 1973, 241, 20–22. [Google Scholar] [CrossRef]
- Murray, C.; Norris, D.J.; Bawendi, M.G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 1993, 115, 8706–8715. [Google Scholar] [CrossRef]
- Blakemore, R. Magnetotactic bacteria. Science 1975, 190, 377–379. [Google Scholar] [CrossRef]
- Korbekandi, H.; Iravani, S.; Abbasi, S. Optimization of biological synthesis of silver nanoparticles using Lactobacillus casei subsp. casei. J. Chem. Technol. Biotechnol. 2012, 87, 932–937. [Google Scholar] [CrossRef]
- Kikuchi, F.; Kato, Y.; Furihata, K.; Kogure, T.; Imura, Y.; Yoshimura, E.; Suzuki, M. Formation of gold nanoparticles by glycolipids of Lactobacillus casei. Sci. Rep. 2016, 6, 34626. [Google Scholar] [CrossRef] [Green Version]
- Ayano, H.; Kuroda, M.; Soda, S.; Ike, M. Effects of culture conditions of Pseudomonas aeruginosa strain RB on the synthesis of CdSe nanoparticles. J. Biosci. Bioeng. 2015, 119, 440–445. [Google Scholar] [CrossRef]
- Bruins, M.R.; Kapil, S.; Oehme, F.W. Microbial resistance to metals in the environment. Ecotoxicol. Environ. Saf. 2000, 45, 198–207. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Lamb, D.; Paneerselvam, P.; Choppala, G.; Bolan, N.; Chung, J. Role of organic amendments on enhanced bioremediation of heavy metal (loid) contaminated soils. J. Hazard. Mater. 2011, 185, 549–574. [Google Scholar] [CrossRef]
- Konishi, Y.; Tsukiyama, T.; Ohno, K.; Saitoh, N.; Nomura, T.; Nagamine, S. Intracellular recovery of gold by microbial reduction of AuCl4− ions using the anaerobic bacterium Shewanella algae. Hydrometallurgy 2006, 81, 24–29. [Google Scholar] [CrossRef]
- Joerger, R.; Klaus, T.; Granqvist, C.G. Biologically Produced Silver–Carbon Composite Materials for Optically Functional Thin-Film Coatings. Adv. Mater. 2000, 12, 407–409. [Google Scholar] [CrossRef]
- Ahmad, A.; Senapati, S.; Khan, M.I.; Kumar, R.; Ramani, R.; Srinivas, V.; Sastry, M. Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete, Rhodococcus species. Nanotechnology 2003, 14, 824. [Google Scholar] [CrossRef]
- Kang, F.; Alvarez, P.J.; Zhu, D. Microbial Extracellular Polymeric Substances Reduce Ag+ to Silver Nanoparticles and Antagonize Bactericidal Activity. Environ. Sci. Technol. 2014, 48, 316–322. [Google Scholar] [CrossRef] [PubMed]
- Kupryashina, M.; Vetchinkina, E.; Burov, A.; Ponomareva, E.; Nikitina, V. Biosynthesis of gold nanoparticles by Azospirillum brasilense. Microbiology 2013, 82, 833–840. [Google Scholar] [CrossRef]
- Hasan, S.; Singh, S.; Parikh, R.Y.; Dharne, M.S.; Patole, M.S.; Prasad, B.L.V.; Shouche, Y.S. Bacterial Synthesis of Copper/Copper Oxide Nanoparticles. J. Nanosci. Nanotechnol. 2008, 8, 3191–3196. [Google Scholar] [CrossRef]
- Ahmad, A.; Mukherjee, P.; Senapati, S.; Mandal, D.; Khan, M.I.; Kumar, R.; Sastry, M. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf. B Biointerfaces 2003, 28, 313–318. [Google Scholar] [CrossRef]
- Garmasheva, I.; Kovalenko, N.; Voychuk, S.; Ostapchuk, A.; Livins’ka, O.; Oleschenko, L. Lactobacillus species mediated synthesis of silver nanoparticles and their antibacterial activity against opportunistic pathogens in vitro. BioImpacts BI 2016, 6, 219–223. [Google Scholar] [CrossRef] [Green Version]
- Sani, N.J.; Aminu, B.M.; Mukhtar, M.D. Eco-friendly synthesis of silver nanoparticles using Lactobacillus delbrueckii subsp. bulgaricus isolated from kindrimo (locally fermented milk) in Kano State, Nigeria. Bayero J. Pure Appl. Sci. 2018, 10, 481. [Google Scholar] [CrossRef] [Green Version]
- Du, L.; Jiang, H.; Liu, X.; Wang, E. Biosynthesis of gold nanoparticles assisted by Escherichia coli DH5α and its application on direct electrochemistry of hemoglobin. Electrochem. Commun. 2007, 9, 1165–1170. [Google Scholar] [CrossRef]
- He, S.; Guo, Z.; Zhang, Y.; Zhang, S.; Wang, J.; Gu, N. Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata. Mater. Lett. 2007, 61, 3984–3987. [Google Scholar] [CrossRef]
- He, S.; Zhang, Y.; Guo, Z.; Gu, N. Biological Synthesis of Gold Nanowires Using Extract of Rhodopseudomonas capsulata. Biotechnol. Prog. 2008, 24, 476–480. [Google Scholar] [CrossRef]
- Konishi, Y.; Tsukiyama, T.; Tachimi, T.; Saitoh, N.; Nomura, T.; Nagamine, S. Microbial deposition of gold nanoparticles by the metal-reducing bacterium Shewanella algae. Electrochim. Acta 2007, 53, 186–192. [Google Scholar] [CrossRef]
- Bhambure, R.; Bule, M.; Shaligram, N.; Kamat, M.; Singhal, R. Extracellular Biosynthesis of Gold Nanoparticles using Aspergillus niger—Its Characterization and Stability. Chem. Eng. Technol. 2009, 32, 1036–1041. [Google Scholar] [CrossRef]
- Reith, F.; Etschmann, B.; Grosse, C.; Moors, H.; Benotmane, M.; Monsieurs, P.; Grass, G.; Doonan, C.; Vogt, S.; Lai, B.; et al. Mechanisms of gold biomineralization in the bacterium Cupriavidus metallidurans. Proc. Natl. Acad. Sci. USA 2009, 106, 17757. [Google Scholar] [CrossRef] [Green Version]
- Das, S.K.; Das, A.R.; Guha, A.K. Gold Nanoparticles: Microbial Synthesis and Application in Water Hygiene Management. Langmuir 2009, 25, 8192–8199. [Google Scholar] [CrossRef]
- Kalishwaralal, K.; Deepak, V.; Ram Kumar Pandian, S.; Gurunathan, S. Biological synthesis of gold nanocubes from Bacillus licheniformis. Bioresour. Technol. 2009, 100, 5356–5358. [Google Scholar] [CrossRef]
- Nangia, Y.; Wangoo, N.; Goyal, N.; Shekhawat, G.; Suri, C.R. A novel bacterial isolate Stenotrophomonas maltophilia as living factory for synthesis of gold nanoparticles. Microb. Cell Factories 2009, 8, 39. [Google Scholar] [CrossRef] [Green Version]
- Mishra, A.; Bhadauria, S.; Gaur, M.; Pasricha, R. Extracellular microbial synthesis of gold nanoparticles using fungus Hormoconis resinae. JOM 2010, 62, 45–48. [Google Scholar] [CrossRef]
- Sharma, N.; Pinnaka, A.K.; Raje, M.; Fnu, A.; Bhattacharyya, M.S.; Choudhury, A.R. Exploitation of marine bacteria for production of gold nanoparticles. Microb. Cell Factories 2012, 11, 86. [Google Scholar] [CrossRef] [Green Version]
- Markus, J.; Mathiyalagan, R.; Kim, Y.; Abbai, R.; Singh, P.; Ahn, S.; Perez, Z.E.J.; Hurh, J.; Yang, D.C. Intracellular synthesis of gold nanoparticles with antioxidant activity by probiotic Lactobacillus kimchicus DCY51T isolated from Korean kimchi. Enzym. Microb. Technol. 2016, 95, 85–93. [Google Scholar] [CrossRef]
- Johnston, C.W.; Wyatt, M.A.; Li, X.; Ibrahim, A.; Shuster, J.; Southam, G.; Magarvey, N.A. Gold biomineralization by a metallophore from a gold-associated microbe. Nat. Chem. Biol. 2013, 9, 241–243. [Google Scholar] [CrossRef] [PubMed]
- Prakash, D.; Mahale, V.; Bankar, A.; Nawani, N.; Mahale, V. Biosynthesis of colloidal gold nanoparticles by Streptomyces sp. NK52 and its anti-lipid peroxidation activity. Indian J. Exp. Biol. 2013, 51, 969. [Google Scholar]
- Erasmus, M.; Cason, E.; Cason, E.; van Marwijk, J.; van Marwijk, J.; Botes, E.; Botes, E.; Gericke, M.; Gericke, M.; van Heerden, E.; et al. Gold nanoparticle synthesis using the thermophilic bacterium Thermus scotoductus SA-01 and the purification and characterization of its unusual gold reducing protein. Gold Bull. 2014, 47, 245–253. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Li, Y.; Li, Q.; Fan, X.; Gao, J.; Luo, Y. Rapid Biosynthesis of Gold Nanoparticles by the Extracellular Secretion of Bacillus niabensis 45: Characterization and Antibiofilm Activity. J. Chem. 2016, 2016, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Dozie-Nwachukwu, S.; Obayemi, J.; Danyuo, Y.; Etuk-Udo, G.; Chi, Y.; Hu, J.; Anuku, N.; Odusanya, O.; Malatesta, K.; Soboyejo, W. Biosynthesis of Gold Nanoparticles and Gold/Prodigiosin Nanoparticles with Serratia marcescens Bacteria. Waste Biomass Valor 2017, 8, 2045–2059. [Google Scholar] [CrossRef]
- Kato, Y.; Yoshimura, E.; Suzuki, M. Synthesis of Gold Nanoparticles by Extracellular Components of Lactobacillus casei. ChemistrySelect 2019, 4, 7331–7337. [Google Scholar] [CrossRef]
- Nadaf, N.Y.; Kanase, S.S. Biosynthesis of gold nanoparticles by Bacillus marisflavi and its potential in catalytic dye degradation. Arab. J. Chem. 2019, 12, 4806–4814. [Google Scholar] [CrossRef] [Green Version]
- Sweeney, R.Y.; Mao, C.; Gao, X.; Burt, J.L.; Belcher, A.M.; Georgiou, G.; Iverson, B.L. Bacterial Biosynthesis of Cadmium Sulfide Nanocrystals. Chem. Biol. 2004, 11, 1553–1559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bai, H.J.; Zhang, Z.M.; Guo, Y.; Yang, G.E. Biosynthesis of cadmium sulfide nanoparticles by photosynthetic bacteria Rhodopseudomonas palustris. Colloids Surf. B Biointerfaces 2009, 70, 142–146. [Google Scholar] [CrossRef] [PubMed]
- Cui, R.; Liu, H.; Xie, H.; Zhang, Z.; Yang, Y.; Pang, D.; Xie, Z.; Chen, B.; Hu, B.; Shen, P. Living Yeast Cells as a Controllable Biosynthesizer for Fluorescent Quantum Dots. Adv. Funct. Mater. 2009, 19, 2359–2364. [Google Scholar] [CrossRef]
- Suresh, A.K. Extracellular bio-production and characterization of small monodispersed CdSe quantum dot nanocrystallites. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 130, 344–349. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Su, Y.; Liang, R.; Ai, X.; Qian, J.; Wang, C.; Chen, J.; Yan, Z. Crucial factors in biosynthesis of fluorescent CdSe quantum dots in Saccharomyces cerevisiae. RSC Adv. 2015, 5, 79184–79191. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Tsuruda, Y.; Furukawa, T.; Negishi, L.; Imura, Y.; Sakuda, S.; Yoshimura, E.; Suzuki, M. Synthesis of CdSe Quantum Dots Using Fusarium oxysporum. Materials 2016, 9, 855. [Google Scholar] [CrossRef]
- Kimber, R.L.; Lewis, E.A.; Parmeggiani, F.; Smith, K.; Bagshaw, H.; Starborg, T.; Joshi, N.; Figueroa, A.I.; van der Laan, G.; Cibin, G.; et al. Biosynthesis and Characterization of Copper Nanoparticles Using Shewanella oneidensis: Application for Click Chemistry. Small 2018, 14, 1703145. [Google Scholar] [CrossRef] [Green Version]
- Jha, A.K.; Prasad, K.; Kulkarni, A.R. Synthesis of Gd2O3 nanoparticles using Lactobacillus sp.: A novel green approach. Int. J. Green Nanotechnol. Phys. Chem. 2010, 2, 31–38. [Google Scholar] [CrossRef]
- Yeary, L.W.; Ji-Won, M.; Love, L.J.; Thompson, J.R.; Rawn, C.J.; Phelps, T.J. Magnetic properties of biosynthesized magnetite nanoparticles. TMAG 2005, 41, 4384–4389. [Google Scholar] [CrossRef]
- Smeaton, C.M.; Fryer, B.J.; Weisener, C.G. Intracellular Precipitation of Pb by Shewanella putrefaciens CN32 during the Reductive Dissolution of Pb-Jarosite. Environ. Sci. Technol. 2009, 43, 8086–8091. [Google Scholar] [CrossRef]
- Liu, C.; Liu, C.; Yen, J.; Yen, J. Characterization of lead nanoparticles formed by Shewanella sp. KR-12. J. Nanopart. Res. 2016, 18, 1–10. [Google Scholar] [CrossRef]
- Priyanka, U.; Akshay, G.; Elisha, M.; Surya, T.; Nitish, N.; Raj, M. Biologically synthesized PbS nanoparticles for the detection of arsenic in water. Int. Biodeterior. Biodegrad. 2017, 119, 78–86. [Google Scholar]
- Zhang, H.; Hu, X. Rapid production of Pd nanoparticle by a marine electrochemically active bacterium Shewanella sp. CNZ-1 and its catalytic performance on 4-nitrophenol reduction. RSC Adv. 2017, 7, 41182–41189. [Google Scholar] [CrossRef] [Green Version]
- Cui, J.; Zhu, N.; Kang, N.; Ha, C.; Shi, C.; Wu, P. Biorecovery mechanism of palladium as nanoparticles by Enterococcus faecalis: From biosorption to bioreduction. Chem. Eng. J. 2017, 328, 1051–1057. [Google Scholar] [CrossRef]
- Martins, M.; Mourato, C.; Sanches, S.; Noronha, J.P.; Crespo, M.T.B.; Pereira, I.A.C. Biogenic platinum and palladium nanoparticles as new catalysts for the removal of pharmaceutical compounds. Water Res. 2017, 108, 160–168. [Google Scholar] [CrossRef]
- Konishi, Y.; Ohno, K.; Saitoh, N.; Nomura, T.; Nagamine, S.; Hishida, H.; Takahashi, Y.; Uruga, T. Bioreductive deposition of platinum nanoparticles on the bacterium Shewanella algae. J. Biotechnol. 2007, 128, 648–653. [Google Scholar] [CrossRef]
- Jha, A.K.; Prasad, K.; Prasad, K. Biosynthesis of Sb2O3 nanoparticles: A low-cost green approach. Biotechnol. J. 2009, 4, 1582–1585. [Google Scholar] [CrossRef]
- Jha, A.K.; Prasad, K.; Kulkarni, A.R. Synthesis of TiO2 nanoparticles using microorganisms. Colloids Surf. B Biointerfaces 2009, 71, 226–229. [Google Scholar] [CrossRef]
- Bansal, V.; Rautaray, D.; Ahmad, A.; Sastry, M. Biosynthesis of zirconia nanoparticles using the fungus Fusarium oxysporum. J. Mater. Chem. 2004, 14, 333–335. [Google Scholar] [CrossRef]
- Zhang, D.; Tang, D.; Yamamoto, T.; Kato, Y.; Horiuchi, S.; Ogawa, S.; Yoshimura, E.; Suzuki, M. Improving biosynthesis of AuPd core-shell nanoparticles through Escherichia coli with the assistance of phytochelatin for catalytic enhanced chemiluminescence and benzyl alcohol oxidation. J. Inorg. Biochem. 2019, 199, 110795. [Google Scholar] [CrossRef]
- Wang, C.; Lum, A.; Ozuna, S.; Clark, D.; Keasling, J. Aerobic sulfide production and cadmium precipitation by Escherichia coli expressing the Treponema denticola cysteine desulfhydrase gene. Appl. Microbiol. Biotechnol. 2001, 56, 425–430. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Yamamoto, T.; Tang, D.; Kato, Y.; Horiuchi, S.; Ogawa, S.; Yoshimura, E.; Suzuki, M. Enhanced biosynthesis of CdS nanoparticles through Arabidopsis thaliana phytochelatin synthase-modified Escherichia coli with fluorescence effect in detection of pyrogallol and gallic acid. Talanta 2019, 195, 447–455. [Google Scholar] [CrossRef] [PubMed]
- Gurunathan, S.; Kalishwaralal, K.; Vaidyanathan, R.; Venkataraman, D.; Pandian, S.R.K.; Muniyandi, J.; Hariharan, N.; Eom, S.H. Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. Colloids Surf. B Biointerfaces 2009, 74, 328–335. [Google Scholar] [CrossRef] [PubMed]
- Deljou, A.; Goudarzi, S. Green Extracellular Synthesis of the Silver Nanoparticles Using Thermophilic Bacillus Sp. AZ1 and its Antimicrobial Activity against Several Human Pathogenetic Bacteria. Iran. J. Biotechnol. 2016, 14, 25–32. [Google Scholar] [CrossRef] [PubMed]
Metal | Microorganism | Classification | Active Molecules | Size (nm) | Techniques Used for Detection | Ref. |
---|---|---|---|---|---|---|
Ag | Pseudomonas stutzeri AG259 | bacteria | 20–100 | TEM, UV-vis | [34] | |
Ag | Fusarium oxysporum | fungi | 5~15 | TEM, UV-vis | [39] | |
Ag | Lactobacillus casei subsp. Casei DSM 20011 | bacteria | 25–50 | TEM, UV-vis | [28] | |
Ag | Escherichia coli K12 | bacteria | hemiacetal groups of sugars | 10–30 | TEM, EDS, UV-vis, XPS | [36] |
Ag | Lactobacillus acidophilus 58p | bacteria | ca. 30.7 | TEM, UV-vis | [40] | |
Ag | Lactobacillus plantarum 92T | bacteria | ca. 20.0 | TEM, UV-vis | [40] | |
Ag | Lactobacillus delbrueckii subsp. Bulgaricus | bacteria | 1.4–8.9 | TEM, UV-vis, XRD | [41] |
Metal | Microorganism | Classification | Active Molecules | Size (nm) | Techniques Used for Detection | Ref. |
---|---|---|---|---|---|---|
CdS | Escherichia coli ABLE C | bacteria | 2–5 | TEM, EDS, STEM | [61] | |
CdS | Rhodopseudomonas palustris | bacteria | cysteine desulfhydrase | ca. 8.0 | TEM, UV-vis, XRD, FT-IR, SAED | [62] |
CdS | Lactobacillus sp | bacteria | ca. 4.9 | TEM, XRD, UV-vis | [18] | |
CdS | Sachharomyces cerevisae | bacteria | ca. 3.6 | TEM, XRD, UV-vis | [18] |
Metal | Microorganism | Classification | Active Molecules | Size (nm) | Techniques Used for Detection | Ref. |
---|---|---|---|---|---|---|
CdSe | Saccharomyces cerevisiae BY4742 | fungi | NADPH | 2.69–6.34 | TEM, FL, laser confocal scanning microscop | [63] |
CdSe | Helminthosporum solani | bacteria | ca. 5.5 | TEM, EDS, UV-vis, FL, XPS | [64] | |
CdSe | Saccharomyces cerevisiae ATCC9763 | fungi | protein | 15 to 20 | TEM, EDS, FL laser scanning confocal microscope | [65] |
CdSe | Pseudomonas aeruginosa strain RB | bacteria | 10/70–100 | TEM, EDS | [30] | |
CdSe | Fusarium oxysporum JCM11502 | fungi | superoxide dismutase | 8–28 | TEM, EDS, FL | [66] |
Metal | Microorganism | Classification | Active Molecules | Size (nm) | Techniques Used for Detection | Ref. |
---|---|---|---|---|---|---|
Cu/CuO | Serratia sp. | bacteria | 10–30 | TEM, EDS, UV-vis, XRD, XPS | [38] | |
Cu | Shewanella oneidensis | bacteria | cytochrome | 20–40 | TEM, STEM, XANES EELS, SBFSEM | [67] |
Gd2O3 | Lactobacillus sp. | bacteria | 10–20 | TEM, XRD | [68] | |
Fe3O4 | Thermoanaerobacter ethanolicus TOR-39 | bacteria | 41.3 | TEM, XRD, zetasizer | [69] | |
Pb -jarosite | Shewanella putrefaciens CN32 | bacteria | N.D. | TEM, SEM, EDS, XRD | [70] | |
Pb + P | Shewanella sp. KR-12 | bacteria | 3~8 | TEM, EDS | [71] | |
PbS | Aspergillus flavus | fungi | 35–100 | TEM, EDS, UV-vis, FL, XRD | [72] | |
Pd | Shewanella sp. CNZ-1 | bacteria | hydrogenase some amides | N.D. | TEM, SEM, EDS UV-vis, XRD, XPS | [73] |
Pd | Enterococcus faecalis CCTCC M2012445 | bacteria | carboxyl, hydroxyl and amine groups | N.D. | TEM, XRD, XPS, FT-IR | [74] |
Pd | Desulfovibrio vulgaris DSM 644 | bacteria | N.D. | TEM | [75] | |
Pt | Desulfovibrio vulgaris DSM 645 | bacteria | N.D. | TEM | [75] | |
Pt | Shewanella algae ATCC 51181 | bacteria | 5 | TEM, XANES | [76] | |
Sb2O3 | Lactobacillus sp. | bacteria | 3–12 | TEM, XRD | [77] | |
Ti | Lactobacillus sp. | bacteria | 40 | TEM, XRD | [17] | |
TiO2 | Lactobacillus sp. | bacteria | ca. 24.6 | TEM, XRD, SAED | [78] | |
TiO2 | Sachharomyces cerevisae | fungi | ca. 12.6 | TEM, XRD, SAED | [78] | |
ZrO2 | Fusarium oxysporum | fungi | ca. 7.3 | TEM, XRD | [79] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kato, Y.; Suzuki, M. Synthesis of Metal Nanoparticles by Microorganisms. Crystals 2020, 10, 589. https://doi.org/10.3390/cryst10070589
Kato Y, Suzuki M. Synthesis of Metal Nanoparticles by Microorganisms. Crystals. 2020; 10(7):589. https://doi.org/10.3390/cryst10070589
Chicago/Turabian StyleKato, Yugo, and Michio Suzuki. 2020. "Synthesis of Metal Nanoparticles by Microorganisms" Crystals 10, no. 7: 589. https://doi.org/10.3390/cryst10070589
APA StyleKato, Y., & Suzuki, M. (2020). Synthesis of Metal Nanoparticles by Microorganisms. Crystals, 10(7), 589. https://doi.org/10.3390/cryst10070589