Mineralogical Crystallography
1. Crystal Chemistry of Minerals and Their Synthetic Analogs
2. Discovery of New Mineral Species
3. Behavior of Minerals at Non-Ambient Conditions
4. Biomineralogy
5. Crystal Growth Techniques
Funding
Acknowledgments
Conflicts of Interest
References
- Gurzhiy, V.; Kuporev, I.; Kovrugin, V.; Murashko, M.; Kasatkin, A.; Plášil, J. Crystal chemistry and structural complexity of natural and synthetic uranyl selenites. Crystals 2019, 9, 639. [Google Scholar] [CrossRef] [Green Version]
- Tyumentseva, O.; Kornyakov, I.; Britvin, S.; Zolotarev, A.; Gurzhiy, V. Crystallographic insights into uranyl sulfate minerals formation: Synthesis and crystal structures of three novel cesium uranyl sulfates. Crystals 2019, 9, 660. [Google Scholar] [CrossRef] [Green Version]
- Pekov, I.; Zubkova, N.; Chaikovskiy, I.; Chirkova, E.; Belakovskiy, D.; Yapaskurt, V.; Bychkova, Y.; Lykova, I.; Britvin, S.; Pushcharovsky, D. Krasnoshteinite, Al8[B2O4(OH)2](OH)16Cl4⋅7H2O, a new microporous mineral with a novel type of Borate Polyanion. Crystals 2020, 10, 301. [Google Scholar] [CrossRef] [Green Version]
- Britvin, S.; Krzhizhanovskaya, M.; Bocharov, V.; Obolonskaya, E. Crystal chemistry of Stanfieldite, Ca7M2Mg9(PO4)12 (M = Ca, Mg, Fe2+), a Structural Base of Ca3Mg3(PO4)4 Phosphors. Crystals 2020, 10, 464. [Google Scholar] [CrossRef]
- Comodi, P.; Zucchini, A.; Balić-Žunić, T.; Hanfland, M.; Collings, I. The high pressure behavior of galenobismutite, PbBi2S4: A synchrotron single crystal X-ray diffraction study. Crystals 2019, 9, 210. [Google Scholar] [CrossRef] [Green Version]
- Miao, Y.; Pang, Y.; Ye, Y.; Smyth, J.; Zhang, J.; Liu, D.; Wang, X.; Zhu, X. Crystal structures and high-temperature vibrational spectra for synthetic boron and aluminum doped hydrous coesite. Crystals 2019, 9, 642. [Google Scholar] [CrossRef] [Green Version]
- Izatulina, A.; Nikolaev, A.; Kuz’mina, M.; Frank-Kamenetskaya, O.; Malyshev, V. Bacterial effect on the crystallization of mineral phases in a solution simulating human urine. Crystals 2019, 9, 259. [Google Scholar] [CrossRef] [Green Version]
- Rusakov, A.; Kuzmina, M.; Izatulina, A.; Frank-Kamenetskaya, O. Synthesis and characterization of (Ca,Sr)[C2O4]∙nH2O solid solutions: Variations of phase composition, crystal morphologies and in ionic substitutions. Crystals 2019, 9, 654. [Google Scholar] [CrossRef] [Green Version]
- De la Rosa-Tilapa, A.; Maceda, A.; Terrazas, T. Characterization of biominerals in Cacteae species by FTIR. Crystals 2020, 10, 432. [Google Scholar] [CrossRef]
- Konopacka-Łyskawa, D. Synthesis methods and favorable conditions for spherical vaterite precipitation: A review. Crystals 2019, 9, 223. [Google Scholar] [CrossRef] [Green Version]
- Tang, M.; Li, Y. A complex assemblage of crystal habits of pyrite in the volcanic hot springs from Kamchatka, Russia: Implications for the mineral signature of life on Mars. Crystals 2020, 10, 535. [Google Scholar] [CrossRef]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gurzhiy, V.V. Mineralogical Crystallography. Crystals 2020, 10, 805. https://doi.org/10.3390/cryst10090805
Gurzhiy VV. Mineralogical Crystallography. Crystals. 2020; 10(9):805. https://doi.org/10.3390/cryst10090805
Chicago/Turabian StyleGurzhiy, Vladislav V. 2020. "Mineralogical Crystallography" Crystals 10, no. 9: 805. https://doi.org/10.3390/cryst10090805
APA StyleGurzhiy, V. V. (2020). Mineralogical Crystallography. Crystals, 10(9), 805. https://doi.org/10.3390/cryst10090805