Characterization and Luminescence of Eu3+- and Gd3+-Doped Hydroxyapatite Ca10(PO4)6(OH)2
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. SEM Analysis
3.2. X-ray Structural Study
3.3. FTIR Spectroscopy
3.4. Luminescence Spectroscopy
3.4.1. Eu3+ Dopant
3.4.2. Gd3+ Dopant
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dorozhkin, S.V. Hydroxyapatite and other calcium orthophosphates: Bioceramics, coatings and dental applications. In Hydroxyapatite and Other Calcium Orthophosphates: Bioceramics, Coatings and Dental Applications; Nova Science Publishers: New York, NY, USA, 2017; pp. 1–462. [Google Scholar]
- Martinez, M.; Bayne, C.; Aiello, D.; Julian, M.; Gaume, R.; Baudelet, M. Multi-elemental matrix-matched calcium hydroxyapatite reference materials for laser ablation: Evaluation on teeth by laser-induced breakdown spectroscopy. Spectrochim. Acta Part B At. Spectrosc. 2019, 159, 105650. [Google Scholar] [CrossRef]
- Smičiklas, I.D.; Milonjić, S.K.; Pfendt, P.; Raičević, S. The point of zero charge and sorption of cadmium (II) and strontium (II) ions on synthetic hydroxyapatite. Sep. Purif. Technol. 2000, 18, 185–194. [Google Scholar] [CrossRef]
- Khairnar, R.S.; Mene, R.U.; Munde, S.G.; Mahabole, M.P. Nano-hydroxyapatite thick film gas sensors. AIP Conf. Proc. 2011, 1415, 189–192. [Google Scholar]
- Cardoso, G.B.C.; Tondon, A.; Maia, L.R.B.; Cunha, M.R.; Zavaglia, C.A.C.; Kaunas, R.R. In Vivo approach of calcium deficient hydroxyapatite filler as bone induction factor. Mater. Sci. Eng. C 2019, 99, 999–1006. [Google Scholar] [CrossRef] [PubMed]
- Szyszka, K.; Targonska, S.; Gazinska, M.; Szustakiewicz, K.; Wiglusz, R.J. The comprehensive approach to preparation and investigation of the Eu3+ doped hydroxyapatite/poly(L-lactide) nanocomposites: Promising materials for theranostics application. Nanomaterials 2019, 9, 1146. [Google Scholar] [CrossRef] [Green Version]
- Anita Lett, J.; Sundareswari, M.; Ravichandran, K. Porous hydroxyapatite scaffolds for orthopedic and dental applications—The role of binders. Mater. Today Proc. 2016, 3, 1672–1677. [Google Scholar] [CrossRef]
- Kamitakahara, M.; Ohtoshi, N.; Kawashita, M.; Ioku, K. Spherical porous hydroxyapatite granules containing composites of magnetic and hydroxyapatite nanoparticles for the hyperthermia treatment of bone tumor. J. Mater. Sci. Mater. Med. 2016, 27, 93. [Google Scholar] [CrossRef]
- Singh, G.; Singh, R.P.; Jolly, S.S. Customized hydroxyapatites for bone-tissue engineering and drug delivery applications: A review. J. Sol-Gel Sci. Technol. 2020, 94, 505–530. [Google Scholar] [CrossRef]
- Zhang, C.; Uchikoshi, T.; Liu, L.; Cai, G.; Si, J.; Hirosaki, N. Synthesis of Eu-doped hydroxyapatite whiskers and fabrication of phosphor layer via electrophoretic deposition process. J. Am. Ceram. Soc. 2020, in press. [Google Scholar]
- Machado, T.R.; Sczancoski, J.C.; Beltrán-Mir, H.; Nogueira, I.C.; Li, M.S.; Andrés, J.; Cordoncillo, E.; Longo, E. A novel approach to obtain highly intense self-activated photoluminescence emissions in hydroxyapatite nanoparticles. J. Solid State Chem. 2017, 249, 64–69. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, J.; Ma, W.; Liao, S.; Zhang, X.; Wang, Z.; Yu, L.; Lian, S. From Nonluminescence to Bright Blue Emission: Boron-Induced Highly Efficient Ce3+-Doped Hydroxyapatite Phosphor. Inorg. Chem. 2019, 58, 13481–13491. [Google Scholar] [CrossRef] [PubMed]
- Mondal, S.; Nguyen, V.T.; Park, S.; Choi, J.; Vo, T.M.T.; Shin, J.H.; Kang, Y.-H.; Oh, J. Rare earth element doped hydroxyapatite luminescent bioceramics contrast agent for enhanced biomedical imaging and therapeutic applications. Ceram. Int. 2020, in press. [Google Scholar] [CrossRef]
- Iconaru, S.-L.; Motelica-Heino, M.; Predoi, D. Study on Europium-Doped Hydroxyapatite Nanoparticles by Fourier Transform Infrared Spectroscopy and Their Antimicrobial Properties. J. Spectrosc. 2013, 2013, 284285. [Google Scholar] [CrossRef] [Green Version]
- Hughes, J.M.; Rakovan, J. The crystal structure of apatite, Ca5(PO4)3(F,OH,Cl). Phosphates Geochem. Geobiol. Mater. Importance 2019, 48, 1–12. [Google Scholar]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Binnemans, K. Interpretation of europium (III) spectra. Coord. Chem. Rev. 2015, 295, 1–45. [Google Scholar] [CrossRef] [Green Version]
- Vasugi, G.; Thamizhavel, A.; Girija, E.K. Luminescence studies of rare-earth doped and Co-doped hydroxyapatite. AIP Conf. Proc. 2012, 1447, 267–268. [Google Scholar]
- Nikolaev, A.; Kolesnikov, I.; Frank-Kamenetskaya, O.; Kuz’mina, M. Europium concentration effect on characteristics and luminescent properties of hydroxyapatite nanocrystalline powders. J. Mol. Struct. 2017, 1149, 323–331. [Google Scholar] [CrossRef]
- Tesch, A.; Wenisch, C.; Herrmann, K.-H.; Reichenbach, J.R.; Warncke, P.; Fischer, D.; Müller, F.A. Luminomagnetic Eu3+- and Dy3+-doped hydroxyapatite for multimodal imaging. Mater. Sci. Eng. C 2017, 81, 422–431. [Google Scholar] [CrossRef]
- Ashokan, A.; Menon, D.; Nair, S.; Koyakutty, M. A molecular receptor targeted, hydroxyapatite nanocrystal based multi-modal contrast agent. Biomaterials 2010, 31, 2606–2616. [Google Scholar] [CrossRef]
- Xie, Y.; He, W.; Li, F.; Perera, T.S.H.; Gan, L.; Han, Y.; Wang, X.; Li, S.; Dai, H. Luminescence Enhanced Eu3+/Gd3+ Co-Doped Hydroxyapatite Nanocrystals as Imaging Agents In Vitro and In Vivo. ACS Appl. Mater. Interfaces 2016, 8, 10212–10219. [Google Scholar] [CrossRef] [PubMed]
- Ignjatović, N.L.; Mančić, L.; Vuković, M.; Stojanović, Z.; Nikolić, M.G.; Škapin, S.; Jovanović, S.; Veselinović, L.; Uskoković, V.; Lazić, S.; et al. Rare-earth (Gd3+,Yb3+/Tm3+, Eu3+) co-doped hydroxyapatite as magnetic, up-conversion and down-conversion materials for multimodal imaging. Sci. Rep. 2019, 9, 16305. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Lin, J. Defect-related luminescent materials: Synthesis, emission properties and applications. Chem. Soc. Rev. 2012, 41, 7938–7961. [Google Scholar] [CrossRef] [PubMed]
- Cates, E.L.; Cho, M.; Kim, J.-H. Converting Visible Light into UVC: Microbial Inactivation by Pr3+-Activated Upconversion Materials. Environ. Sci. Technol. 2011, 45, 3680–3686. [Google Scholar] [CrossRef] [PubMed]
- Salviulo, G.; Bettinelli, M.; Russo, U.; Speghini, A.; Nodari, L. Synthesis and structural characterization of Fe3+-doped calcium hydroxyapatites: Role of precursors and synthesis method. J. Mater. Sci. 2011, 46, 910–922. [Google Scholar] [CrossRef]
- El Khouri, A.; Elaatmani, M.; Della Ventura, G.; Sodo, A.; Rizzi, R.; Rossi, M.; Capitelli, F. Synthesis, structure refinement and vibrational spectroscopy of new rare-earth tricalcium phosphates Ca9RE(PO4)7 (RE = La, Pr, Nd, Eu, Gd, Dy, Tm, Yb). Ceram. Int. 2017, 43, 15645–15653. [Google Scholar] [CrossRef]
- Capitelli, F.; Rossi, M.; El Khouri, A.; Elaatmani, M.; Corriero, N.; Sodo, A.; Della Ventura, G. Synthesis, structural model and vibrational spectroscopy of lutetium tricalcium phosphate Ca9Lu(PO4)7. J. Rare Earths 2018, 36, 1162–1168. [Google Scholar] [CrossRef]
- Altomare, A.; Rizzi, R.; Rossi, M.; El Khouri, A.E.; Elaatmani, M.; Paterlini, V.; Della Ventura, G.; Capitelli, F. New Ca2.90(Me2+)0.10(PO4)2 β-tricalcium phosphates with Me2+ = Mn, Ni, Cu: Synthesis, crystal-chemistry, and luminescence properties. Crystals 2019, 9, 288. [Google Scholar] [CrossRef] [Green Version]
- Baldassarre, F.; Altomare, A.; Corriero, N.; Mesto, E.; Lacalamita, M.; Bruno, G.; Sacchetti, A.; Dida, B.; Karaj, D.; Ventura, G.D.; et al. Crystal Chemistry and Luminescence Properties of Eu-Doped Polycrystalline Hydroxyapatite Synthesized by Chemical Precipitation at Room Temperature. Crystals 2020, 10, 250. [Google Scholar] [CrossRef] [Green Version]
- Arkin, V.H.; Lakhera, M.; Manjubala, I.; Narendra Kumar, U. Solid state synthesis and characterization of calcium phosphate for biomedical application. Int. J. Chem. Tech. Res. 2015, 8, 264–267. [Google Scholar]
- Rietveld, H.M. A profile refinement method for nuclear and magnetic structures. J. Appl. Cryst. 1969, 2, 65–71. [Google Scholar] [CrossRef]
- Altomare, A.; Cuocci, C.; Giacovazzo, C.; Moliterni, A.; Rizzi, R.; Corriero, N.; Falcicchio, A. EXPO2013: A kit of tools for phasing crystal structures from powder data. J. Appl. Cryst. 2013, 46, 1231–1235. [Google Scholar] [CrossRef]
- Horiba Jobin Yvon DAS6 Fluorescence Decay Analysis Software User Guide, Version 2744.F.; HORIBA Horiba Scientific Inc.: Edison, NJ, USA, 2008; pp. 29–31.
- Huang, S.; Zhu, J.; Zhou, K. Effects of Eu3+ ions on the morphology and luminescence properties of hydroxyapatite nanoparticles synthesized by one-step hydrothermal method. Mater. Res. Bull. 2012, 47, 24–28. [Google Scholar] [CrossRef]
- Feng, Z.; Li, Y.; Huang, Y.; Seo, H.J. Luminescence properties of Eu2+ and Eu3+ doped calcium-deficient hydroxyapatite prepared in air. J. Alloys Compd. 2011, 509, 7087–7092. [Google Scholar] [CrossRef]
- Li, Y.; Ooi, C.P.; Philip Hong Ning, C.; Aik Khor, K. Synthesis and characterization of neodymium (III) and gadolinium (III)-substituted hydroxyapatite as biomaterials. Int. J. Appl. Ceram. Technol. 2009, 6, 501–512. [Google Scholar] [CrossRef]
- Altomare, A.; Campi, G.; Cuocci, C.; Eriksson, L.; Giacovazzo, C.; Moliterni, A.; Rizzi, R.; Werner, P.-E. Advances in powder diffraction pattern indexing: N-TREOR09. J. Appl. Cryst. 2009, 42, 768–775. [Google Scholar] [CrossRef]
- Skorokhod, V.V.; Solonin, S.M.; Dubok, V.A.; Kolomiets, L.L.; Permyakova, T.V.; Shinkaruk, A.V. Decomposition activation of hydroxyapatite in contact with β-tricalcium phosphate. Powder Metall. Metal. Ceram. 2010, 49, 324–329. [Google Scholar] [CrossRef]
- Landi, E.; Tampieri, A.; Celotti, G.; Sprio, S. Densification behaviour and mechanisms of synthetic hydroxyapatites. J. Eur. Chem. Soc. 2000, 20, 2377–2387. [Google Scholar] [CrossRef]
- Zyman, Z.; Ivanov, I.; Rochmistrov, D.; Glushko, V.; Tkachenko, N.; Kijko, S. Sintering peculiarities for hydroxyapatite with different degrees of crystallinity. J. Biomed. Mater. Res. 2001, 54, 256–263. [Google Scholar] [CrossRef]
- Garskaite, E.; Gross, K.-A.; Yang, S.-W.; Yang, T.C.-K.; Yang, J.-C.; Kareiva, A. Effect of processing conditions on the crystallinity and structure of carbonated calcium hydroxyapatite (CHAp). CrystEngComm 2014, 16, 3950–3959. [Google Scholar] [CrossRef]
- Pogosova, M.A.; Eliseev, A.A.; Kazin, P.E.; Azarmi, F. Synthesis, structure, luminescence, and color features of the Eu- and Cu-doped calcium apatite. Dye. Pigment. 2017, 141, 209–216. [Google Scholar] [CrossRef]
- Brown, I.D.; Altermatt, D. Bond-Valence Parameters Obtained from a Systematic Analysis of the Inorganic Crystal Structure Database. Acta Crystallogr. B 1985, 41, 244–247. [Google Scholar] [CrossRef] [Green Version]
- Inorganic Crystal Structure Database (ICSD), Version 2018-2; Fachinformationszentrum: Karlsruhe, Germany, 2018.
- Rossi, M.; Ghiara, M.R.; Chita, G.; Capitelli, F. Crystal-chemical and structural characterization of fluorapatites in ejecta from Somma-Vesuvius volcanic complex. Am. Mineral. 2011, 96, 1828–1837. [Google Scholar] [CrossRef]
- Fleet, M.E.; Liu, X.; Pan, Y. Site preference of rare earth elements in hydroxyapatite [Ca10(PO4)6(OH)2]. J. Solid State Chem. 2000, 149, 391–398. [Google Scholar] [CrossRef]
- Graeve, O.A.; Kanakala, R.; Madadi, A.; Williams, B.C.; Glass, K.C. Luminescence variations in hydroxyapatites doped with Eu2+ and Eu3+ ions. Biomaterials 2010, 31, 4259–4267. [Google Scholar] [CrossRef]
- Low, H.R.; Phonthammachai, N.; Maignan, A.; Stewart, G.A.; Bastow, T.J.; Ma, L.L.; White, T.J. The crystal chemistry of ferric oxyhydroxyapatite. Inorg. Chem. 2008, 47, 11774–11782. [Google Scholar] [CrossRef]
- Harcharras, M.; Ennaciri, A.; Capitelli, F.; Mattei, G. Vibrational spectra and thermal dehydration of Co2P2O7·6H2O diphosphate. Vib. Spectrosc. 2003, 33, 189–196. [Google Scholar] [CrossRef]
- Kim, J.H.; Kim, S.H.; Kim, H.K.; Akaike, T.; Kim, S.C. Synthesis and characterization of hydroxyapatite crystals: A review study on the analytical methods. J. Biomed. Mater. Res. 2002, 62, 600–612. [Google Scholar]
- Berzina-Cimdina, L.; Borodajenko, N. Research of Calcium Phosphates Using Fourier Transform Infrared Spectroscopy. In Infrared Spectroscopy Materials Science, Engineering and Technology; Theophanides, T., Ed.; IntechOpen: London, UK, 2012. [Google Scholar] [CrossRef] [Green Version]
- Constantin, L.V.; Iconaru, S.; Ciobanu, C.S. Europium doped hydroxyapatite for applications in environmental field. Rom. Rep. Phys. 2012, 64, 788–794. [Google Scholar]
- Rizzi, R.; Capitelli, F.; Della Ventura, G.; Hami, W.; Corriero, N.; Rossi, M.; Altomare, A. Preparation, structural and spectroscopical properties of silver terbium diphosphate AgTbP2O7. Z. Für Krist. Cryst. Mater. 2019, 234, 363–369. [Google Scholar] [CrossRef]
- El Khouri, A.; Zegzouti, A.; Elaatmani, M.; Capitelli, F. Bismuth-substituted hydroxyapatite ceramics synthesis: Morphological, structural, vibrational and dielectric properties. Inorg. Chem. Commun. 2019, 110, 107568. [Google Scholar] [CrossRef]
- Fowler, B.O. Infrared studies of apatites. I. Vibrational assignments for calcium, strontium, and barium hydroxyapatites utilizing isotopic substitution. Inorg. Chem. 1974, 13, 194–207. [Google Scholar] [CrossRef]
- Predoi, D.; Barsan, M.; Andronescu, E.; Vatasescu-Balcan, R.A.; Costache, M. Hydroxyapatite-iron oxide bioceramic prepared using nano-size powders. J. Optoelectron. Adv. Mater. 2007, 9, 3609–3613. [Google Scholar]
- Get’man, E.I.; Loboda, S.N.; Tkachenko, T.V.; Yablochkova, N.V.; Chebyshev, K.A. Isomorphous substitution of samarium and gadolinium for calcium in hydroxyapatite structure. Russ. J. Inorg. Chem. 2010, 55, 333–338. [Google Scholar] [CrossRef]
- Markovic, M.; Fowler, B.O.; Tung, M.S. Preparation and comprehensive characterization of a calcium hydroxyapatite reference material. J. Res. Natl. Inst. Stand. Technol. 2004, 109, 553–568. [Google Scholar] [CrossRef] [PubMed]
- Jastrzbski, W.; Sitarz, M.; Rokita, M.; Bułat, K. Infrared spectroscopy of different phosphates structures. Spectrochim. Acta A 2011, 79, 722–727. [Google Scholar] [CrossRef] [PubMed]
- Blasse, G. Influence of local charge compensation on site occupation and luminescence of apatites. J. Solid State Chem. 1975, 14, 181–184. [Google Scholar] [CrossRef] [Green Version]
- Peacock, R.D. The Intensities of Lanthanide f ↔ f Transitions. Struct. Bond. 1975, 22, 83–122. [Google Scholar]
- Wachtler, M.; Speghini, A.; Gatterer, K.; Fritzer, H.P.; Ajo, D.; Bettinelli, M. Optical Properties of Rare-Earth Ions in Lead Germanate Glasses. J. Am. Ceram. Soc. 1998, 81, 2045–2052. [Google Scholar] [CrossRef]
- Han, Y.; Wang, X.; Dai, H.; Li, S. Synthesis and luminescence of Eu3+ doped hydroxyapatite nanocrystallines: Effects of calcinations and Eu3+ content. J. Lumin. 2013, 135, 281–287. [Google Scholar] [CrossRef]
- Prichodko, A.; Enrichi, F.; Stankeviciute, Z.; Benedetti, A.; Grigoraviciute-Puroniene, I.; Kareiva, A. Study of Eu3+ and Tm3+ substitution effects in sol-gel fabricated calcium hydroxyapatite. J. Sol-Gel Sci. Technol. 2017, 81, 261–267. [Google Scholar] [CrossRef]
- Ternane, R.; Trabelsi-Ayedi, M.; Kbir-Ariguib, N.; Piriou, B. Luminescent properties of Eu3+ in calcium hydroxyapatite. J. Lumin. 1999, 81, 165–170. [Google Scholar] [CrossRef]
- Piriou, B.; Fahmi, D.; Dexpert-Ghys, J.; Taitai, A.; Lacout, J.L. Unusual fluorescent properties of Eu3+ in oxyapatites. J. Lumin. 1987, 39, 97–103. [Google Scholar] [CrossRef]
- Brixner, L.H.; Crawford, M.K.; Blasse, G. Optical luminescence of electronic and vibronic transitions in Gd2−xYx(SO4)3·8H2O. J. Solid State Chem. 1990, 85, 1–7. [Google Scholar] [CrossRef]
- Blasse, G.; Brixner, L.H.; Mroczkowski, S. The electronic and vibronic transitions in the emission spectrum of Gd3+ in the yttrium hydroxide structure. J. Solid State Chem. 1989, 82, 303–306. [Google Scholar] [CrossRef]
- Blasse, G.; Dirksen, G.J. Luminescence of Eu(III) in (NH4)3YCl6: Nonradiative transitions induced by the second coordination sphere. J. Solid State Chem. 1992, 96, 258–262. [Google Scholar] [CrossRef]
- Blasse, G.; Meijerink, A.; de Mello Donegà, C. Vibronic rare earth spectroscopy: Results and pitfalls. J. Alloys Compd. 1995, 225, 24–27. [Google Scholar] [CrossRef]
- Blasse, G. Vibronic transitions in rare earth spectroscopy. Int. Rev. Phys. Chem. 1992, 11, 71–100. [Google Scholar] [CrossRef]
- Hou, D.; Liang, H.; Xie, M.; Ding, X.; Zhong, J.; Su, Q.; Tao, Y.; Huang, Y.; Gao, Z. Bright green-emitting, energy transfer and quantum cutting of Ba3Ln(PO4)3: Tb3+ (Ln = La, Gd) under VUV-UV excitation. Opt. Express 2011, 19, 11071–11083. [Google Scholar] [CrossRef]
Crystal Formula | HA-Eu4 | HA-Gd |
---|---|---|
Refined formula Formula weight | (Ca4.88Eu0.09)2(PO4)6(OH)2 1019.50 | (Ca4.87Gd0.11)2(PO4)6(OH)2 1024.20 |
Color | Colorless | colorless |
Temperature (K) | 293 | 293 |
Wavelength (Å) | 1.54056 | 1.54056 |
2θ range; step (°) | 10-120, 0.02 | 10-120, 0.02 |
System, space group | Hex., P63/m | Hex., P63/m |
a = b (Å) | 9.41264(5) | 9.41284(6) |
c (Å) | 6.88038(..) | 6.88151(10) |
V (Å3) | 527.917(3) | 528.026(9) |
Z; Densitycalc. (Mg·m−3) | 1, 3.207 | 1, 3.221 |
Refinement method | FMLQ | FMLQ |
Bragg refl., parameters | 879, 128 | 879, 128 |
Rp; Rwp; Rexp (%) | 4.34, 5.80, 4.87 | 7.00, 9.31, 5.33 |
Atom | Site | x | y | z | Ueq | Occ. |
---|---|---|---|---|---|---|
HA-Eu4 | ||||||
Ca1 | 4f | 2/3 | 1/3 | −0.0016(5) | 0 | 1 |
Ca2 | 6h | 1.0073(3) | 0.2513(2) | 1/4 | 0 | 0.961(1) |
Eu1 | 6h | 1.0073(3) | 0.2513(2) | 1/4 | 0.0000(3) | 0.029(1) |
P1 | 6h | 1.0291(3) | 0.3978(3) | −1/4 | 0.0012 | 1 |
O1 | 6h | 0.8430(6) | 0.3261(6) | −1/4 | 0.0012 | 1 |
O2 | 6h | 0.8773(7) | 0.4111(7) | 1/4 | 0.0001 | 1 |
O3 | 12i | 1.0854(5) | 0.3385(5) | −0.0682(6) | 0.0112 | 1 |
O4 | 4e | 0 | 0 | 0.2000(18) | 0.0156(5) | 0.5 |
HA-Gd | ||||||
Ca1 | 4f | 2/3 | 1/3 | −0.0004(8) | 0 | 1 |
Ca2 | 6h | 1.0076(4) | 0.2518(4) | 1/4 | 0 | 0.956(2) |
Gd1 | 6h | 1.0076(4) | 0.2518(4) | 1/4 | 0.0000(6) | 0.034(2) |
P1 | 6h | 1.0309(6) | 0.3990(5) | −1/4 | 0.0035 | 1 |
O1 | 6h | 0.8407(11) | 0.3240(11) | −1/4 | 0 | 1 |
O2 | 6h | 0.8788(12) | 0.4086(12) | 1/4 | 0.0096 | 1 |
O3 | 12i | 1.0869(8) | 0.3367(8) | −0.0647(9) | 0.0035 | 1 |
O4 | 4e | 0 | 0 | 0.197(3) | 0.0035(8) | 0.5 |
Distance | HA-Eu4 | bvp | HA-Gd | bvp |
---|---|---|---|---|
3xCa1-O1 | 2.406(5) | 0.30 | 2.404(8) | 0.31 |
3xCa1-O2 | 2.452(5) | 0.27 | 2.459(9) | 0.26 |
3xCa1-O3 | 2.830(4) | 0.10 | 2.833(7) | 0.10 |
Ca2-O1 | 2.687(5) | 0.14 | 2.670(13) | 0.15 |
Ca2-O2 | 2.367(9) | 0.34 | 2.332(5) | 0.37 |
2xCa2 O3 | 2.325(4) | 0.38 | 2.300(6) | 0.41 |
2xCa2 O3 | 2.486(4) | 0.25 | 2.479(9) | 0.25 |
Ca2-O4H | 2.357(3) | 0.35 | 2.364(5) | 0.34 |
P1-O1 | 1.530(6) | 1.26 | 1.562(14) | 1.16 |
P1-O2 | 1.558(6) | 1.17 | 1.569(10) | 1.14 |
2xP1-O3 | 1.566(5) | 1.15 | 1.599(7) | 1.05 |
HA | HA-Eu1 | HA-Eu2 | HA-Eu3 | HA-Eu4 | HA-Gd | Assignment |
---|---|---|---|---|---|---|
3569 | 3570 | 3569 | 3566 | 3569 | 3569 | νs(OH) |
1633 | 1633 | 1634 | 1633 | 1633 | 1633 | δ(H2O) |
1090 | 1090 | 1090 | 1090 | 1091 | 1091 | ν3(PO4)3− |
1047 | 1047 | 1047 | 1047 | 1048 | 1048 | |
1015 | 1015 | 1015 | 1015 | 1015 | 1015 | |
960 | 960 | 960 | 960 | 961 | 961 | ν1(PO4)3− |
633 | 633 | 633 | - | 632 | 632 | νl(OH) |
600 | 600 | 600 | 601 | 602 | 602 | |
574 | 570 | 570 | 570 | 571 | 571 | ν4(PO4)3− |
- | - | - | - | 518 | 518 | RE-O |
472 | 472 | 472 | 472 | 473 | 473 | ν2(PO4)3− |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paterlini, V.; Bettinelli, M.; Rizzi, R.; El Khouri, A.; Rossi, M.; Della Ventura, G.; Capitelli, F. Characterization and Luminescence of Eu3+- and Gd3+-Doped Hydroxyapatite Ca10(PO4)6(OH)2. Crystals 2020, 10, 806. https://doi.org/10.3390/cryst10090806
Paterlini V, Bettinelli M, Rizzi R, El Khouri A, Rossi M, Della Ventura G, Capitelli F. Characterization and Luminescence of Eu3+- and Gd3+-Doped Hydroxyapatite Ca10(PO4)6(OH)2. Crystals. 2020; 10(9):806. https://doi.org/10.3390/cryst10090806
Chicago/Turabian StylePaterlini, Veronica, Marco Bettinelli, Rosanna Rizzi, Asmaa El Khouri, Manuela Rossi, Giancarlo Della Ventura, and Francesco Capitelli. 2020. "Characterization and Luminescence of Eu3+- and Gd3+-Doped Hydroxyapatite Ca10(PO4)6(OH)2" Crystals 10, no. 9: 806. https://doi.org/10.3390/cryst10090806
APA StylePaterlini, V., Bettinelli, M., Rizzi, R., El Khouri, A., Rossi, M., Della Ventura, G., & Capitelli, F. (2020). Characterization and Luminescence of Eu3+- and Gd3+-Doped Hydroxyapatite Ca10(PO4)6(OH)2. Crystals, 10(9), 806. https://doi.org/10.3390/cryst10090806