Efficient Photocatalytic Degradation of RhB by Constructing Sn3O4 Nanoflakes on Sulfur-Doped NaTaO3 Nanocubes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis
2.3. Characterizations
2.4. Photocatalytic Degradation of RhB
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Akbal, F. Photocatalytic degradation of organic dyes in the presence of titanium dioxide under UV and solar light: Effect of operational parameters. Env. Prog. 2005, 24, 317–322. [Google Scholar] [CrossRef]
- Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J.; Horiuchi, Y.; Anpo, M.; Bahnemann, D.W. Understanding TiO2 photocatalysis: Mechanisms and materials. Chem. Rev. 2014, 114, 9919–9986. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Wang, D.; Han, H.; Li, C. Roles of Cocatalysts in Photocatalysis and Photoelectrocatalysis. Acc. Chem. Res. 2013, 46, 1900–1909. [Google Scholar] [CrossRef] [PubMed]
- Matatov-Meytal, Y.I.; Sheintuch, M. Catalytic Abatement of Water Pollutants. Ind. Eng. Chem. Res. 1998, 37, 309–326. [Google Scholar] [CrossRef]
- Kabra, K.; Chaudhary, R.; Sawhney, R.L. Treatment of Hazardous Organic and Inorganic Compounds through Aqueous-Phase Photocatalysis: A Review. Ind. Eng. Chem. Res. 2004, 43, 7683–7696. [Google Scholar] [CrossRef]
- Chang, S.; Yang, X.; Sang, Y.; Liu, H. Highly Efficient Photocatalysts and Continuous-Flow Photocatalytic Reactors for Degradation of Organic Pollutants in Wastewater. Chem. Asian J. 2016, 11, 2352–2371. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.; Wang, Q.; Liu, B.; Sang, Y.; Liu, H. Hierarchical TiO2 nanonetwork–porous Ti 3D hybrid photocatalysts for continuous-flow photoelectrodegradation of organic pollutants. Catal. Sci. Technol. 2017, 7, 524–532. [Google Scholar] [CrossRef]
- Someshwar Pola and Ramesh Gade. Significant Role of Perovskite Materials for Degradation of Organic Pollutants. Available online: https://www.intechopen.com/online-first/significant-role-of-perovskite-materials-for-degradation-of-organic-pollutants (accessed on 3 April 2020).
- Orak, C.; Atalay, S.; Ersöz, G. Photocatalytic and photo-Fenton-like degradation of methylparaben on monolith-supported perovskite-type catalysts. Sep. Sci. Technol. 2017, 52, 1310–1320. [Google Scholar] [CrossRef]
- Xu, J.; Luo, B.; Gu, W.; Jian, Y.; Wu, F.; Tang, Y.; Shen, H. Fabrication of In2S3/NaTaO3 composites for enhancing the photocatalytic activity toward the degradation of tetracycline. New J. Chem. 2018, 42, 5052–5058. [Google Scholar] [CrossRef]
- Qu, L.; Lang, J.; Wang, S.; Chai, Z.; Su, Y.; Wang, X. Nanospherical composite of WO3 wrapped NaTaO3: Improved photodegradation of tetracycline under visible light irradiation. Appl. Surf. Sci. 2016, 388, 412–419. [Google Scholar] [CrossRef]
- Li, H.; Shi, X.; Liu, X.; Li, X. Synthesis of novel, visible-light driven S,N-doped NaTaO3 catalysts with high photocatalytic activity. Appl. Surf. Sci. 2020, 508, 145306. [Google Scholar] [CrossRef]
- Kato, H.; Kudo, A. Highly efficient decomposition of pure water into H2 and O2 over NaTaO3 photocatalysts. Catal. Lett. 1999, 58, 153–155. [Google Scholar] [CrossRef]
- Hu, C.; Tsai, C.; Teng, H. Structure Characterization and Tuning of Perovskite-Like NaTaO3 for Applications in Photoluminescence and Photocatalysis. J. Am. Ceram. Soc. 2009, 92, 460–466. [Google Scholar] [CrossRef]
- An, L.; Sasaki, T.; Weidler, P.G.; Wöll, C.; Ichikuni, N.; Onishi, H. Local Environment of Strontium Cations Activating NaTaO3 Photocatalysts. ACS Catal. 2018, 8, 880–885. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Zhu, Y.; Wu, N. Synthesis of nanosized NaTaO3 in low temperature and its photocatalytic performance. J. Solid State Chem. 2004, 177, 3868–3872. [Google Scholar] [CrossRef]
- An, L.; Onishi, H. Electron–Hole Recombination Controlled by Metal Doping Sites in NaTaO3 Photocatalysts. ACS Catal. 2015, 5, 3196–3206. [Google Scholar] [CrossRef]
- Yang, F.; Yan, L.; Zhang, B.; He, X.; Li, Y.; Tang, Y.; Ma, C.; Li, Y. Fabrication of ternary NaTaO3/g-C3N4/G heterojunction photocatalyst with enhanced activity for Rhodamine B degradation. J. Alloys Compd. 2019, 805, 802–810. [Google Scholar] [CrossRef]
- Zhou, X.; Chen, Y.; Mei, H.; Hu, Z.; Fan, Y. A facile route for the preparation of morphology-controlled NaTaO3 films. Appl. Surf. Sci. 2008, 255, 2803–2807. [Google Scholar] [CrossRef]
- Torresmartinez, L.M.; Cruzlopez, A.; Juarezramirez, I.; Meza-de la Rosa, M.E. Methylene blue degradation by NaTaO3 sol-gel doped with Sm and La. J. Hazard. Mater. 2009, 165, 774–779. [Google Scholar] [CrossRef]
- Kato, H.; Asakura, A.K.; Kudo, A. Highly Efficient Water Splitting into H2 and O2 over Lanthanum-Doped NaTaO3 Photocatalysts with High Crystallinity and Surface Nanostructure. J. Am. Chem. Soc. 2003, 125, 3082–3089. [Google Scholar] [CrossRef]
- Iwase, A.; Kato, H.; Kudo, A. The Effect of Alkaline Earth Metal Ion Dopants on Photocatalytic Water Splitting by NaTaO3 Powder. ChemSusChem 2009, 2, 873–877. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Jiang, Y.; Gao, G. Photocatalytic degradation of an azo dye using N-doped NaTaO3 synthesized by one-step hydrothermal process. Chemosphere 2011, 83, 1546–1552. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Ma, Y.; Fo, Y.; Lyu, Y.; Zhou, X. Theoretical insights into the origin of highly efficient photocatalyst NiO/NaTaO3 for overall water splitting. Int. J. Hydrogen Energy 2020, 45, 19357–19369. [Google Scholar] [CrossRef]
- Xu, D.; Shi, W.; Yang, S.; Chen, B.; Bai, H.; Xiao, L. Fabrication of ternary p-n heterostructures AgCl/Ag2O/NaTaO3 photocatalysts: Enhanced charge separation and photocatalytic properties under visible light irradiation. Catal. Commun. 2016, 84, 163–166. [Google Scholar] [CrossRef]
- Tang, L.; Feng, C.; Deng, Y.; Zeng., G.; Wang, J.; Liu, Y.; Feng, H.; Wang, J. Enhanced photocatalytic activity of ternary Ag/g-C3N4/NaTaO3 photocatalysts under wide spectrum light radiation: The high potential band protection mechanism. Appl. Catal. B Environ. 2018, 230, 102–114. [Google Scholar] [CrossRef]
- Gomezsolis, C.; Ballesteros, J.C.; Torresmartinez, L.M.; Juárez-Ramírez, I. RuO2–NaTaO3 heterostructure for its application in photoelectrochemical water splitting under simulated sunlight illumination. Fuel 2016, 166, 36–41. [Google Scholar] [CrossRef]
- Singh, A.P.; Kumar, S.; Thirumal, M. Efficient Charge Transfer in Heterostructures of CdS/NaTaO3 with Improved Visible-Light-Driven Photocatalytic Activity. ACS Omega 2019, 4, 12175–12185. [Google Scholar] [CrossRef] [Green Version]
- Xia, W.; Wang, H.; Zeng, X.; Han, J.; Zhu, J.; Zhou, M.; Wu, S. High-efficiency photocatalytic activity of type II SnO/Sn3O4 heterostructures via interfacial charge transfer. CrystEngComm 2014, 16, 6841–6847. [Google Scholar] [CrossRef]
- He, Y.; Li, D.; Chen, J.; Shao, Y.; Xian, J.; Zheng, X.; Wang, P. Sn3O4: A novel heterovalent-tin photocatalyst with hierarchical 3D nanostructures under visible light. Rsc Adv. 2014, 4, 1266–1269. [Google Scholar] [CrossRef]
- Chen, G.; Ji, S.; Sang, Y.; Chang, S.; Wang, Y.; Hao, P.; Claverie, J.; Liu, H.; Yu, G. Synthesis of scaly Sn3O4/TiO2 nanobelt heterostructures for enhanced UV-visible light photocatalytic activity. Nanoscale 2015, 7, 3117–3125. [Google Scholar] [CrossRef]
- Park, S.H.; Son, Y.C.; Willis, W.S.; Suib, S.L.; Creasy, K.E. Tin oxide films made by physical vapor deposition thermal oxidation and spray pyrolysis. Chem. Mater. 1998, 10, 2389–2398. [Google Scholar] [CrossRef]
- Yu, X.; Zhao, Z.; Ren, N.; Liu, J.; Sun, D.; Ding, L.; Liu, H. Top or Bottom, Assembling Modules Determine the Photocatalytic Property of the Sheetlike Nanostructured Hybrid Photocatalyst Composed with Sn3O4 and rGO (GQD). ACS Sustain. Chem. Eng. 2018, 6, 11775–11782. [Google Scholar] [CrossRef]
- Hu, J.; Li, X.; Wang, X.; Li, Q.; Wang, F. Novel hierarchical Sn3O4/BiOX (X = Cl, Br, I) p–n heterostructures with enhanced photocatalytic activity under simulated solar light irradiation. Dalton Trans. 2019, 48, 8937–8947. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Li, J.; Luo, W.; Li, Z.; Tian, Y.; Yang, Z.; Gao, Z.; Liu, H. Hetero-structure La2O3-modified SnO2-Sn3O4 from tin anode slime for highly sensitive and ppb-Level formaldehyde detection. Appl. Surf. Sci. 2020, 513, 145825. [Google Scholar] [CrossRef]
- Manikandan, M.; Tanabe, T.; Li, P.; Ueda, S.; Ramesh, G.V.; Kodiyath, R. Photocatalytic Water Splitting under Visible Light by Mixed-Valence Sn3O4. ACS Appl. Mater. Interfaces 2014, 6, 3790–3793. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Tu, J.; Li, X.; Wang, Z.; Li, Y.; Li, Q.; Wang, F. Enhanced UV-Visible Light Photocatalytic Activity by Constructing Appropriate Heterostructures between Mesopore TiO2 Nanospheres and Sn3O4 Nanoparticles. Nanomaterials 2017, 7, 336. [Google Scholar] [CrossRef] [Green Version]
- Portugal, G.R.; Santos, S.F.; Arantes, J.T. NaTaO3 cubic and orthorhombic surfaces: An intrinsic improvement of photocatalytic properties. Appl. Surf. Sci. 2020, 502, 144206. [Google Scholar] [CrossRef]
- Modak, B.; Srinivasu, K.; Ghosh, S.K. Band gap engineering of NaTaO3 using density functional theory: A charge compensated codoping strategy. Phys. Chem. Chem. Phys. 2014, 16, 17116–17124. [Google Scholar] [CrossRef]
- Li, F.; Liu, D.; Gao, G.; Xue, B.; Jiang, Y. Improved visible-light photocatalytic activity of NaTaO3 with perovskite-like structure via sulfur anion doping. Appl. Catal. B Environ. 2015, 166, 104–111. [Google Scholar] [CrossRef]
- Li, Z.; Ma, B.; Zhang, X.; Sang, Y.; Liu, H. One-pot synthesis of BiOCl nanosheets with dual functional carbon for ultra-highly efficient photocatalytic degradation of RhB. Environ. Res. 2020, 182, 109077. [Google Scholar] [CrossRef]
- Alido, J.P.M.; Sari, F.N.I.; Ting, J.-M. Synthesis of Ag/hybridized 1T-2H MoS2/TiO2 heterostructure for enhanced visible-light photocatalytic activity. Ceram. Int. 2019, 45, 23651–23657. [Google Scholar] [CrossRef]
- Sari, F.N.I.; Lu, S.-H.; Ting, J.-M. Wide-bandgap HfO2-V2O5 nanowires heterostructure for visible light driven photocatalytic degradation. J. Am. Ceram. Soc. 2020, 103, 2252–2261. [Google Scholar] [CrossRef]
- Sari, F.N.I.; Yen, D.T.K.; Ting, J.-M. Enhanced photocatalytic performance of TiO2 through a novel direct dual Z-scheme design. Appl. Surf. Sci. 2020, 533, 147506. [Google Scholar] [CrossRef]
- Munusamy, T.D.; Yee, C.S.; Khan, M.M.R. Construction of hybrid g-C3N4/CdO nanocomposite with improved photodegradation activity of RhB dye under visible light irradiation. Adv. Powder Technol. 2020, 31, 2921–2931. [Google Scholar] [CrossRef]
- Zhang, Z.; Feng, Y.; Liu, N.; Zhao, Y.; Wang, X.; Yang, S.; Long, Y.; Qiu, L. Preparation of Sn/Mn loaded steel slag zeolite particle electrode and its removal effect on rhodamine B(RhB). J. Water Process Eng. 2020, 37, 101417. [Google Scholar] [CrossRef]
- Ding, X.; Gutierrez, L.; Croue, J.-P.; Li, M.; Wang, L.; Wang, Y. Hydroxyl and sulfate radical-based oxidation of RhB dye in UV/H2O2 and UV/persulfate systems: Kinetics, mechanisms, and comparison. Chemosphere 2020, 253, 126655. [Google Scholar] [CrossRef]
- Lee, Y.C.; Teng, H.; Hu, C.C.; Hu, S.Y. Temperature-dependent photoluminescence in NaTaO3 with different crystalline structures. Electrochem. Solid State Lett. 2008, 11, P1–P4. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, S.; Sang, Y.; Liu, H. Efficient Photocatalytic Degradation of RhB by Constructing Sn3O4 Nanoflakes on Sulfur-Doped NaTaO3 Nanocubes. Crystals 2021, 11, 59. https://doi.org/10.3390/cryst11010059
Chang S, Sang Y, Liu H. Efficient Photocatalytic Degradation of RhB by Constructing Sn3O4 Nanoflakes on Sulfur-Doped NaTaO3 Nanocubes. Crystals. 2021; 11(1):59. https://doi.org/10.3390/cryst11010059
Chicago/Turabian StyleChang, Sujie, Yuanhua Sang, and Hong Liu. 2021. "Efficient Photocatalytic Degradation of RhB by Constructing Sn3O4 Nanoflakes on Sulfur-Doped NaTaO3 Nanocubes" Crystals 11, no. 1: 59. https://doi.org/10.3390/cryst11010059
APA StyleChang, S., Sang, Y., & Liu, H. (2021). Efficient Photocatalytic Degradation of RhB by Constructing Sn3O4 Nanoflakes on Sulfur-Doped NaTaO3 Nanocubes. Crystals, 11(1), 59. https://doi.org/10.3390/cryst11010059