Microstructure Study of Phase Transformation of Quartz in Potassium Silicate Glass at 900 °C and 1000 °C
Abstract
:1. Introduction
2. Experimental Procedure
3. Results
3.1. Phase Evolution of Quartz and Potassium Silicate Glass at 1000 °C
3.2. Phase and Microstructure Evolution of the Coarse Quartz-Potassium Silicate Glass Composites at 1000 °C and 900 °C
3.3. Phase and Microstructure Evolution of the Coarse Quartz-Potassium Silicate Glass Composite at 900 °C
3.4. Phase Evolution of the Fine Quartz-Potassium Silicate Glass Composite at 1000 °C and 900 °C
4. Discussion
4.1. Phase Transformation of Quartz-Potassium Silicate Glass Composite
4.1.1. The Existence of Glass Favors Phase Transition of Quartz
4.1.2. The Phase Transformation of Quartz Promotes the Precipitation of Tridymite in Glass
4.2. The Effect of Temperature on the Phase Transformation of Quartz-Potassium Silicate Glass Composite
4.3. Size Effect of Quartz Particles on the Phase Transformation
5. Conclusions
- (1)
- Quartz without impurity is the stable polymorph of silica at 1000 °C;
- (2)
- With the presence of K2O, the transformation of quartz starts at the quartz/glass interface by formation of cristobalite. But cristobalite is a metastable phase at both 900 °C and 1000 °C and transforms into tridymite;
- (3)
- The phase transformation rate can be accelerated with increasing temperature and/or decreasing size of the quartz particles, implying that the quartz → cristobalite → tridymite transformation may be associated with the diffusion of potassium in quartz and cristobalite.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Thompson, A.B.; Wennemer, M. Heat capacities and inversions in tridymite, cristobalite, and tridymite-cristobalite mixed phases. Am. Miner. 1979, 64, 1018–1026. [Google Scholar]
- Chaklader, A.C.D.; Roberts, A.L. Transformation of Quartz to Cristobalite. J. Am. Ceram. Soc. 1961, 44, 35–41. [Google Scholar] [CrossRef]
- Nabil, M.; Mahmoud, K.R.; El-Shaer, A.; Nayber, H.A. Preparation of crystalline silica (quartz, cristobalite, and tridymite) and amorphous silica powder (one step). J. Phys. Chem. Solids 2018, 121, 22–26. [Google Scholar] [CrossRef]
- Jones, J.B.; Segnit, E.R. Genesis of cristobalite and tridymite at low temperatures. J. Geol. Soc. Aust. 1972, 18, 419–422. [Google Scholar] [CrossRef]
- Ilkhechi, N.N.; Kaleji, B.K. Temperature Stability and Photocatalytic Activity of Nanocrystalline Cristobalite Powders with Cu Dopant. Silicon 2017, 9, 943–948. [Google Scholar] [CrossRef]
- Evgenii, K.; Wolfram, T. The role of quartz in the origin of optical activity on earth. Orig. Life Evol. Biosph. 2000, 30, 431–434. [Google Scholar] [CrossRef] [PubMed]
- Fenner, C.N. The stability relations of the silica minerals. Am. J. Sci. 1913, s4-36, 331–384. [Google Scholar] [CrossRef] [Green Version]
- Buerger, M.J. The stuffed derivatives of the silica structures. Am. Miner. 1954, 39, 600–614. [Google Scholar]
- Flörke, O.W. Über das Einstoffsystem SiO2. Naturwissenschaften 1956, 43, 419–420. [Google Scholar] [CrossRef]
- Graetsch, H.; Flörke, O.W.; Miehe, G. Structural defects in microcrystalline silica. Phys. Chem. Miner. 1987, 14, 249–257. [Google Scholar] [CrossRef]
- Schneider, H.; Flörke, O. High-temperature transformation of tridymite single crystals to cristobalite. Z. Krist. Cryst. Mater. 1986, 175, 165–176. [Google Scholar]
- Tuttle, O.F.; England, J.L. Preliminary report on the system SiO2-H2O. Geol. Soc. Am. Bull. 1955, 66, 149–152. [Google Scholar] [CrossRef]
- Hill, V.; Roy, R. Silica structure studies VI. On tridymites. Trans. Br. Ceram. Soc. 1958, 57, 496. [Google Scholar]
- Holmquist, S.B. Conversion of Quartz to Tridymite. J. Am. Ceram. Soc. 1961, 44, 82–86. [Google Scholar] [CrossRef]
- Stevens, S.J.; Hand, R.J.; Sharp, J.H. Polymorphism of silica. J. Mater. Sci. 1997, 32, 2929–2935. [Google Scholar] [CrossRef]
- Hand, R.; Stevens, S.; Sharp, J. Characterisation of fired silicas. Thermochim. Acta 1998, 318, 115–123. [Google Scholar] [CrossRef]
- Wu, S.W.; Wong, D.S.H.; Lu, S.Y. Size Effects on Silica Polymorphism. J. Am. Ceram. Soc. 2002, 85, 2590–2592. [Google Scholar] [CrossRef]
- Haastrup, S.; Yu, D.; Yue, Y. Impact of surface impurity on phase transitions in amorphous micro silica. J. Non-Cryst. Solids 2016, 450, 42–47. [Google Scholar] [CrossRef]
- Stevens, S.; Hand, R.; Sharp, J. Temperature dependence of the cristobalite α-β inversion. J. Therm. Anal. Calorim. 1997, 49, 1409–1415. [Google Scholar] [CrossRef]
- Li, Y.P.; Ching, W.Y. Band structures of all polycrystalline forms of silicon dioxide. Phys. Rev. B 1985, 31, 2172–2179. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Edalati, K.; Fujita, I.; Watanabe, M.; Ishihara, T.; Horita, Z. High-pressure torsion of SiO2 quartz sand: Phase transformation, optical properties, and significance in geology. J. Am. Ceram. Soc. 2020, 103, 6594–6602. [Google Scholar] [CrossRef]
- Di Febo, R.; Casas, L.; del Campo, Á.A.; Rius, J.; Vallcorba, O.; Melgarejo, J.C.; Capelli, C. Recognizing and understanding silica-polymorph microcrystals in ceramic glazes. J. Eur. Ceram. Soc. 2020, 40, 6188–6199. [Google Scholar] [CrossRef]
- Richter, B.; Stünitz, H.; Heilbronner, R. Stresses and pressures at the quartz-to-coesite phase transformation in shear deformation experiments. J. Geophys. Res. Solid Earth 2016, 121, 8015–8033. [Google Scholar] [CrossRef] [Green Version]
- Pagliari, L.; Dapiaggi, M.; Pavese, A.; Francescon, F. A kinetic study of the quartz–cristobalite phase transition. J. Eur. Ceram. Soc. 2013, 33, 3403–3410. [Google Scholar] [CrossRef]
- Wang, J.; Chen, M.; Yang, L.; Sun, W.; Zhu, S.; Wang, F. Nanocrystalline coatings on superalloys against high temperature oxidation: A review. Corros. Commun. 2021, 1, 58–69. [Google Scholar] [CrossRef]
Impurity | Cl | SO4 | Pb | Ca | Mg |
---|---|---|---|---|---|
amount | ≤0.005% | ≤0.005% | ≤0.005% | ≤0.005% | ≤0.005% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Xu, C.; Xie, A.; Chen, K.; Yang, Y.; Liu, L.; Zhu, S. Microstructure Study of Phase Transformation of Quartz in Potassium Silicate Glass at 900 °C and 1000 °C. Crystals 2021, 11, 1481. https://doi.org/10.3390/cryst11121481
Li W, Xu C, Xie A, Chen K, Yang Y, Liu L, Zhu S. Microstructure Study of Phase Transformation of Quartz in Potassium Silicate Glass at 900 °C and 1000 °C. Crystals. 2021; 11(12):1481. https://doi.org/10.3390/cryst11121481
Chicago/Turabian StyleLi, Wenbo, Chenghao Xu, Ameng Xie, Ken Chen, Yingfei Yang, Lanlan Liu, and Shenglong Zhu. 2021. "Microstructure Study of Phase Transformation of Quartz in Potassium Silicate Glass at 900 °C and 1000 °C" Crystals 11, no. 12: 1481. https://doi.org/10.3390/cryst11121481
APA StyleLi, W., Xu, C., Xie, A., Chen, K., Yang, Y., Liu, L., & Zhu, S. (2021). Microstructure Study of Phase Transformation of Quartz in Potassium Silicate Glass at 900 °C and 1000 °C. Crystals, 11(12), 1481. https://doi.org/10.3390/cryst11121481