Influence of HAP on the Morpho-Structural Properties and Corrosion Resistance of ZrO2-Based Composites for Biomedical Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Preparation of the Composite based Modified Ni-Cr or Co-Cr Electrodes
2.3. Investigation Methods
3. Results and Discussion
3.1. Morpho-Structural Characterization of Composites
3.2. Electrochemical Behaviour of Metallic Alloys by Cyclic Voltammetry
3.2.1. The Potential in Open Circuit (OCP)
3.2.2. EIS Measurements
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bronzino, J.D.; Peterson, D.R. The Biomedical Engineering Handbook, 4th ed.CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Calandrelli, L.; Immirzi, B.; Malinconicon, M.; Luessenheide, S.; Passaro, I.; Pasquale, R.; Oliva, A. Natural and synthetic hydroxyapatite filled PCL: mechanical properties and biocompatibility analysis. J. Bioact. Compat. Polym. 2004, 19, 301–313. [Google Scholar] [CrossRef]
- Al Bahrawy, M. Hydroxyapatite as a Biomaterial to Improve Stem Cell-Related Tissue Engineering. Biomed. J. Sci. Tech. Res. 2020, 25, 19209–19226. [Google Scholar]
- Hench, L.L. Bioceramics: From Concept to Clinic. J. Am. Ceram. Soc. 1991, 74, 1487–1510. [Google Scholar] [CrossRef]
- Aoki, H. Science and Medical Applications of Hydroxyapatite; Japanese Association of Apatite Science: Tokyo, Japan, 1991. [Google Scholar]
- Suchanek, W.; Masahiro, Y. Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants. J. Mater. Res. 1998, 13, 94–117. [Google Scholar] [CrossRef]
- Bonfield, W.; Best, S.; Krajewski, A.; Ravaglioli, A. Prospects for Ceramics In Clinical Applications. In Proceedings of the Fourth EuroCeramics, Riccione, Italy, 2–6 October 1995. [Google Scholar]
- Hench, L.L. Ceramics and Society, Discussions of the Academy of Ceramics Forum ’92, Assisi, Italy. edited by R. J. Brook. 1995. Available online: http://www.waceramics.org/Forum92.pdf (accessed on 17 December 2020).
- Wüsterfeld, M.; de Groot, K. Patent literature as a source of information for research and development: An investigation on calcium phosphate-containing biomaterials, part I. J. Biomed. Mater. Res. Appl. Biomater. 1989, 23, 41–71. [Google Scholar] [CrossRef] [PubMed]
- Wilson, J. Special Report-World Biomaterials Congresses 1980–1992. J. Appl. Biomater. 1993, 103–105. [Google Scholar] [CrossRef]
- Ayadi, I.; Ayed, F.B. Mechanical optimization of the composite biomaterial based on the tricalcium phosphate, titania and magnesium fluoride. J. Mech. Behav. Biomed. 2016, 60, 568–580. [Google Scholar] [CrossRef]
- Sivaperumal, V.R.; Mani, R.; Nachiappan, M.; Arumugam, K. Direct hydrothermal synthesis of hydroxyapatite/alumina nanocomposite. Mater. Charact. 2017, 134, 416–421. [Google Scholar] [CrossRef]
- Arifta, T.I.; Munar, M.L.; Tsuru, K.; Ishikawa, K. Fabrication of interconnected porous calcium-deficient hydroxyapatite using the setting reaction of α tricalcium phosphate spherical granules. Ceram. Int. 2017, 43, 11149–11155. [Google Scholar] [CrossRef]
- Guidara, A.; Chaari, K.; Fakhfakh, S.; Bouaziz, J. The effects of MgO, ZrO2 and TiO2 as additives on microstructure and mechanical properties of Al2O3-Fap composite. Mater. Chem. Phys. 2017, 202, 358–368. [Google Scholar] [CrossRef]
- Jun, Y.-K.; Kim, W.H.; Kweon, O.-K.; Hong, S.-H. The fabrication and biochemical evaluation of alumina reinforced calcium phosphate porous implants. Biomaterials 2003, 24, 3731–3739. [Google Scholar] [CrossRef]
- Fernandes, K.R.; Zhang, Y.; Magri, A.M.P.; Renno, A.C.M.; van den Beucken, J.J.J.P. Biomaterial Property Effects on Platelets and Macrophages: An in Vitro Study. ACS Biomater. Sci. Eng. C 2017, 3, 3318–3327. [Google Scholar] [CrossRef] [PubMed]
- Shariff, K.A.; Tsuru, K.; Ishikawa, K. Fabrication of dicalcium phosphate dihydrate-coated beta-TCP granules and evaluation of their osteoconductivity using experimental rats. Mater. Sci. Eng. 2017, 75, 1411–1419. [Google Scholar] [CrossRef]
- Oh, K.J.; Ko, Y.B.; Whang, I.C.; Jaiswa, L.S. Comparison of osteoconductivity and absorbability of beta-tricalcium phosphate and hydroxyapatite in clinical scenario of opening wedge high tibial osteotomy. J. Mater. Sci. Mater. Med. 2016, 27, 3318–3327. [Google Scholar]
- French, R.H.; Glass, S.J.; Ohuchi, F.S.; Xu, Y.-N.; Ching, W.Y. Experimental and theoretical determination of the electronic structure and optical properties of three phases of ZrO2. Phys. Rev. B. 1994, 49, 5133–5142. [Google Scholar] [CrossRef]
- Goff, J.P.; Hayes, W.; Hull, S.; Hutchings, M.T.; Clausen, K.N. Defect structure of yttria-stabilized zirconia and its influence on the ionic conductivity at elevated temperatures. Phys. Rev. B. 1999, 59, 14202–14219. [Google Scholar] [CrossRef] [Green Version]
- Denry, I.; Kelly, J.R. State of the art of zirconia for dental applications. Dent. Mater. 2008, 24, 299–307. [Google Scholar]
- Gupta, T.K.; Lange, F.F.; Bechtold, J.H. Effect of stress-induced phase transformation on the properties of polycrystalline zirconia containing metastable tetragonal phase. J. Mater. Sci. 1978, 13, 1464–1470. [Google Scholar] [CrossRef]
- Nath, S.; Baja, S.; Basu, B. Microwave-Sintered MgO-doped zirconia with improved mechanical and tribological properties. Int. J. Appl. Ceram. Technol. 2008, 5, 49–62. [Google Scholar] [CrossRef]
- Rao, Y.; Wang, W.; Tan, F.; Chi, Y.; Lu, J.; Qiao, X. Influence of different ions doping on the antibacterial properties of MgO nanopowders. Appl. Surf. Sci. 2013, 284, 726–731. [Google Scholar] [CrossRef]
- Noori, A.J.; Kareem, F.A. The effect of magnesium oxide nanoparticles on the antibacterial and antibiofilm properties of glass-ionomer cement. Heliyon 2019, 5, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, N.T.; Grelling, N.; Wetteland, C.L.; Rosario, R.; Liu, H. Antimicrobial Activities and Mechanisms of Magnesium Oxide Nanoparticles (nMgO) against Pathogenic Bacteria, Yeasts, and Biofilms. Sci. Rep. 2018, 8, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Tang, Z.-X.; Bin-Feng, L. MgO nanoparticles as antibacterial agent: preparation and activity. Braz. J. Chem. Eng. 2014, 31, 591–601. [Google Scholar] [CrossRef]
- Rapacz-Kmita, A.; Slósarczyk, A.; Paszkiewicz, Z. Mechanical properties of HAp–ZrO2 composites. J. Eur. Ceram. Soc. 2006, 26, 1481–1488. [Google Scholar] [CrossRef]
- Antoniac, I. Bioceramics and Biocomposites: From Research to Clinical Practice. Wiley-VCH: Weinheim, Germany, 2019. [Google Scholar]
- Ziębowicz, A.; Matus, K.; Pakieła, W.; Matula, G.; Pawlyta, M. Comparison of the Crystal Structure and Wear Resistance of Co-Based Alloys with Low Carbon Content Manufactured by Selective Laser Sintering and Powder Injection Molding. Crystals 2020, 10, 197. [Google Scholar] [CrossRef] [Green Version]
- Turdean, G.L.; Craciun, A.; Popa, D.; Constantiniuc, M. Study of electrochemical corrosion of biocompatible Co–Cr and Ni–Cr dental alloys in artificial saliva. Influence of pH of the solution. Mater. Chem. Phys. 2019, 233, 390–398. [Google Scholar] [CrossRef]
- de Sá, J.; Vieira, F.; Aroso, C.M.; Cardoso, M.; Mendes, J.M.; Silva, A.S. The Influence of Saliva pH on the Fracture Resistance of Three Complete Denture Base Acrylic Resins. Int. J. Dent. 2020, 1–12. [Google Scholar] [CrossRef]
- Barabás, R.; Czikó, M.; Dékány, I.; Bizo, L.; Bogya, E.S. Comparative study of particle size analysis of hydroxyapatite-based nanomaterials. Chem. Pap. 2013, 67, 1414–1423. [Google Scholar] [CrossRef]
- Barabás, R.; de Souza Ávila, E.; Ladeira, L.O.; Mosqueira Antônio, L.; Tötös, R.; Simedru, D.; Bizo, L.; Cadar, O. Graphene Oxides/Carbon Nanotubes–Hydroxyapatite Nanocomposites for Biomedical Applications. Arab. J. Sci. Eng. 2020, 45, 219–227. [Google Scholar] [CrossRef]
- Barabás, R.; Deemter, D.; Katona, G.; Batin, G.; Barabás, L.; Bizo, L.; Cadar, O. Comparative study on physicochemical and mechanical characterization of new nanocarbon-based hydroxyapatite nanocomposites. Turk. J. Chem. 2019, 43, 809–824. [Google Scholar] [CrossRef]
- Bizo, L.; Sabo, K.; Barábas, R.; Katona, G.; Barbu-Tudoran, L.; Berar, A. Structural, morphological and dissolution properties of ZrO2-based biocomposites for dental applications. Studia UBB Chemia 2020, 1, 137–148. [Google Scholar] [CrossRef]
- de Queiroz, G.M.O.; Silva, L.F.; Lima Ferreira, J.T.; da Cunha, J.A.; Gomes, P. Sathler, Electrochemical behavior and pH stability of artificial salivas for corrosion tests. Braz. Oral Res. 2007, 21, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Močnik, P.; Kosec, T.; Kovač, J.; Bizjak, M. The effect of pH, fluoride and tribocorrosion on the surface properties of dental archwires. Mater. Sci. Eng. C 2017, 78, 682–689. [Google Scholar] [CrossRef] [PubMed]
- Salehi, S.; Fathi, M.H. Fabrication and characterization of sol-gel derived hydroxyapatite/zirconia composite nanopowders with various yttria contents. Ceram. Int. 2010, 36, 1659–1667. [Google Scholar] [CrossRef]
- Lukić, M.J.; Veselinović, L.; Stevanović, M.; Nunić, J.; Dražič, G.; Marković, S.; Uskoković, D. Hydroxyapatite nanopowders prepared in the presence of zirconium ions. Mater. Lett. 2014, 122, 296–300. [Google Scholar] [CrossRef] [Green Version]
- Patterson, A.L. The Scherrer Formula for X-Ray Particle Size Determination. Phys. Rev. 1939, 56, 978–982. [Google Scholar] [CrossRef]
- Porojan, L.; Savencu, C.E.; Costea, L.V.; Dan, M.L.; Porojan, S.D. Corrosion Behavior of Ni-Cr Dental Casting Alloys. Int. J. Electrochem. Sci. 2018, 13, 410–423. [Google Scholar]
- Murray, J.N. Electrochemical test methods for evaluating organic coatings on metals: an update. Part II: single test parameter measurements. Prog. Org. Coat. 1997, 31, 255–264. [Google Scholar] [CrossRef]
- Rodríguez-Díaz, R.A.; Ramirez-Ledesma, A.L.; Aguilar-Mendez, M.A.; Uruchurtu Chavarin, J.; Hernández Gallego, M.A.; Juarez-Islas, J.A. Electrochemical corrosion behavior of a Co20Cr alloy in artificial saliva. Int. J. Electrochem. Sci. 2015, 10, 7212–7226. [Google Scholar]
- Talha, M.; Ma, Y.; Kumar, P.; Lin, Y.; Singh, A. Role of protein adsorption in the bio corrosion of metallic implants - A review. Colloids Surf. B Biointerfaces 2019, 176, 494–506. [Google Scholar] [PubMed]
- Bard, A.J.; Faulkner, L.R. Electrochemical Methods. Fundamentals and Applications. Wiley-VCH: Weinheim, Germany, 2001. [Google Scholar]
- Brett, C.M.A.; Oliveira Brett, A.M. Electrochemistry: Principles, Methods, and Applications. Oxford University Press: Oxford, UK, 1994. [Google Scholar]
- Du, J.; Ying, Y.; Guo, X.-Y.; Li, C.; Wu, Y.; Wen, Y.; Yang, H.-F. Acetohydroxamic acid adsorbed at copper surface: electrochemical, Raman and theoretical observations. Int. J. Ind. Chem. 2017, 8, 285–296. [Google Scholar] [CrossRef] [Green Version]
- Fort, I.C.; Turdean, G.L.; Barabas, R.; Popa, D.; Ispas, A.; Constantiniuc, M. Study of the hydrogen peroxide based whitening gel on the corrosion of dental metallic alloys. Studia UBB Chemia 2019, 64, 125–133. [Google Scholar] [CrossRef]
- Li, S.; Zhao, C.; Gou, H.; Li, Y.; He, X.; Zhao, L. Advanced anticorrosion coatings prepared from polybenzoxazine/α-zirconium phosphate nanocomposites. Int. J. Electrochem. Sci. 2018, 13, 2661–2675. [Google Scholar] [CrossRef]
- Hsu, R.W.-W.; Yang, C.-C.; Huang, C.-A.; Chen, Y.-S. Electrochemical corrosion studies on Co–Cr–Mo implant alloy in biological solutions. Mater. Chem. Phys. 2005, 93, 531–538. [Google Scholar] [CrossRef]
- Turdean, G.L.; Fort, I.C.; Simon, V. In vitro short-time stability of a bioactive glass-chitosan composite coating evaluated by using electrochemical methods. Electrochim. Acta 2015, 182, 707–714. [Google Scholar] [CrossRef]
Sample ID | ZrO2 (wt.%) | MgO (wt.%) | HAP (wt.%) |
---|---|---|---|
S1 | 98.30 | 1.70 | - |
S2 | 93.39 | 1.61 | 5 |
S3 | 88.47 | 1.53 | 10 |
S4 | 68.81 | 1.19 | 30 |
S5 | 49.15 | 0.85 | 50 |
Rs [ohm×cm2] | Qlayer [S×sn/cm2] | n1 | Rlayer [ohm×cm2] | Qdl [S×sn/cm2] | n2 | Rct [ohm×cm2] | Chi2 | |
---|---|---|---|---|---|---|---|---|
pH 4.3, Ni-Cr | ||||||||
Ni-Cr | 55.88 ± 0.45 | 5.90 × 10−5 ± 0.48 | 0.715 | - | - | - | 59.86 × 103 ± 2.49 | 1.5 × 10−3 |
Ni-Cr/Chit-ZrO2 | 17.22 ± 0.40 | 23.94 × 10−5 ± 9.60 | 0.708 | 37.46 ± 5.95 | 7.57 × 10−5 ± 0.44 | 0.826 | 104.90 × 103 ± 4.68 | 0.09 × 10−3 |
Ni-Cr/Chit- S1 | 22.93 ± 4.43 | 21.68 × 10−5 ± 2.7 | 0.540 | 27.24 ± 7.33 | 12.65 × 10−5 ± 3.6 | 0.730 | 128.63 × 103 ± 1.82 | 5.5 × 10−3 |
Ni-Cr/Chit- S2 | 28.71 ± 0.73 | 7.69 × 10−5 ± 0.65 | 0.789 | 104.50 ± 6.18 | 16.07 × 10−5 ± 9.37 | 0.616 | 153.29 × 103 ± 10.45 | 0.16 × 10−3 |
Ni-Cr/Chit- S3 | 26.16 ± 0.49 | 19.59 × 10−5 ± 10.18 | 0.702 | 78.79 ± 9.42 | 8.07 × 10−5 ± 0.66 | 0.779 | 103.59 × 103 ± 7.58 | 0.15 × 10−3 |
Ni-Cr/Chit- S4 | 24.6 ± 0.71 | 25.54 × 10−5 ± 1.82 | 0.679 | 47.98 ± 10.03 | 8.18 × 10−5 ± 0.422 | 0.792 | 185.50 × 103 ± 2.67 | 0.27 × 10−3 |
Ni-Cr/Chit- S5 | 20.43 ± 0.38 | 8.63 × 10−5 ± 0.44 | 0.779 | 69.79 ± 5.67 | 20.74 × 10−5 ± 6.77 | 0.682 | 136.7 × 103 ± 7.16 | 0.07 × 10−3 |
pH 5, Ni-Cr | ||||||||
Ni-Cr | 45.66 ± 0.71 | 7.86 × 10−5 ± 0.66 | 0.661 | - | - | - | 46.50 × 103 ± 3.54 | 2.5 × 10−3 |
Ni-Cr/Chit-ZrO2 | 18.16 ± 0.458 | 50.41 × 10−5 ± 10.86 | 0.600 | 31.76 ± 6.28 | 7.40 × 10−5 ± 0.36 | 0.834 | 76.10 × 103 ± 2.79 | 0.07 × 10−3 |
Ni-Cr/Chit- S1 | 22.97 ± 2.7 | 10.48 × 10−5 ± 2.3 | 0.672 | 20.70 ± 6.19 | 16.5 × 10−5 ± 2.35 | 0.580 | 147.69 × 103 ± 1.21 | 1.8 × 10−3 |
Ni-Cr/Chit- S2 | 17.38 ± 0.814 | 8.08 × 10−5 ± 0.69 | 0.764 | 57.53 × 103 ± 4.26 | 21.25 × 10−5 ± 13.14 | 0.629 | 148.9 × 103 ± 7.56 | 0.16 × 10−3 |
Ni-Cr/Chit- S3 | 19.61 ± 0.43 | 15.49 × 10−5 ± 6.85 | 0.714 | 89.7 ± 6.36 | 7.57 × 10−5 ± 0.54 | 0.791 | 225.90 × 103 ± 1.26 | 0.11 × 10−3 |
Ni-Cr/Chit- S4 | 19.18 ± 0.92 | 21.75 × 10−5 ± 2.11 | 0.668 | 41.06 ± 9.95 | 8.84 × 10−5 ± 0.51 | 0.771 | 169.5 × 103 ± 3.27 | 0.38 × 10−3 |
Ni-Cr/Chit- S5 | 15.59 ± 0.45 | 34.57 × 10−5 ± 9.02 | 0.672 | 52.07 ± 10.58 | 8.65 × 10−5 ± 0.73 | 0.789 | 108.1 × 103 ± 1.19 | 0.09 × 10-3 |
pH 6, Ni-Cr | ||||||||
Ni-Cr | 23.09 ± 0.59 | 7.98 × 10−5 ± 1.18 | 0.823 | - | - | - | 69.7 × 103 ± 9.40 | 1.2 × 10−3 |
Ni-Cr/Chit-ZrO2 | 23.14 ± 0.32 | 6.79 × 10−5 ± 0.34 | 0.828 | 51.72 ± 5.5 | 31.12 × 10−5 ± 7.3 | 0.657 | 76.3 × 103 ± 2.40 | 0.06 × 10−3 |
Ni-Cr/Chit- S1 | 40.09 ± 7.8 | 4.11 × 10−5 ± 0.31 | 0.727 | 11.31 ± 3.2 | 3.36 × 10−5 ± 9.5 | 0.700 | 137.5 × 103 ± 2.36 | 5.3 × 10−5 |
Ni-Cr/Chit- S2 | 48.62 ± 0.64 | 8.56 × 10−5 ± 0.56 | 0.777 | 76.1 ± 6.15 | 22.24 × 10−5 ± 1.32 | 0.575 | 84.7 × 103 ± 5.34 | 0.10 × 10−3 |
Ni-Cr/Chit- S3 | 39.98 ± 0.48 | 7.50 × 10−5 ± 0.53 | 0.814 | 70.1 ± 10.5 | 39.35 × 10−5 ± 1.27 | 0.612 | 138.0 × 103 ± 7.66 | 0.11 × 10−3 |
Ni-Cr/Chit- S4 | 35.66 ± 0.735 | 8.01 × 10−5 ± 0.65 | 0.799 | 43.65 ± 1.27 | 45.92 × 10−5 ± 2.19 | 0.583 | 92.9 × 103 ± 6.56 | 0.17 × 10−3 |
Ni-Cr/Chit- S5 | 33.44 ± 0.46 | 48.49 × 10−5 ± 9.69 | 0.588 | 77.58 ± 10.46 | 7.85 × 10−5 ± 0.82 | 0.852 | 112.9 × 103 ± 1.51 | 0.09 × 10−3 |
Rs [ohm×cm2] | Qlayer [S×sn/cm2] | n1 | Rlayer [ohm×cm2] | Qdl [S×sn/cm2] | n2 | Rct [ohm×cm2] | Chi2 | |
---|---|---|---|---|---|---|---|---|
pH 4.3, Co-Cr | ||||||||
Co-Cr | 30.21 ± 3.17 | 9.61 × 10−5 ± 2.39 | 0.729 | - | - | - | 29.06 × 103± 7.04 | 7.8 × 10−3 |
Co-Cr/Chit-ZrO2 | 16.91 ± 0.66 | 5.89 × 10−5 ± 2.66 | 0.918 | 46.69 × 103 ± 2.64 | 5.70 × 10−5± 4.14 | 0.877 | 68.4 × 103± 7.4 | 0.4 × 10−3 |
Co-Cr/Chit-S1 | 34.82 ± 2.6 | 12.6 × 10−5 ± 4.6 | 0.693 | 224.8× 103 ± 2.28 | 9.27 × 10−5± 7.8 | 0.897 | 136.4 × 103± 1.78 | 3.3 × 10−3 |
Co-Cr/Chit-S2 | 28.92 ± 1.00 | 13.72 × 10−5 ± 1.44 | 0.637 | 87.1 ± 6.47 | 7.88 × 10−5± 0.48 | 0.777 | 192.6 × 103± 3.15 | 0.93 × 10−3 |
Co-Cr/Chit-S3 | 25.07 ± 0.58 | 4.25 × 10−5 ± 8.32 | 0.815 | 75.64 × 103 ± 10.68 | 12.78 × 10−5± 1.99 | 0.945 | 329.7 × 103± 1.94 | 0.38 × 10−3 |
Co-Cr/Chit-S4 | 23.17 ± 0.58 | 4.34 × 10−5 ± 1.27 | 0.862 | 22.37 × 103 ± 6.47 | 16.47 × 10−5± 5.42 | 0.766 | 163.1 × 103± 9.66 | 0.34 × 10−3 |
Co-Cr/Chit-S5 | 23.36 ± 0.58 | 4.49 × 10−5 ± 4.31 | 0.825 | 17.61 × 103 ± 11.45 | 20.08 × 10−5± 1.64 | 0.811 | 151.6 × 103± 3.28 | 0.41× 10−3 |
pH 5, Co-Cr | ||||||||
Co-Cr | 35.75 ± 3.35 | 6.09 × 10−5 ± 2.42 | 0.760 | - | - | - | 12.24 × 103 ± 8.36 | 9.1 × 10−3 |
Co-Cr/Chit-ZrO2 | 19.98 ± 0.51 | 8.18 × 10−5 ± 4.23 | 0.870 | 7.43 × 103 ± 6.92 | 4.88× 10−5 ± 1.71 | 0.914 | 88.14 × 103 ± 1.68 | 0.2 × 10−3 |
Co-Cr/Chit-S1 | 24.83 ± 2.65 | 11.61 × 10−5 ± 6.33 | 0.834 | 5.11 × 103 ± 2.44 | 11.47 × 10−5 ± 6.5 | 0.698 | 164.2× 103 ± 1.48 | 2.4 × 10−3 |
Co-Cr/Chit-S2 | 18.44 ± 1.11 | 46.52 × 10−5 ± 2.20 | 0.980 | 5.18 × 103 ± 1.77 | 5.36 × 10−5 ± 2.40 | 0.717 | 120.2 × 103 ± 8.06 | 1.79 × 10−3 |
Co-Cr/Chit-S3 | 16.98 ± 0.84 | 5.02 × 10−5 ± 2.69 | 0.789 | 11.22 × 103 ± 10.65 | 16.89 × 10−5 ± 9.06 | 0.749 | 356.5 × 103 ± 3.51 | 0.53 × 10−3 |
Co-Cr/Chit-S4 | 17.66 ± 0.87 | 4.85 × 10−5 ± 10.49 | 0.829 | 12.09 × 103 ± 2.67 | 17.18 × 10−5 ± 2.89 | 0.829 | 188.44 × 103 ± 3.63 | 0.87× 10−3 |
Co-Cr/Chit-S5 | 16.03 ± 0.96 | 6.61 × 10−5 ± 3.96 | 0.843 | 19.76 × 103 ± 7.48 | 7.20 × 10−5 ± 3.5 | 0.854 | 434.2 × 103 ± 3.55 | 1.14 × 10−3 |
pH 6, Co-Cr | ||||||||
Co-Cr | 22.65 ± 1.87 | 8.645 × 10−5 ± 1.33 | 0.805 | - | - | - | 18.9 × 103 ± 8.14 | 3.4 × 10−3 |
Co-Cr/Chit-ZrO2 | 22.25 ±0.53 | 3.93 × 10−5 ±6.33 | 0.943 | 124.4 × 103 ± 10.87 | 9.52 × 10−5 ± 2.5 | 0.838 | 67.9 × 103 ± 3.42 | 0.3 × 10−3 |
Co-Cr/Chit-S1 | 33.16 ±1.38 | 7.04 × 10−5 ±8.02 | 0.803 | 4.97 × 103 ± 3.13 | 7.97 × 10−5 ± 8.1 | 0.772 | 143.2 × 103 ± 9.35 | 1.0 × 10−3 |
Co-Cr/Chit-S2 | 32.25 ± 0.82 | 6.31 × 10−5 ± 3.36 | 0.926 | 14.64 × 103 ± 9.66 | 10 × 10−5 ± 5.73 | 0.684 | 120.5 × 103 ± 8.29 | 0.65 × 10−3 |
Co-Cr/Chit-S3 | 61.21 ± 0.52 | 19.13 × 10−5 ± 5.52 | 0.752 | 148.5 × 103 ± 10.43 | 4.23 × 10−5 ± 1.26 | 0.858 | 112.8 × 103 ± 4.76 | 0.33 × 10−3 |
Co-Cr/Chit-S4 | 29.28 ± 0.62 | 13.98 × 10−5 ± 4.17 | 0.859 | 171.3 × 103 ± 2.86 | 4.07 × 10−5 ± 1.41 | 0.857 | 135.78 × 103 ± 2.66 | 0.25 × 10−3 |
Co-Cr/Chit-S5 | 34.50 ± 0.79 | 4.92 × 10−5 ± 7.43 | 0.851 | 19.45 × 103 ± 1.82 | 19.12 × 10−5 ± 2.53 | 0.832 | 180.02 × 103 ± 3.38 | 0.82 × 10−3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barabás, R.; Fort, C.I.; Turdean, G.L.; Bizo, L. Influence of HAP on the Morpho-Structural Properties and Corrosion Resistance of ZrO2-Based Composites for Biomedical Applications. Crystals 2021, 11, 202. https://doi.org/10.3390/cryst11020202
Barabás R, Fort CI, Turdean GL, Bizo L. Influence of HAP on the Morpho-Structural Properties and Corrosion Resistance of ZrO2-Based Composites for Biomedical Applications. Crystals. 2021; 11(2):202. https://doi.org/10.3390/cryst11020202
Chicago/Turabian StyleBarabás, Réka, Carmen Ioana Fort, Graziella Liana Turdean, and Liliana Bizo. 2021. "Influence of HAP on the Morpho-Structural Properties and Corrosion Resistance of ZrO2-Based Composites for Biomedical Applications" Crystals 11, no. 2: 202. https://doi.org/10.3390/cryst11020202
APA StyleBarabás, R., Fort, C. I., Turdean, G. L., & Bizo, L. (2021). Influence of HAP on the Morpho-Structural Properties and Corrosion Resistance of ZrO2-Based Composites for Biomedical Applications. Crystals, 11(2), 202. https://doi.org/10.3390/cryst11020202