P–V–T Equation of State of Iridium Up to 80 GPa and 3100 K
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Details
2.2. Computational Methods
3. Results
3.1. Experiments
3.2. Computer Simulations
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Monteseguro, V.; Sans, J.A.; Cuartero, V.; Cova, F.; Abrikosov, I.A.; Olovsson, W.; Popescu, C.; Pascarelli, S.; Garbarino, G.; Jönsson, H.J.M.; et al. Phase stability and electronic structure of iridium metal at the megabar range. Sci. Rep. 2019, 9, 8940. [Google Scholar] [CrossRef]
- Chulia-Jordan, R.; Santamaria-Perez, D.; Marqueno, T.; Ruiz-Fuertes, J.; Daisenberger, D. Oxidation of High Yield Strength Metals Tungsten and Rhenium in High-Pressure High-Temperature Experiments of Carbon Dioxide and Carbonates. Crystals 2019, 9, 676. [Google Scholar] [CrossRef] [Green Version]
- Errandonea, D. Observation of chemical reactions between alkaline-earth oxides and tungsten at high pressure and high temperature. J. Phys. Chem. Solids 2009, 70, 1117–1120. [Google Scholar] [CrossRef]
- Schock, R.; Johnson, K. Compression of iridium to 175 kbar. Fiz. Metal. Met. 1971, 31, 1100. [Google Scholar]
- Cerenius, Y.; Dubrovinsky, L. Compressibility measurements on iridium. J. Alloys Compd. 2000, 306, 26. [Google Scholar] [CrossRef]
- Burakovsky, L.; Burakovsky, N.; Cawkwell, M.; Preston, D.; Errandonea, D.; Simak, S. Ab initio phase diagram of iridium. Phys. Rev. B 2016, 94, 094112. [Google Scholar] [CrossRef] [Green Version]
- Dubrovinsky, L.; Dubrovinskaia, N.; Bykova, E.; Bykov, M.; Prakapenka, V.; Prescher, C.; Glazyrin, K.; Liermann, H.P.; Hanfland, M.; Ekholm, M.; et al. The most incompressible metal osmium at static pressure above 750 gigapascal. Nature 2015, 525, 226. [Google Scholar] [CrossRef] [PubMed]
- Tal, A.; Katsnelson, M.; Ekholm, M.; Jnsson, H.; Dubrovinsky, L.; Dubrovinskaia, N.; Abrikosov, I. Pressure-induced crossing of the core level in 5d metals. Phys. Rev. B 2016, 93, 205150. [Google Scholar] [CrossRef] [Green Version]
- Anzellini, S.; Kleppe, A.; Daisenberger, D.; Wharmby, M.; Giampaoli, R.; Boccato, S.; Baron, M.; Miozzi, F.; Keeble, D.; Ross, A.; et al. Laser-heating system for high-pressure X-ray diffraction at the extreme condition beamline I15 at Diamond Light Source. J. Synchrotron Radiat. 2018, 25. [Google Scholar] [CrossRef]
- Anzellini, S.; Boccato, S. A Practical Review of the Laser-Heated Diamond Anvil Cell for University Laboratories and Synchrotron Applications. Crystals 2020, 10, 459. [Google Scholar] [CrossRef]
- Benedetti, L.; Loubeyre, P. Temperature gradients, wavelength-dependent emissivity, and accuracy of high and very-high temperatures measured in the laser-heated diamond cell. High Press. Res. 2004, 24, 423–445. [Google Scholar] [CrossRef]
- Dorogokupets, P.I.; Oganov, A.R. Ruby, metals, and MgO as alternative pressure scales: A semiempirical description of shock-wave, ultrasonic, X-ray, and thermochemical data at high temperatures and pressures. Phys. Rev. B 2007, 75, 024115. [Google Scholar] [CrossRef]
- Anzellini, S.; Monteseguro, V.; Bandiello, E.; Dewaele, A.; Burakovsky, L.; Errandonea, D. In situ characterization of the high pressure- high temperature meltig curve of platinum. Sci. Rep. 2019, 9, 13034. [Google Scholar] [CrossRef] [Green Version]
- Prescher, C.; Prakapenka, V. DIOPTAS: A program for reduction of two-dimensional X-ray diffraction data and data exploration. High Press. Res. 2015, 35, 223. [Google Scholar] [CrossRef]
- Coelho, A. TOPAS and TOPAS-Academic: An optimization program integrating computer algebra and crystallographic object written in C++. J. Appl. Crystallogr. 2018, 51, 210. [Google Scholar] [CrossRef] [Green Version]
- Angel, R.J.; Gonzalez-platas, J.; Alvaro, M. EosFit7c and a Fortran module (library) for equation of state calculations. Z. Kristallogr. 2014, 229, 405–419. [Google Scholar] [CrossRef]
- Grabowski, B.; Wippermann, S.; Glensk, A.; Hickel, T.; Neugebauer, J. Random phase approximation up to the melting point: Impact of anharmonicity and nonlocal many-body effects on the thermodynamics of Au. Phys. Rev. B 2015, 91, 201103. [Google Scholar] [CrossRef] [Green Version]
- Hrubiak, R.; Meng, Y.; Shen, G. Microstructures define melting of molybdenum at high pressure. Nat. Commun. 2017, 8, 14562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burakovsky, L.; Cawkwell, M.; Preston, D.; Errandonea, D.; Simal, S. Recent ab initio phase diagram studies: Iridium. J. Phys. Conf. Ser. 2017, 950, 042021. [Google Scholar] [CrossRef]
- Sukhomlinov, S.; Müser, M. A mixed radial, angular, three-body distribution function as a tool for local structure characterization: Application to single-component structures. J. Chem. Phys. 2020, 152, 194502. [Google Scholar] [CrossRef]
- Kimura, T.; Ohfuji, H.; Nishi, M.; Irifune, T. Melting temperatures of MgO under high pressure by micro-texture analysis. Nat. Commun. 2017, 8, 15735. [Google Scholar] [CrossRef] [Green Version]
- Yusenko, K.; Khandarkhaeva, S.; Fedotenko, T.; Pakhomova, A.; Gromilov, S.; Dubrovinsky, L.; Dubrovinskaia, N. Equations of state of rhodium, iridium and their alloys up to 70 GPa. J. Alloys Compd. 2019, 788, 212. [Google Scholar] [CrossRef] [Green Version]
- Cynn, H.; Klepeis, J.E.; Yoo, C.S.; Young, D.A. Osmium has the Lowest Experimentally Determined Compressibility. Phys. Rev. Lett. 2002, 88, 676. [Google Scholar] [CrossRef] [Green Version]
- Halvorson, J.J.; Wimber, R.T. Thermal Expansion of Iridium at High Temperatures. J. Appl. Phys. 1972, 43, 2519–2522. [Google Scholar] [CrossRef]
- Birch, F. Elasticity and constitution of the Earth’s interior. J. Geophys. Res. 1952, 57, 227–286. [Google Scholar] [CrossRef]
- Arblaster, J. Crystallographic properties of iridium. Platin. Met. Rev. 2010, 54, 93. [Google Scholar] [CrossRef]
- Anzellini, S.; Errandonea, D.; MacLeod, S.; Botella, P.; Daisenberger, D.; DeAth, J.; Gonzalez-Platas, J.; Ibanez, J.; McMahon, M.; Munro, K.; et al. Phase diagram of calcium at high pressure and high temperature. Phys. Rev. Mater. 2018, 2, 083608. [Google Scholar] [CrossRef]
- Grussendorff, S.; Chetty, N.; Dreysse, H. Theoretical studies of iridium under pressure. J. Phys. Condens. Matter 2003, 15, 4217. [Google Scholar] [CrossRef]
- Fang, H.; Liu, B.; Gu, M.; Liu, X.; Huang, S.; Ni, C.; Wang, R. High-pressure lattice dynamic and thermodynamic properties of Ir by first-principles calculations. Physica B 2010, 405, 732. [Google Scholar] [CrossRef]
- Gheribi, A.E.; Roussel, J.M.; Rogez, J. Phenomenological Hugoniot curves for transition metals up to 1 TPa. J. Phys. Condens. Matter 2010, 19, 476218. [Google Scholar] [CrossRef]
- Sokolova, T.S.; Dorogokupets, P.I.; Dymshits, A.M.; Danilov, B.S.; Litasov, K.D. Microsoft excel spreadsheets for calculation of P–V–T relations and thermodynamic properties from equations of state of MgO, diamond and nine metals as pressure markers in high-pressure and high-temperature experiments. Comput. Geosci. 2016, 94, 162–169. [Google Scholar] [CrossRef]
- Takemura, K. Bulk modulus of osmium: High-pressure powder X-ray diffraction experiments under quasihydrostatic conditions. Phys. Rev. B 2004, 70, 012101. [Google Scholar]
- Anzellini, S.; Errandonea, D.; Cazorla, C.; MacLeod, S.; Monteseguro, V.; Boccato, S.; Bandiello, E.; Anichtchenko, D.D.; Popescu, C.; Beavers, C. Thermal equation of state of ruthenium characterized by resistively heated diamond anvil cell. Sci. Rep. 2020, 10, 7092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dewaele, A.; Loubeyre, P.; Mezouar, M. Equations of state of six metals above 94 GPa. Phys. Rev. B 2004, 094112, 1–8. [Google Scholar]
- Anzellini, S.; Dewaele, A.; Occelli, F.; Loubeyre, P.; Mezouar, M. Equation of state of rhenium and application for ultra high pressure calibration. J. Appl. Phys. 2014, 115, 043511. [Google Scholar] [CrossRef]
- Errandonea, D.; Burakovsky, L.; Preston, D.E.A. Experimental and theoretical confirmation of an orthorhombic phase transition in niobium at high pressure and temperature. Commun. Mater. 2020, 1, 60. [Google Scholar] [CrossRef]
- Weck, G.; Recoules, V.; Queyroux, J.; Datch, F.; Bouchet, J.; Ninet, S.; Garbarino, G.; Mezouar, M.; Loubeyre, P. Determination of the melting curve of gold up to 110 GPa. Phys. Rev. B 2020, 101, 014106. [Google Scholar] [CrossRef] [Green Version]
- Dewaele, A.; Mezouar, M.; Guignot, N.; Loubeyre, P. Melting of lead under high pressure studied using second-scale time-resolved X-ray diffraction. Phys. Rev. Condens. Matter Mater. Phys. 2007, 76, 1–5. [Google Scholar] [CrossRef]
- Dorogokupets, P.I.; Dewaele, A. Equations of state of MgO, Au, Pt, NaCl-B1, and NaCl-B2: Internally consistent high-temperature pressure scales. High Press. Res. 2007, 27, 431–446. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, J.; Xu, H.; Lin, Z.; Daemen, L.L.; Zhao, Y.; Wang, L. Thermal equation of state of copper studied by high P-T synchrotron X-ray diffraction. Appl. Phys. Lett. 2009, 94, 071904. [Google Scholar] [CrossRef]
- Zha, C.S.; Mibe, K.; Bassett, W.A.; Tschauner, O.; Mao, H.K.; Hemley, R.J. P-V-T equation of state of platinum to 80 GPa and 1900 K from internal resistive heating/X-ray diffraction measurements. J. Appl. Phys. 2008, 103, 054908. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anzellini, S.; Burakovsky, L.; Turnbull, R.; Bandiello, E.; Errandonea, D. P–V–T Equation of State of Iridium Up to 80 GPa and 3100 K. Crystals 2021, 11, 452. https://doi.org/10.3390/cryst11040452
Anzellini S, Burakovsky L, Turnbull R, Bandiello E, Errandonea D. P–V–T Equation of State of Iridium Up to 80 GPa and 3100 K. Crystals. 2021; 11(4):452. https://doi.org/10.3390/cryst11040452
Chicago/Turabian StyleAnzellini, Simone, Leonid Burakovsky, Robin Turnbull, Enrico Bandiello, and Daniel Errandonea. 2021. "P–V–T Equation of State of Iridium Up to 80 GPa and 3100 K" Crystals 11, no. 4: 452. https://doi.org/10.3390/cryst11040452
APA StyleAnzellini, S., Burakovsky, L., Turnbull, R., Bandiello, E., & Errandonea, D. (2021). P–V–T Equation of State of Iridium Up to 80 GPa and 3100 K. Crystals, 11(4), 452. https://doi.org/10.3390/cryst11040452