Ab Initio Phase Diagram of Copper
Abstract
:1. Introduction
2. Equations of State
3. Melting Curves
4. fcc-bcc Solid-Solid Phase Transition Boundary
4.1. Theoretical Estimate of the Initial Slope
4.2. Inverse-Z Simulations
5. Ab Initio Phase Diagram of Copper
6. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meyers, M.A.; Gregori, F.; Kad, B.K.; Schneider, M.S.; Kalantar, D.H.; Remington, B.A.; Ravichandran, G.; Boehly, T.; Wark, J.S. Laser-induced shock compression of monocrystalline copper: Characterization and analysis. Acta Mater. 2003, 51, 1211–1228. [Google Scholar] [CrossRef]
- Murphy, W.J.; Higginbotham, A.; Kimminau, G.; Barbrel, B.; Bringa, E.M.; Hawreliak, J.; Kodama, R.; Koenig, M.; McBarron, W.; Meyers, M.A.; et al. The strength of single crystal copper under uniaxial shock compression at 100 GPa. J. Phys. Cond. Mat. 2010, 22, 065404. [Google Scholar] [CrossRef] [PubMed]
- Kraus, R.G.; Davis, J.P.; Seagle, C.T.; Fratuono, D.E.; Swift, D.C.; Brown, J.L.; Eggert, J.H. Dynamic compression of copper to over 450 GPa: A high-pressure standard. Phys. Rev. B 2016, 93, 134105. [Google Scholar] [CrossRef] [Green Version]
- Bell, P.M.; Xu, J.A.; Mao, H.K. Static compression of gold and copper and calibration of the ruby pressure scale to pressures to 1.8 megabars (static. RNO). In Shock Waves in Condensed Matter; Springer: Boston, MA, USA, 1986; pp. 125–130. [Google Scholar]
- Hayes, D.; Hixson, R.S.; McQueen, R.G. High pressure elastic properties, solid–liquid phase boundary and liquid equation of state from release wave measurements in shock-loaded copper. AIP Conf. Proc. 2000, 505, 483. [Google Scholar]
- Fratanduono, D.E.; Smith, R.F.; Ali, S.J.; Braun, D.G.; Fernandez-Pañella, A.; Zhang, S.; Kraus, R.G.; Coppari, F.; McNaney, J.M.; Marshall, M.C.; et al. Probing the solid phase of noble metal copper at terapascal conditions. Phys. Rev. Lett. 2020, 124, 015701. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.G.; Šob, M. Structural stability of higher-energy phases and its relation to the atomic configurations of extended defects: The example of Cu. Phys. Rev. B 1999, 60, 844. [Google Scholar] [CrossRef]
- Friedel, J. On the stability of the body centred cubic phase in metals at high temperatures. J. Physique Lett. 1974, 35, 59–63. [Google Scholar] [CrossRef]
- Anupam, N.; Mitra, N. A metastable phase of shocked bulk single crystal copper: An atomistic simulation study. Sci. Rep. 2017, 7, 7337. [Google Scholar]
- Sims, M.; Briggs, R.; Coppari, F.; Coleman, A.L.; Gorman, M.G.; Panella-Fernandez, A.; Smith, R.F.; Eggert, J.H.; Wicks, J.K. Copper phase determination to 290 GPa using laser-shock compression. In Proceedings of the 2019 COMPRES Annual Meeting, Big Sky Resort, Big Sky, MT, USA, 2–5 August 2019. [Google Scholar]
- Sharma, S.M.; Turneaure, S.J.; Winey, J.M.; Gupta, Y.M. Transformation of shock-compressed copper to the body-centered-cubic structure at 180 GPa. Phys. Rev. B 2020, 102, 020103. [Google Scholar] [CrossRef]
- Mei, W.; Wen, Y.; Xing, H.; Ou, P.; Sun, J. Ab initio calculations of mechanical stability of bcc Cu under pressure. Solid State Commun. 2014, 184, 25. [Google Scholar] [CrossRef]
- Xiong, Q.; Kitamura, T.; Li, Z. Transient phase transitions in single-crystal coppers under ultrafast lasers induced shock compression: A molecular dynamics study. J. Appl. Phys. 2019, 125, 194302. [Google Scholar] [CrossRef]
- Greeff, C.W.; Boettger, J.C.; Graf, M.J.; Johnson, J.D. Theoretical investigation of the Cu EOS standard. J. Phys. Chem. Solids 2006, 67, 2033. [Google Scholar] [CrossRef]
- Errandonea, D.; Burakovsky, L.; Preston, D.L.; MacLeod, S.G.; Santamaría-Perez, D.; Chen, S.; Cynn, H.; Simak, S.I.; McMahon, M.I.; Proctor, J.E.; et al. Experimental and theoretical confirmation of an orthorhombic phase transition in niobium at high pressure and temperature. Commun. Mater. 2020, 1, 60. [Google Scholar] [CrossRef]
- Bolesta, A.V.; Fomin, V.M. Molecular dynamics simulation of shock-wave loading of copper and titanium. AIP Conf. Proc. 2017, 1893, 020008. [Google Scholar]
- Bolesta, A.V.; Fomin, V.M. Molecular dynamics simulations of polycrystalline copper. J. Appl. Mech. Tech. Phys. 2014, 55, 800. [Google Scholar] [CrossRef]
- Smirnov, N.A. Relative stability of Cu, Ag, and Pt at high pressures and temperatures from ab initio calculations. Phys. Rev. B 2021, 103, 064107. [Google Scholar] [CrossRef]
- Wallace, D.C. Statistical Physics of Crystals and Liquids; World Scientific: Singapore, 2002; p. 191. [Google Scholar]
- Dewaele, A.; Loubeyre, P.; Mezouar, M. Equations of state of six metals above 94 GPa. Phys. Rev. B 2004, 70, 094112. [Google Scholar] [CrossRef] [Green Version]
- Zinov’ev, V.E. Handbook of Thermophysical Properties of Metals at High Temperatures; Nova Science Publishers: New York, NY, USA, 1996; p. 95. [Google Scholar]
- Burakovsky, L.; Chen, S.P.; Preston, D.L.; Sheppard, D.G. Z methodology for phase diagram studies: Platinum and tantalum as examples. J. Phys. Conf. Ser. 2014, 500, 162001. [Google Scholar] [CrossRef] [Green Version]
- Burakovsky, L.; Burakovsky, N.; Preston, D.L. Ab initio melting curve of osmium. Phys. Rev. B 2015, 92, 174105. [Google Scholar] [CrossRef] [Green Version]
- Belonoshko, A.B.; Skorodumova, N.V.; Rosengren, A.; Johansson, B. Melting and critical superheating. Phys. Rev. B 2006, 73, 012201. [Google Scholar] [CrossRef]
- Brand, H.; Dobson, D.P.; Vočadlo, L.; Wood, I.G. Melting curve of copper measured to 16 GPa using a multi-anvil press. High Pres. Res. 2006, 26, 185. [Google Scholar] [CrossRef]
- Errandonea, D. The melting curve of ten metals up to 12 GPa and 1600 K. J. Appl. Phys. 2010, 108, 033517. [Google Scholar] [CrossRef]
- Butuzov, V.P. The investigation of phase transformations as superhigh pressures. Kristallografiya 1957, 2, 536. [Google Scholar]
- Mitra, N.R.; Decker, D.L.; Vanfleet, H.B. Melting Curves of Copper, Silver, Gold, and Platinum to 70 kbar. Phys. Rev. 1967, 161, 613. [Google Scholar] [CrossRef]
- Mirwald, P.; Kennedy, G.C. The melting curve of gold, silver, and copper to 60-kbar pressure: A reinvestigation. J. Geophys. Res. 1979, 84, 6750. [Google Scholar] [CrossRef]
- Errandonea, D. High-pressure melting curves of the transition metals Cu, Ni, Pd, and Pt. Phys. Rev. B 2013, 87, 054108. [Google Scholar] [CrossRef]
- Cohen, L.M.; Klement, W.; Kennedy, G.C. Melting of Copper, Silver, and Gold at High Pressures. Phys. Rev. 1966, 145, 519. [Google Scholar] [CrossRef]
- Akella, J.; Kennedy, G.C. Melting of Gold, Silver, and Copper - Proposal for a New High-Pressure Calibration Scale. J. Geophys. Res. 1971, 76, 4969. [Google Scholar] [CrossRef]
- Górecki, T. Vacancies and a generalised melting curve of metals. High Temp. High Press. 1979, 11, 683. [Google Scholar]
- Tam, P.D.; Tan, P.D.; Hoc, N.Q.; Phong, P.D. Melting of matals copper, silver and gold under pressure. Proc. Nat. Conf. Theor. Phys. 2010, 35, 148. [Google Scholar]
- Tam, P.D.; Hoc, N.Q.; Tinh, B.D.; Tan, P.D. Melting curve of metals Cu, Ag and Au under pressure. Mod. Phys. Lett. B 2016, 30, 1550273. [Google Scholar] [CrossRef]
- Vočadlo, L.; Alfè, D.; Price, G.D.; Gillan, M.J. Ab initio melting curve of copper by the phase coexistence approach. J. Chem. Phys. 2004, 120, 2872. [Google Scholar] [CrossRef] [PubMed]
- Mazhukin, V.I.; Demin, M.M.; Aleksashkina, A.A. Atomistic modeling of thermophysical properties of copper in the region of the melting point. Math. Montisnigri 2018, 41, 99. [Google Scholar]
- Belonoshko, A.B.; Ahuja, R.; Eriksson, O.; Johansson, B. Quasi ab initio molecular dynamic study of Cu melting. Phys. Rev. B 2000, 61, 3838. [Google Scholar] [CrossRef]
- Ghosh, K. Melting curve of metals using classical molecular dynamics simulations. J. Phys. Conf. Ser. 2012, 377, 012085. [Google Scholar] [CrossRef] [Green Version]
- Pu, C.; Yang, X.; Xiao, D.; Cheng, J. Molecular dynamics simulations of shock melting in single crystal Al and Cu along the principle Hugoniot. Mater. Today Commun. 2021, 26, 101990. [Google Scholar] [CrossRef]
- Cahill, J.A.; Kirshenbaum, A.D. The density of liquid copper from its melting point (1356 ∘K) to 2500 ∘K. Furthermore, an estimate of its critical constants. J. Phys. Chem. 1962, 66, 1080. [Google Scholar] [CrossRef]
- Blumm, J.; Henderson, J.B. Measurement of the volumetric expansion and bulk density of metals in the solid and molten regions. High Temp. High Press. 2000, 32, 109. [Google Scholar] [CrossRef]
- Tan, H.; Dai, C.D.; Zhang, L.Y.; Xu, C.H. Method to determine the melting temperatures of metals under megabar shock pressures. Appl. Phys. Lett. 2005, 87, 221905. [Google Scholar] [CrossRef]
- Kinslow, R. (Ed.) High-Velocity Impact Phenomena; Academic Press: New York, NY, USA, 1970; p. 532. [Google Scholar]
- Japel, S.; Schwager, B.; Boehler, R.; Ross, M. Melting of copper and nickel at high rressure: The role of d electrons. Phys. Rev. Lett. 2005, 95, 167801. [Google Scholar] [CrossRef]
- Moriarty, J.A. High-pressure ion-thermal properties of metals from ab initio interatomic potentials. In Shock Waves in Condensed Matter, Gupta, Y.M., Ed.; Plenum Press: New York, NY, USA, 1986. [Google Scholar]
- Zhang, B.; Wang, B.; Liu, Q. Melting curves of Cu, Pt, Pd and Au under high pressures. Int. J. Mod. Phys. B 2016, 30, 1650013. [Google Scholar] [CrossRef]
- Bringa, E.M.; Cazamias, J.U.; Erhart, P.; Stölken, J.; Tanushev, N.; Wirth, B.D.; Rudd, R.E.; Caturla, M.J. Atomistic shock Hugoniot simulation of single-crystal copper. J. Appl. Phys. 2004, 96, 3793. [Google Scholar] [CrossRef] [Green Version]
- Gubin, S.A.; Maklashova, I.V.; Mel’nikov, I.N. The Hugoniot adiabat of crystalline copper based on molecular dynamics simulation and semiempirical equation of state. J. Phys. Conf. Ser. 2018, 946, 012098. [Google Scholar] [CrossRef]
- Johnson, J.D. The features of the principal Hugoniot. AIP Conf. Proc. 1998, 429, 27. [Google Scholar]
Lattice Constant (Å) | Density (g/cm) | (GPa) | from (1), (2) | (K) | (K) |
---|---|---|---|---|---|
3.71 | 8.2657 | −1.20 | −1.453 | 1280 | 125.0 |
3.51 | 9.7607 | 26.5 | 26.45 | 2220 | 125.0 |
3.31 | 11.639 | 87.4 | 87.35 | 3620 | 250.0 |
3.21 | 12.761 | 140 | 140.5 | 4570 | 250.0 |
3.11 | 14.032 | 218 | 218.5 | 5780 | 312.5 |
3.01 | 15.478 | 333 | 332.9 | 7230 | 375.0 |
Lattice Constant (Å) | Density (g/cm) | (GPa) | from (1), (2) | (K) | (K) |
---|---|---|---|---|---|
2.95 | 8.2205 | 1.42 | 1.363 | 1290 | 125.0 |
2.80 | 9.6138 | 27.8 | 27.78 | 2070 | 125.0 |
2.65 | 11.341 | 85.9 | 85.97 | 3640 | 250.0 |
2.49 | 13.670 | 220 | 219.8 | 6880 | 250.0 |
2.42 | 14.891 | 320 | 320.2 | 9110 | 312.5 |
2.35 | 16.262 | 462 | 461.8 | 12,130 | 375.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baty, S.R.; Burakovsky, L.; Errandonea, D. Ab Initio Phase Diagram of Copper. Crystals 2021, 11, 537. https://doi.org/10.3390/cryst11050537
Baty SR, Burakovsky L, Errandonea D. Ab Initio Phase Diagram of Copper. Crystals. 2021; 11(5):537. https://doi.org/10.3390/cryst11050537
Chicago/Turabian StyleBaty, Samuel R., Leonid Burakovsky, and Daniel Errandonea. 2021. "Ab Initio Phase Diagram of Copper" Crystals 11, no. 5: 537. https://doi.org/10.3390/cryst11050537
APA StyleBaty, S. R., Burakovsky, L., & Errandonea, D. (2021). Ab Initio Phase Diagram of Copper. Crystals, 11(5), 537. https://doi.org/10.3390/cryst11050537