Calcite Nanocrystals Investigated Using X-ray Absorption Spectroscopy
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Crystal Structure of Calcite Nanocrystals
3.2. Particle Size and Shape Investigations
3.3. Atomic Structure
3.4. Electronic Structure
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xie, J.; Ping, H.; Tan, T.; Lei, L.; Xie, H.; Yang, X.-Y.; Fu, Z. Bioprocess-inspired fabrication of materials with new structures and functions. Prog. Mater. Sci. 2019, 105, 100571. [Google Scholar] [CrossRef]
- Carniato, F.; Gatti, G.; Bisio, C. An overview of the recent synthesis and functionalization methods of saponite clay. New J. Chem. 2020, 44, 9969–9980. [Google Scholar] [CrossRef]
- Krajewska, B. Urease-aided calcium carbonate mineralization for engineering applications: A review. J. Adv. Res. 2018, 13, 59–67. [Google Scholar] [CrossRef]
- Jones, B. Review of aragonite and calcite crystal morphogenesis in thermal spring systems. Sediment. Geol. 2017, 354, 9–23. [Google Scholar] [CrossRef]
- Aquilano, D.; Bruno, M.; Pastero, L. Impurity effects on habit change and polymorphic transitions in the system: Aragonite–Calcite–Vaterite. Cryst. Growth Des. 2020, 20, 2497–2507. [Google Scholar] [CrossRef]
- Toffolo, M.B.; Ricci, G.; Caneve, L.; Kaplan-Ashiri, I. Luminescence reveals variations in local structural order of calcium carbonate polymorphs formed by different mechanisms. Sci. Rep. 2019, 9, 16170. [Google Scholar] [CrossRef]
- Palmqvist, N.G.M.; Nedelec, J.-M.; Seisenbaeva, G.A.; Kessler, V.G. Controlling nucleation and growth of nano-CaCO3 via CO2 sequestration by a calcium alkoxide solution to produce nanocomposites for drug delivery applications. Acta Biomateri-Alia 2017, 57, 426–434. [Google Scholar] [CrossRef] [PubMed]
- Oiso, T.; Yamanaka, S. Template-free synthesis and particle size control of mesoporous calcium carbonate. Adv. Powder Technol. 2018, 29, 606–610. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, M.R.; Sand, K.K.; Rodriguez-Blanco, J.D.; Bovet, N.; Generosi, J.; Dalby, K.N.; Stipp, S.L.S. Inhibition of Calcite Growth: Combined Effects of Mg2+and SO42−. Cryst. Growth Des. 2016, 16, 6199–6207. [Google Scholar] [CrossRef]
- Dobberschutz, S.; Nielson, M.R.; Sand, K.K.; Civioic, R.; Bovet, N.; Stip, S.L.S.; Andersson, M.P. the mechanisms of crystal growth inhibition by organic and inorganic inhibitors. Nat. Commun. 2018, 9, 1578. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Navarro, C.; Cara, A.B.; Elert, K.; Putnis, C.V.; Ruiz-Agudo, E. Direct Nanoscale Imaging Reveals the Growth of Calcite Crystals via Amorphous Nanoparticles. Cryst. Growth Des. 2016, 16, 1850–1860. [Google Scholar] [CrossRef]
- Teir, S.; Eloneva, S.; Fogelholm, C.-J.; Zevenhoven, R. Stability of calcium carbonate and magnesium carbonate in rainwater and nitric acid solutions. Energy Convers. Manag. 2006, 47, 3059–3068. [Google Scholar] [CrossRef]
- Chen, X.; Achal, V. Effect of simulated acid rain on the stability of calcium carbonate immobilized by microbial carbonate precipitation. J. Environ. Manag. 2020, 264, 110419. [Google Scholar] [CrossRef]
- Bushuev, Y.G.; Finney, A.R.; Rodger, P.M. Stability and structure of hydrated amorphous calcium carbonate. Cryst. Growth Des. 2015, 15, 5269–5279. [Google Scholar] [CrossRef]
- Tsao, C.; Yu, P.T.; Lo, C.H.; Chang, C.K.; Wang, C.H.; Yang, Y.W.; Chan, J.C.C. Anhydrous amorphous calcium carbonate (ACC) is structurally different from the transient phase of biogenic ACC. Chem. Comm. 2019, 55, 6946–6949. [Google Scholar] [CrossRef]
- Sarkar, A.; Mahapatra, S. Synthesis of all crystalline phases of anhydrous calcium carbonate. Cryst. Growth Des. 2010, 10, 2129–2135. [Google Scholar] [CrossRef]
- Zou, Z.; Habraken, W.J.E.M.; Matveeva, G.; Jensen, A.C.S.; Bertinetti, L.; Hood, M.A.; Sun, C.-Y.; Gilbert, P.U.P.A.; Polishchuk, I.; Pokroy, B.; et al. A hydrated crystalline calcium carbonate phase: Calcium carbonate hemihydrate. Science 2019, 363, 396–400. [Google Scholar] [CrossRef] [PubMed]
- Grocholski, B. Hydrous CaCO3 gets a new structure. Science 2019, 363, 360. [Google Scholar] [CrossRef]
- Singh, J.P.; Ji, M.-J.; Shim, C.-H.; Kim, S.O.; Chae, K.H. Effect of precursor thermal history on the formation of amorphous and crystalline calcium carbonate. Particuology 2017, 33, 29–34. [Google Scholar] [CrossRef]
- Jimoh, O.A.; Ariffin, K.S.; Bin Hussin, H.; Temitope, A.E. Synthesis of precipitated calcium carbonate: A review. Carbonates Evaporites 2018, 33, 331–346. [Google Scholar] [CrossRef]
- Lam, R.S.K.; Charnock, J.M.; Lennie, A.; Meldrum, F.C. Synthesis-dependant structural variations in amorphous calcium carbonate. CrystEngComm 2007, 9, 1226–1236. [Google Scholar] [CrossRef]
- Loste, E.; Díaz-Martí, E.; Zarbakhsh, A.; Meldrum, F.C. Study of Calcium Carbonate Precipitation under a Series of Fatty Acid Langmuir Monolayers Using Brewster Angle Microscopy. Langmuir 2003, 19, 2830–2837. [Google Scholar] [CrossRef]
- Gomari, K.R.; Hamouda, A. Effect of fatty acids, water composition and pH on the wettability alteration of calcite surface. J. Pet. Sci. Eng. 2006, 50, 140–150. [Google Scholar] [CrossRef]
- Cooke, D.J.; Gray, R.J.; Sand, K.K.; Stipp, S.L.S.; Elliott, J.A. Interaction of ethanol and water with the {1014} surface of calcite. Langmuir 2010, 26, 14520–14529. [Google Scholar] [CrossRef]
- Bovet, N.; Yang, M.; Javadi, M.S.; Stipp, S.L.S. Interaction of alcohols with the calcite surface. Phys. Chem. Chem. Phys. 2014, 17, 3490–3496. [Google Scholar] [CrossRef]
- Rao, A.; Kumar, S.; Annink, C.; Le-Anh, D.; Ayirala, S.C.; Alotaibi, M.B.; Siretanu, I.; Duits, M.H.; Yousef, A.A.; Mugele, F. Mineral Interfaces and Oil Recovery: A Microscopic View on Surface Reconstruction, Organic Modification, and Wettability Alteration of Carbonates. Energy Fuels 2020, 34, 5611–5622. [Google Scholar] [CrossRef]
- Kellermeier, M.; Melero-García, E.; Glaab, F.; Klein, R.; Drechsler, M.; Rachel, R.; García-Ruiz, J.M.; Kunz, W.; García-Ruiz, J.M. Stabilization of Amorphous Calcium Carbonate in Inorganic Silica-Rich Environments. J. Am. Chem. Soc. 2010, 132, 17859–17866. [Google Scholar] [CrossRef]
- Bodnarchuk, M.S.; Heyes, D.M.; Breakspear, A.; Chahine, S.; Edwards, S.; Dini, D. Response of calcium carbonate nanopar-ticles in hydrophobic solvent to pressure, temperature, and water. J. Phys. Chem. C 2015, 119, 16879–16888. [Google Scholar] [CrossRef] [Green Version]
- He, H.; Yang, J.; Huang, W.; Cheng, M. Influence of Nano-Calcium Carbonate Particles on the Moisture Absorption and Mechanical Properties of Epoxy Nanocomposite. Adv. Polym. Technol. 2018, 37, 1022–1027. [Google Scholar] [CrossRef]
- Baltrusaitis, J.; Grassiana, V.H. Calcite (101¯4) surface in humid environments. Surf. Sci. 2009, 603, L99–L104. [Google Scholar] [CrossRef]
- Ramakrishna, C.; Thenepalli, T.; Ahn, J.W. Evaluation of Various Synthesis Methods for Calcite-Precipitated Calcium Car-bonate (PCC) Formation. Korean Chem. Eng. Res. 2017, 55, 279–286. [Google Scholar]
- Sun, J.; Wu, Z.; Cheng, H.; Zhang, Z.; Frost, R.L. A Raman spectroscopic comparison of calcite and dolomite. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 117, 158–162. [Google Scholar] [CrossRef] [Green Version]
- Avaro, J.; Moon, E.M.; Rose, J.; Rose, A.L. Calcium coordination environment in precursor species to calcium carbonate mineral formation. Geochim. Cosmochim. Acta 2019, 259, 344–357. [Google Scholar] [CrossRef]
- Sowrey, F.E.; Skipper, L.J.; Pickup, D.M.; Drake, K.O.; Lin, Z.; Smith, M.E.; Newport, R.J. Systematic empirical analysis of calcium–oxygen coordination environment by calcium K-edge XANES. Phys. Chem. Chem. Phys. 2004, 6, 188–192. [Google Scholar] [CrossRef] [Green Version]
- Pennington, W.T. DIAMOND—Visual crystal structure information system. J. Appl. Crystallogr. 1999, 32, 1028–1029. [Google Scholar] [CrossRef] [Green Version]
- Toby, B.H. EXPGUI, a graphical user interface for GSAS. J. Appl. Crystallogr. 2001, 34, 210–213. [Google Scholar] [CrossRef] [Green Version]
- Lee, I.J.; Yu, C.J.; Yun, Y.D.; Lee, C.S.; Seo, I.D.; Kim, H.Y.; Lee, W.W.; Chae, K.H. Construction of X-ray scattering and X-ray absorption fine structure beamline at the Pohang Light Source. Rev. Sci. Instrum. 2010, 81, 026103. [Google Scholar] [CrossRef]
- Singh, J.P.; Lim, W.C.; Won, S.O.; Kim, S.O.; Chae, K.H. Synthesis and Local Electronic Structure of Calcite Nanoparticles. J. Nanosci. Nanotechnol. 2016, 16, 11429–11433. [Google Scholar] [CrossRef]
- Graf, D.L. Crystallographic tables for the rhombohedral carbonates. Am. Mineral. 1961, 46, 1283–1316. [Google Scholar]
- Khaenamkaew, P.; Manop, D.; Tanghengjaroen, C.; Na Ayuthaya, W.P. Effect of Temperature Treatment on Electrical Property, Crystal Structures and Lattice Strains of Precipitated CaCO3 Nanoparticles. Mater. Res. 2019, 22, 20190461. [Google Scholar] [CrossRef]
- Dufresne, W.J.B.; Rufledt, C.J.; Marshall, C.P. Raman spectroscopy of the eight natural carbonate minerals of calcite structure. J. Raman. Spectroscopy. 2018, 49, 1999–2007. [Google Scholar] [CrossRef]
- Krishnamurti, D. The Raman spectrum of calcite and its interpretation. Proc. Math. Sci. 1957, 46, 183–202. [Google Scholar] [CrossRef]
- Anderson, G.R. The Raman Spectra of Carbon Dioxide in Liquid H2O and D2O. J. Phys. Chem. 1977, 81, 273–276. [Google Scholar] [CrossRef]
- Carey, D.M.; Korenowski, G.M. Measurement of the Raman spectrum of liquid water. J. Chem. Phys. 1998, 108, 2669–2675. [Google Scholar] [CrossRef]
- Al-Hosney, H.A.; Grassian, V.H. Water, sulfur dioxide and nitric acid adsorption on calcium carbonate: A transmission and ATR-FTIR study. Phys. Chem. Chem. Phys. 2005, 7, 1266–1276. [Google Scholar] [CrossRef]
- Pramanik, S.; Ghosh, S.; Roy, A.; Mukherjee, A.K. Biomineralization in human pancreas: A combined infra-red-spectroscopy, scanning electron microscopy, x-ray Rietveld analysis, and thermogravimetric study. J. Mater. Res. 2016, 3, 328–336. [Google Scholar] [CrossRef]
- Thriveni, T.; Ahn, J.W.; Ramakrishna, C.; Ahn, Y.J.; Han, C. Synthesis of nano precipitated calcium carbonate by using a carbonation process through a closed loop reactor. J. Korean Phys. Soc. 2016, 68, 131–137. [Google Scholar] [CrossRef]
- Vagenas, N.V.; Gatsouli, A.; Kontoyannis, C.G. Quantitative analysis of synthetic calcium carbonate polymorphs using FT-IR spectroscopy. Talenta 2003, 59, 831–836. [Google Scholar] [CrossRef]
- Brinza, L.; Schofield, P.F.; Hodson, M.E.; Weller, S.; Ignatyev, K.; Geraki, K.; Quinn, P.D.; Mosselmans, J.F.W. Combining µXANES and µXRD mapping to analyse the heterogeneity in calcium carbonate granules excreted by the eartphworm Lum-bricus terrestris. J. Synchrotron Radiat. 2014, 21, 235–241. [Google Scholar] [CrossRef] [Green Version]
- Sarret, G.; Isaure, M.-P.; Marcus, M.A.; Harada, E.; Choi, Y.-E.; Pairis, S.; Fakra, S.; Manceau, A. Chemical forms of calcium in Ca,Zn- and Ca,Cd-containing grains excreted by tobacco trichomes. Can. J. Chem. 2007, 85, 738–746. [Google Scholar] [CrossRef] [Green Version]
- Hayakawa, S.; Hajima, Y.; Qiao, S.; Namatame, H.; Hirokawa, T. Characterization of Calcium Carbonate Polymorphs with Ca K Edge X-ray Absorption Fine Structure Spectroscopy. Anal. Sci. 2008, 24, 835–837. [Google Scholar] [CrossRef] [Green Version]
- Singh, V.; Singh, J.P.; Shim, C.H.; Lee, S.; Chae, K.H. Local electronic structure of calcite Investigated using X-ray absorp-tion spectroscopy at different span of time. J. Nanosci. Nanotech 2020, 20, 6713–6717. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.P.; Ji, M.-J.; Kumar, M.; Lee, I.-J.; Chae, K.H. Unveiling the nature of adsorbed species onto the surface of MgO thin films during prolonged annealing. J. Alloy. Compd. 2018, 748, 355–362. [Google Scholar] [CrossRef]
- Zhang, M.; Li, J.; Zhao, J.; Cui, Y.; Luo, X. Comparison of CH4 and CO2 Adsorptions onto Calcite(10.4), Aragonite(011)Ca, and Vaterite(010)CO3 Surfaces: An MD and DFT Investigation. ACS Omega 2020, 5, 11369–11377. [Google Scholar] [CrossRef]
- Rohl, A.L.; Wright, K.; Gale, J.D. Evidence from surface phonons for the (2 × 1) reconstruction of the (10-14) surface of calcite from computer simulation. Am. Mineral. 2003, 88, 921–925. [Google Scholar] [CrossRef]
- Roberto, M.F.; Marco, B.; Dino, A. Effect of the Surface Relaxation on the Theoretical Equilibrium Shape of Calcite. The [001] Zone. Cryst. Growth Des. 2010, 10, 4096–4100. [Google Scholar] [CrossRef]
- Aquilano, D.; Bruno, M.; Massaro, F.R.; Rubbo, M. Theoretical Equilibrium Shape of Calcite. 2. [441] Zone and Its Role in Biomineralization. Cryst. Growth Des. 2011, 11, 3985–3993. [Google Scholar] [CrossRef]
- Bruno, M.; Massaro, F.R.; Prencipe, M.; Aquilano, D. Surface reconstructions and relaxation effects in a centre-symmetrical crystal: The {00.1} form of calcite (CaCO3). CrystEngComm 2010, 12, 3626–3633. [Google Scholar] [CrossRef]
- De Leeuw, N.H.; Parker, S.C. Surface structure and morphology of calcium carbonate polymorphs calcite, aragonite, and vaterite: An atomistic approach. J. Phys. Chem. B 1998, 102, 2914–2922. [Google Scholar] [CrossRef]
- Sekkal, W.; Zaoui, A. Nanoscale analysis of the morphology and surface stability of calcium carbonate polymorphs. Sci. Rep. 2013, 3, srep01587. [Google Scholar] [CrossRef] [Green Version]
- Bano, A.M.; Rodger, P.M.; Quigley, D. New insight into the stability of CaCO3 surfaces and nanoparticles via molecular simula-tion. Langmuir 2014, 30, 7513–7521. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, V.; Paidi, A.K.; Shim, C.-H.; Kim, S.-H.; Won, S.-O.; Singh, J.P.; Lee, S.; Chae, K.-H. Calcite Nanocrystals Investigated Using X-ray Absorption Spectroscopy. Crystals 2021, 11, 490. https://doi.org/10.3390/cryst11050490
Singh V, Paidi AK, Shim C-H, Kim S-H, Won S-O, Singh JP, Lee S, Chae K-H. Calcite Nanocrystals Investigated Using X-ray Absorption Spectroscopy. Crystals. 2021; 11(5):490. https://doi.org/10.3390/cryst11050490
Chicago/Turabian StyleSingh, Varsha, Anil Kumar Paidi, Cheol-Hwee Shim, So-Hee Kim, Sung-Ok Won, Jitendra Pal Singh, Sangsul Lee, and Keun-Hwa Chae. 2021. "Calcite Nanocrystals Investigated Using X-ray Absorption Spectroscopy" Crystals 11, no. 5: 490. https://doi.org/10.3390/cryst11050490
APA StyleSingh, V., Paidi, A. K., Shim, C. -H., Kim, S. -H., Won, S. -O., Singh, J. P., Lee, S., & Chae, K. -H. (2021). Calcite Nanocrystals Investigated Using X-ray Absorption Spectroscopy. Crystals, 11(5), 490. https://doi.org/10.3390/cryst11050490