Unveiling the Defect Structure of Lithium Niobate with Nuclear Methods
Abstract
:1. Introduction
2. Short Overview on Nuclear Methods for Materials Research
2.1. Ion Beam Analysis
- Composition determination in bulk materials, surface layers and multilayer systems. Some of the methods attain a depth resolution down to sub-monolayer range;
- Detection and quantitation of lattice damage in monocrystalline materials with high depth resolution up to a few μm from the surface;
- Characterization of intrinsic and extrinsic defects in terms of lattice site location and defect type.
- The minimum yield, χmin, i.e., the ratio of the reaction yield at perfect alignment with a crystallographic direction to that at random incidence. The lower χmin the better is the crystalline quality of the sample.
- The half-width of the scan, ψ1/2, that is larger the less defective the material is.
- Determination of intrinsic lattice defect concentration (typically, genuine defects of the material or radiation induced defects) with high depth resolution. For the analysis, spectra are taken for the undamaged and the damaged sample aligned with a major crystallographic axis and for a random ion incidence angle. From their comparison a depth-resolved defect profile can be derived using appropriate calculation methods or programs, e.g., DICADA [21];
- Determination of intrinsic lattice defect type. Spectra are recorded in the same manner as in the item above but for different ion energies yielding a dependence of the minimum yield difference on Eκ, where E is the ion energy. Determining the constant κ allows to distinguish e.g., between point defects, dislocations, inclusions, etc.
- Lattice location of dopants in the crystal. While an angular scan for a dopant located on a regular lattice site of the crystal will follow that one of the host atoms, foreign atoms on interstitial sites will show scans with distinctly different shapes, depending on their relative position in the channel (e.g., a peak instead of a dip if located in the center). Measurements for different crystallographic directions allow to determine the lattice site by triangulation.
2.2. Hyperfine Interaction Methods
3. Investigation of Intrinsic Defects
3.1. Congruent Versus Stoichiometric Lithium Niobate
3.2. Ferroelectric to Paraelectric Phase Transition
3.3. Ion Implantation Induced Defects
3.3.1. Nuclear Damage Dominated Cases
- (i)
- In the pre-damage stage (fluence < 1 × 1015 cm−2) mainly point defects were produced of which a significant fraction was attributed to Nb displaced from its regular lattice site to the free octahedron. This explains the lower dechanneling along the -axis in which these displaced Nb is still aligned with the guiding atomic rows, while for the -axis this lattice site appears in the center of the channel enhancing the dechanneling.
- (ii)
- The heavy damage stage (1 × 1015 cm−2 < fluence < 5 × 1015 cm−2) defect clusters form that cause - and -directions to be amorphous but still maintain some alignment with the -axis.
- (iii)
- In the final stage (fluence > 5 × 1015 cm−2) saturation of defect formation is observed along the - and -axis. A recent study [102] revisited the issue employing 350 keV Ar+ implantation into samples with x- and z-cut as well as a sample cut in a direction equally distanced from - and -axis by 45° which allowed to study both axial directions in a single sample. Plotting the mean maximum damage concentration versus the ion fluence yielded perfect overlaps for - and channeling measurements for the x-z cut sample with those of the respective standard cuts. The same work presents an additional confirmation of displaced Nb occupying the intrinsic vacant by angular-resolved RBS/C for a 1 MeV I+ implanted x-cut LN.
3.3.2. Electronic Damage Dominated Cases
3.4. Neutron Irradiation Induced Defects
4. Extrinsic Point Defects
4.1. Dopants to Increase Photorefractive Damage Resistance
4.2. Dopants to Enhance Photorefractive Damage
4.3. Optically Active Dopants
4.4. Pentavalent and Hexavalent Dopants
4.5. Noble Metals
5. Optical Waveguides
5.1. Indiffusion
5.2. Proton-Exchange
5.3. Ion Implantation
5.4. Combination of Techniques
5.5. Interaction with Optical Active Dopants
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kong, Y.; Bo, F.; Wang, W.; Zheng, D.; Liu, H.; Zhang, G.; Rupp, R.; Xu, J. Recent progress in lithium niobate: Optical damage, defect simulation, and on-chip devices. Adv. Mater. 2020, 32, 1806452. [Google Scholar] [CrossRef]
- Volk, T.; Wöhlecke, M. Lithium Niobate: Defects, Photorefraction and Ferroelectric Switching; Springer: Berlin, Germany, 2008. [Google Scholar]
- Shur, V.Y.; Akhmatkhanov, A.R.; Baturin, I.S. Micro- and nano-domain engineering in lithium niobate. Appl. Phys. Rev. 2015, 2, 040604. [Google Scholar] [CrossRef]
- Arizmendi, L. Photonic applications of lithium niobate crystals. Phys. Stat. Sol. 2004, 201, 253–283. [Google Scholar] [CrossRef]
- Alford, T.L.; Feldman, L.C.; Mayer, J.W. Fundamentals of Nanoscale Film Analysis; Springer Science and Business Media Inc.: Berlin/Heidelberg, Germany, 2007; ISBN 978-0-387-29260-1. [Google Scholar]
- Nastasi, M.; Mayer, J.W.; Wang, Y. (Eds.) Ion Beam Analysis—Fundamentals and Applications; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: Boca Raton, FL, USA, 2014; ISBN 978-1-4398-4639-1. [Google Scholar]
- Nastasi, M.; Wang, Y. (Eds.) Handbook of Modern Ion Beam Materials Analysis, 2nd ed.; Cambridge University Press: Cambridge, UK, 2010; Volume 2, ISBN 9781605112176. [Google Scholar]
- Verma, H.R. Atomic and Nuclear Analytical Methods; Springer: Berlin, Germany, 2007; ISBN 3-540-30277-8. [Google Scholar]
- Chu, W.-K.; Mayer, J.W.; Nicolet, M.A. Backscattering Spectrometry; Elsevier Inc.: Amsterdam, The Netherlands, 1978; ISBN 978-0-12-173850-1. [Google Scholar]
- Amsel, G.; Lanford, W.A. Nuclear Reaction Techniques in Materials Analysis. Ann. Rev. Nucl. Part. Sci. 1984, 34, 435–460. [Google Scholar] [CrossRef]
- Johansson, S.A.E.; Campbell, J.L. (Eds.) Particle-Induced X-Ray Emission Spectrometry (PIXE); Wiley & Sons: Hoboken, NJ, USA, 1995; ISBN 978-0-471-58944-0. [Google Scholar]
- Gemmell, D.S. Channeling and Related Effects in the Motion of Charged Particles through Crystals. Rev. Mod. Phys. 1974, 46, 129–235. [Google Scholar] [CrossRef]
- Morgan, D.V. Channeling: Theory, Observation and Applications; Wiley & Sons: Hoboken, NJ, USA, 1973; ISBN 978-0471615101. [Google Scholar]
- Van der Heide, P. Secondary Ion Mass Spectrometry: An Introduction to Principles and Practices; Wiley & Sons: Hoboken, NJ, USA, 2014; ISBN 978-1-118-48048-9. [Google Scholar]
- Lanford, W.A. Analysis for Hydrogen by Nuclear Reaction and Energy Recoil Detection. Nucl. Instr. Meth. B 1992, 66, 65–82. [Google Scholar] [CrossRef]
- Bik, W.M.A.; Habraken, F.H.P.M. Elastic Recoil Detection. Rep. Prog. Phys. 1983, 56, 859–902. [Google Scholar] [CrossRef]
- Geiger, H.; Marsden, E. On a diffuse reflection of the α-particles. Proc. R. Soc. Lond. A 1909, 82, 495–500. [Google Scholar] [CrossRef]
- Doolittle, L. Algorithms for the rapid simulation of Rutherford backscattering spectra. Nucl. Instr. Meth. B 1985, 9, 344–351. [Google Scholar] [CrossRef]
- Barradas, N.P.; Jeynes, C.; Webb, R.P. Simulated annealing analysis of Rutherford backscattering data. Appl. Phys. Lett. 1997, 71, 291–293. [Google Scholar] [CrossRef] [Green Version]
- Swanson, M. The Study of Lattice Defects by Channeling. Rep. Prog. Phys. 1982, 45, 47–93. [Google Scholar] [CrossRef]
- Gärtner, K. Modified master equation approach of axial dechanneling in perfect compound crystals. Nucl. Instr. Meth. B 2005, 227, 522–530. [Google Scholar] [CrossRef]
- Smulders, P.J.M.; Boerma, D.O. Computer Simulation of Channeling in Single Crystals. Nucl. Instr. Meth. B 1987, 29, 471–489. [Google Scholar] [CrossRef]
- Rebouta, L.; Smulders, P.J.M.; Boerma, D.O.; Agulló-López, F.; da Silva, M.F.; Soares, J.C. Ion-Beam Channeling Yields of Host and Impurity Atoms in LiNbO3: Computer Simulation. Phys. Rev. B 1993, 48, 3600–3610. [Google Scholar] [CrossRef]
- Kling, A. CASSIS—A New Monte-Carlo Computer Program for Channeling Simulation of RBS, NRA and PIXE. Nucl. Instr. Meth. B 1995, 102, 141–144. [Google Scholar] [CrossRef]
- Kling, A.; Soares, J.C.; da Silva, M.F. Computer Simulation of Channeling Spectra with the CASSIS Program. Rad. Eff. Def. Solids 1997, 141, 53–61. [Google Scholar] [CrossRef]
- Kling, A.; Soares, J.C.; da Silva, M.F. Simulation of Channeling in Crystals with Defects Using the CASSIS Code. Nucl. Instr. Meth. B 1999, 153, 457–460. [Google Scholar] [CrossRef]
- Kling, A. The refurbished CASSIS code for channeling simulations. Nucl. Instr. Meth. B 2012, 273, 88–90. [Google Scholar] [CrossRef]
- Soares, J.C. Microscopic characterization of materials by ion beam and hyperfine interaction analysis. Nucl. Instr. Meth. B 1992, 64, 215–220. [Google Scholar] [CrossRef]
- Marques, J.G.; Correia, J.G.; Melo, A.A.; da Silva, M.F.; Soares, J.C. A four-detector spectrometer for e--γ PAC on-line with the ISOLDE-CERN isotope separator. Nucl. Instr. Meth. B 1995, 99, 645–648. [Google Scholar] [CrossRef]
- Fernandes, A.C.; Santos, J.P.; Marques, J.G.; Kling, A.; Ramos, A.R.; Barradas, N.P. Validation of the Monte Carlo model supporting core conversion of the Portuguese Research Reactor (RPI) for neutron fluence rate determinations. Ann. Nucl. Ener. 2010, 37, 1139–1145. [Google Scholar] [CrossRef]
- Marques, J.G.; Kling, A.; de Jesus, C.M.; Soares, J.C.; da Silva, M.F.; Diéguez, E.; Agulló-López, F. Annealing recovery of neutron irradiated LiNbO3:Hf single crystals. Nucl. Instr. Meth. B 1998, 141, 326–331. [Google Scholar] [CrossRef]
- Schatz, G.; Weidinger, A. Nuclear Condensed Matter Physics; John Wiley and Sons: Chichester, UK, 1996; ISBN 0471954799. [Google Scholar]
- Schwarz, K.; Blaha, P. Electronic structure of solids and surfaces with WIEN2k. In Practical Aspects of Computational Chemistry I; Leszczynski, J., Shukla, M., Eds.; Springer: Berlin, Germany, 2012; pp. 191–207. [Google Scholar]
- Marques, J.G.; Lorenz, K. Lattice location of Hf and its interaction with other impurities in LiNbO3: A review. Opt. Eng. 2014, 53, 060901. [Google Scholar] [CrossRef]
- Reisman, A.; Holtzberg, F. Heterogeneous Equilibria in the Systems Li2O-, Ag2O-Nb2O5 and Oxide-Models. J. Am. Chem. Soc. 1958, 80, 6503–6507. [Google Scholar] [CrossRef]
- Peterson, G.E.; Bridenbaugh, P.M.; Green, P. NMR study of ferroelectric LiNbO3 and LiTaO3 I. J. Chem. Phys. 1967, 46, 4009–4014. [Google Scholar] [CrossRef]
- Peterson, G.E.; Bridenbaugh, P.M. NMR study of ferroelectric LiNbO3 and LiTaO3 II. J. Chem. Phys. 1968, 48, 3402–3406. [Google Scholar] [CrossRef]
- Peterson, G.E.; Carruthers, J.R. 93Nb NMR as a sensitive and accurate probe of stoichiometry in LiNbO3 crystals. J. Sol. State Chem. 1969, 1, 98–99. [Google Scholar] [CrossRef]
- Halstead, T.K. Temperature dependence of the Li NMR spectrum and atomic motion in LiNbO3. J. Chem. Phys. 1970, 53, 3427–3435. [Google Scholar] [CrossRef]
- Blümel, J.; Born, E.; Metzger, T. Solid state NMR study supporting the lithium vacancy defect model in congruent lithium niobate. J. Phys. Chem. Sol. 1994, 55, 589–593. [Google Scholar] [CrossRef]
- Burns, G. Nuclear quadrupole resonance of Li in ferroelectric compounds. Phys. Rev. 1962, 127, 1193–1197. [Google Scholar] [CrossRef]
- Schempp, E.; Peterson, G.E.; Carruthers, J.R. 93Nb nuclear quadrupole resonance investigation of LiNbO3. J. Chem. Phys. 1970, 53, 306–311. [Google Scholar] [CrossRef]
- Keune, W.; Date, S.K.; Dézsi, I.; Gonser, U. Mössbauer-effect study of Co57 and Fe57 impurities in ferroelectric LiNbO3. J. Appl. Phys. 1975, 46, 3914–3924. [Google Scholar] [CrossRef]
- Peterson, G.E.; Carnevale, A. 93Nb NMR linewidths in nonstoichiometric lithium niobate. J. Chem. Phys. 1972, 56, 4848–4851. [Google Scholar] [CrossRef]
- Douglass, D.C.; Peterson, G.E.; McBrierty, V.J. Reexamination of the local electric field gradients in LiNbO3. Phys. Rev. B 1989, 40, 10694–10703. [Google Scholar] [CrossRef] [PubMed]
- Yatsenko, A.Y.; Ivanova, E.N.; Sergeev, N.A. NMR Study of Defects in Congruent LiNbO3. 1. “Unoverlapping” Defects. Phys. B 1997, 240, 254–262. [Google Scholar] [CrossRef]
- Yatsenko, A.Y.; Ivanova-Maksimova, H.M.; Sergeev, N.A. NMR Study of Intrinsic Defects in Congruent LiNbO3. 2. “Overlapping” Defects. Physica B 1998, 254, 256–259. [Google Scholar] [CrossRef]
- Yatsenko, A.; Maksimova, H.; Sergeev, N.A. NMR Study of Intrinsic Defects in Congruent Lithium Niobate. Cryst. Res. Technol. 1999, 34, 709–713. [Google Scholar] [CrossRef]
- Rebouta, L.; Da Silva, M.F.; Soares, J.C.; Sanz-Garcia, J.A.; Diéguez, E.; Agulló-López, F. Combined RBS/Channeling and PAC studies of hafnium doped LiNbO3. Nucl. Instr. Meth. B 1990, 45, 495–498. [Google Scholar] [CrossRef]
- Catchen, G.L.; Spaar, D.M. Order-disorder effects in the phase transitions of LiNbO3 and LiTaO3 measured by perturbed-angular-correlation spectroscopy. Phys. Rev. B 1991, 44, 12137–12145. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.; Tinet, D.; Fripiat, J.J.; Amarilla, J.M.; Casal, B.; Ruis-Hitzky, E. 51V and 93Nb high resolution NMR study of NbVO5. J. Mat. Res. 1991, 6, 393–400. [Google Scholar] [CrossRef]
- Lapina, O.B.; Khabibulin, D.F.; Romanenko, K.V.; Gan, Z.; Zue, M.G.; Krasil’nikov, V.N.; Federov, V.E. 93Nb NMR chemical shift scale for niobia systems. Sol. State Nucl. Magn. Resonance 2005, 28, 204–224. [Google Scholar] [CrossRef]
- Hauer, B.; Vianden, R.; Marques, J.G.; Barradas, N.P.; Correia, J.G.; Melo, A.A.; Soares, J.C.; Agulló-López, F.; Diéguez, E. Electric-field gradients at the 111In and 111mCd in undoped and Mg-doped LiNbO3. Phys. Rev. B 1995, 51, 6208–6214. [Google Scholar] [CrossRef] [Green Version]
- Forker, M. The problematic of the derivation of the electric field gradient asymmetry parameter from TDPAC measurements or Mössbauer spectroscopy in imperfect crystal lattices. Nucl. Instr. Meth. 1973, 106, 121–126. [Google Scholar] [CrossRef]
- Kitamura, K.; Yamamoto, J.K.; Iyi, N.; Kimura, S.; Hayashi, T. Stoichiometric LiNbO3 single crystal growth by double crucible Czochralski method using automatic powder supply system. J. Cryst. Growth 1992, 116, 327–332. [Google Scholar] [CrossRef]
- Bordui, P.F.; Norwood, R.G.; Jundt, D.H.; Fejer, M.M. Preparation and characterization of off-congruent lithium niobate crystals. J. Appl. Phys. 1992, 71, 875–879. [Google Scholar] [CrossRef] [Green Version]
- Polgár, K.; Péter, Á.; Kovács, L.; Corradi, G.; Szaller, Z. Growth of stoichiometric LiNbO3 single crystals by top seeded solution growth method. J. Cryst. Growth 1997, 177, 211–216. [Google Scholar] [CrossRef]
- Serrano, M.D.; Bermúdez, V.; Arizmendi, L.; Diéguez, E. Determination of the Li/Nb ratio in LiNbO3 crystals grown by Czochralski method with K2O added to the melt. J. Cryst. Growth 2000, 210, 670–676. [Google Scholar] [CrossRef]
- Földvári, I.; Polgár, K.; Voszka, R.; Balasanyan, R.N. A simple method to determine the real composition of LiNbO3 crystals. Cryst. Res. Tech. 1984, 19, 1659–1661. [Google Scholar] [CrossRef]
- Kling, A.; Marques, J.G.; Correia, J.G.; Da Silva, M.F.; Diéguez, E.; Agulló-López, F.; Soares, J.C. Study of structural differences between stoichiometric and congruent lithium niobate. Nucl. Instr. Meth. B 1996, 113, 293–295. [Google Scholar] [CrossRef] [Green Version]
- Kling, A.; Rebouta, L.; Marques, J.G.; Correia, J.G.; Da Silva, M.F.; Diéguez, E.; Agulló-López, F.; Soares, J.C. Ion beam channeling and hyperfine interaction analysis for the characterization of stoichiometry and anti-site population in LiNbO3. Nucl. Instr. Meth. B 1996, 118, 622–625. [Google Scholar] [CrossRef] [Green Version]
- Gärtner, K.; Hehl, K.; Schlotzhauer, G. Axial dechanneling: II. Point defects. Nucl. Instr. Meth. B 1984, 4, 55–62. [Google Scholar] [CrossRef]
- Marques, J.G.; Kling, A.; Soares, J.C.; Da Silva, M.F.; Vianden, R.; Polgár, K.; Diéguez, E.; Agulló-López, F. Structural defects in congruent and near-stoichiometric LiNbO3. Rad. Eff. Def. Solids 1999, 150, 233–236. [Google Scholar] [CrossRef]
- Nassau, K.; Lines, M.E. Stacking-fault model for stoichiometry deviations in LiNbO3 and LiTaO3 and the effect on the Curie temperature. J. Appl. Phys. 1970, 41, 533–537. [Google Scholar] [CrossRef]
- Smyth, D.M. Defects and transport in LiNbO3. Ferroelectrics 1983, 50, 93–102. [Google Scholar] [CrossRef]
- Smyth, D.M. Defect Chemistry of LiNbO3. In Proceedings of the Sixth IEEE International Symposium on Applications of Ferroelectrics, Bethlehem, PA, USA, 8–11 June 1986; Wood, V.E., Ed.; IEEE: Piscataway, NJ, USA, 1986; pp. 115–117. [Google Scholar] [CrossRef]
- Donnerberg, H.; Tomlinson, S.M.; Catlow, C.R.A.; Schirmer, O.F. Computer simulation studies of intrinsic defects in LiNbO3 crystals. Phys. Rev. B 1989, 40, 11909–11916. [Google Scholar] [CrossRef]
- Molière, G. Theorie der Streuung schneller geladener Teilchen I. Einzelstreuung am abgeschirmten Coulomb-Feld. Z. Natur. A 1947, 2, 133–145. [Google Scholar] [CrossRef]
- Navrotsky, A. Energetics and crystal chemical systematics among ilmenite, lithium niobate, and perovskite structures. Chem. Mat. 1998, 10, 2787–2793. [Google Scholar] [CrossRef]
- Yusa, H.; Akaogi, M.; Sata, N.; Kojitani, H.; Yamamoto, R.; Ohishi, Y. High-pressure transformations of ilmenite to perovskite, and lithium niobate to perovskite in zinc germanate. Phys. Chem. Min. 2006, 33, 217–226. [Google Scholar] [CrossRef]
- Kumada, N.; Ozawa, N.; Muto, F. LiNbO3 with ilmenite-type structure prepared via ion-exchange reaction. J. Sol. St. Chem. 1985, 57, 267–268. [Google Scholar] [CrossRef]
- Kumada, N.; Kinomura, N.; Muto, F. Crystal-structures of ilmenite type LiNbO3 and NaNbO3. J. Ceram. Soc. Japan 1990, 98, 384–388. [Google Scholar] [CrossRef] [Green Version]
- Mehta, A.; Navrotsky, A.; Kumada, N.; Kinomura, N. Structural transitions in LiNbO3 and NaNbO3. J. Solid State Chem. 1993, 102, 213–225. [Google Scholar] [CrossRef]
- Wiegel, M.; Blasse, G.; Navrotsky, A.; Mehta, A.; Kumada, N.; Kinomura, N. Luminescence of the ilmenite phase of LiNbO3. J. Sol. St. Chem. 1994, 109, 413–415. [Google Scholar] [CrossRef]
- Corradi, G.; Kovács, L.; Zaritskii, I.M. Optical absorption edge and some shallow donor levels in LiNbO3 systems. Rad. Eff. Def. Sol. 1999, 150, 211–219. [Google Scholar] [CrossRef]
- Baran, E.J.; Botto, I.L.; Muto, F.; Kumada, N.; Kinomura, N. Vibrational spectra of the ilmenite modifications of LiNbO3 and NaNbO3. J. Mat. Sci. Lett. 1986, 5, 671–672. [Google Scholar] [CrossRef]
- Kong, Y.; Xu, J.; Chen, X.; Zhang, C.; Zhang, W.; Zhang, G. Ilmenite-like stacking defect in nonstoichiometric lithium niobate crystals investigated by Raman scattering spectra. J. Appl. Phys. 2000, 87, 4410–4414. [Google Scholar] [CrossRef]
- Lengyel, K.; Kovács, L.; Péter, Á.; Polgár, K.; Corradi, G. The effect of stoichiometry and Mg doping on the Raman spectra of LiNbO3:Mg crystals. Appl. Phys. B 2007, 87, 317–322. [Google Scholar] [CrossRef]
- Abrahams, S.C.; Marsh, P. Defect structure dependence on composition in lithium niobate. Acta Crystal. 1986, 42, 61–68. [Google Scholar] [CrossRef]
- Glass, A.M. Dielectric, thermal, and pyroelectric properties of ferroelectric LiTaO3. Phys. Rev. 1968, 172, 564–571. [Google Scholar] [CrossRef]
- Birnie, D.P. Model for the ferroelectric transition in nonstoichiometric lithium niobate and lithium tantalate. J. Amer. Ceram. Soc. 1991, 74, 988–993. [Google Scholar] [CrossRef]
- Johnston, W.D.; Kaminow, I.P. Temperature dependence of Raman and Rayleigh scattering in LiNbO3 and LiTaO3. Phys. Rev. 1968, 168, 1045–1054. [Google Scholar] [CrossRef]
- Abrahams, S.C.; Buehler, E.; Hamilton, W.C.; Laplaca, S.J. Ferroelectric lithium tantalate-III. Temperature dependence of the structure in the ferroelectric phase and the paraelectric phase at 940 K. J. Phys. Chem. Sol. 1973, 34, 521–532. [Google Scholar] [CrossRef]
- Boysen, H.; Altdorfer, F. A neutron powder investigation of the high-temperature structure and phase transition in LiNbO3. Acta Crystal. B 1994, 50, 405–414. [Google Scholar] [CrossRef]
- Inbar, I.; Cohen, R.E. Comparison of the electronic structures and energetics of ferroelectric LiNbO3 and LiTaO3. Phys. Rev. B 1996, 53, 1193–1204. [Google Scholar] [CrossRef] [Green Version]
- Phillpot, S.R.; Gopalan, V. Coupled displacive and order-disorder dynamics in LiNbO3 by molecular-dynamics simulation. Appl. Phys. Lett. 2004, 84, 1916–1918. [Google Scholar] [CrossRef] [Green Version]
- Sanna, S.; Schmidt, W.G. Ferroelectric phase transition in LiNbO3: Insights from molecular dynamics. IEEE Trans. Ultrason. Ferroel. Freq. Control 2012, 59, 1925–1928. [Google Scholar] [CrossRef]
- Toyoura, K.; Ohta, M.; Nakamura, A.; Matsunaga, K. First-principles study on phase transition and ferroelectricity in lithium niobate and tantalate. J. Appl. Phys. 2015, 118, 064103. [Google Scholar] [CrossRef]
- Zhukov, A.P.; Soboleva, L.V.; Belyaev, L.M.; Volkov, A.F. Niobium-93, Lanthanum-139, and Tantalum-181 pure NQR in rare earth orthoniobates and lithium tantalate. Ferroelectrics 1978, 21, 601–604. [Google Scholar] [CrossRef]
- Löhnert, M.; Kaindl, G.; Wortmann, G.; Salomon, D. Temperature-induced changes of the electronic structure of ferroelectric LiTaO3. Phys. Rev. Lett. 1981, 47, 194–197. [Google Scholar] [CrossRef]
- De Wette, F.W.; Schacher, G.E. Electric field gradients in point-ion and uniform-background lattices II. Physical Review 1965, 137, A92–A94. [Google Scholar] [CrossRef]
- Shelyapina, M.G.; Kasperovich, V.S.; Shchegolev, B.F.; Charnaya, E.V. Cluster calculations of electric-field-gradients at the Ta Site for the ferroelectric LiTaO3 crystal. Ferroelectrics 2003, 282, 1–7. [Google Scholar] [CrossRef]
- Slotfeldt-Ellingsen, D. NMR study of the temperature dependence of the 7Li quadrupole coupling constant above and below the Curie temperature in ferroelectric LiTaO3. In Proceedings of the 17th Congress Ampere; Hovi, V., Ed.; North Holland Publishing Company: Amsterdam, The Netherlands, 1972; pp. 350–352. [Google Scholar]
- Slotfeldt-Ellingsen, D.; Pedersen, B. The structural phase transition in LiTaO3 studied by pulsed 7Li-NMR. Phys. Stat. Sol. 1974, 24, 191–195. [Google Scholar] [CrossRef]
- Catchen, G.L.; Adams, J.M.; Rearick, T.M. High-temperature partitioning of 181Hf-probe impurities between Li and group-V sites in LiNbO3 and LiTaO3. Phys. Rev. B 1992, 46, 2743–2749. [Google Scholar] [CrossRef]
- Tomov, T.; Engelmann, H.; Dézsi, I.; Gonser, U. Investigation of the ferroelectric phase transition in LiNbO3:Fe by Mössbauer spectroscopy. Solid State Commun. 1989, 69, 41–44. [Google Scholar] [CrossRef]
- Marques, J.G.; Kling, A.; De Jesus, C.M.; Soares, J.C.; Friedsam, P.; Freitag, K.; Vianden, R. Electric field gradients in the ferroelectric and paraelectric phases of LiTaO3. Hyperfine Interact. 1999, 120–121, 485–489. [Google Scholar] [CrossRef]
- Ohkubo, Y.; Murakami, Y.; Saito, T.; Yokohama, A.; Uerhara, S.; Kawase, Y. Mechanism of the ferroelectric phase transitions in LiNbO3 and LiTaO3. Phys. Rev. B 2002, 65, 052107. [Google Scholar] [CrossRef] [Green Version]
- Jetschke, S.; Karge, H.; Hehl, K. Anisotropic Effects in N+-Implanted LiNbO3. Phys. Stat. Sol. 1983, 77, 207–214. [Google Scholar] [CrossRef]
- Götz, G.; Karge, H. Ion Implantation into LiNbO3. Nucl. Instr. Meth. 1983, 209/210, 1079–1088. [Google Scholar] [CrossRef]
- Götz, G. Radiation Effects in Optoelectronic Materials. Rad. Eff. 1986, 98, 189–209. [Google Scholar] [CrossRef]
- Wendler, E.; Becker, G.; Rensberg, J.; Schmidt, E.; Wolf, S.; Wesch, W. Direction-Dependent RBS Channelling Studies in Ion Implanted LiNbO3. Nucl. Instr. Meth. B 2016, 379, 195–199. [Google Scholar] [CrossRef]
- Gischkat, T.; Schrempel, F.; Wesch, W. Ion-beam induced effects at 15 K in LiNbO3. Nucl. Instr. Meth. B 2008, 266, 2906–2909. [Google Scholar] [CrossRef]
- Bianconi, M.; Argiolas, N.; Bazzan, M.; Bentini, G.G.; Cerutti, A. Quantification of Nuclear Damage in High Energy Ion Implanted Lithium Niobate. Nucl. Instr. Meth. B 2007, 257, 597–600. [Google Scholar] [CrossRef]
- Schmidt, E.; Ritter, K.; Gärtner, K.; Wendler, E. Investigation of Li/Nb-Sublattices in Ion Implanted LiNbO3 by RBS and NRA in Channelling Configuration. Nucl. Instr. Meth. B 2017, 409, 126–132. [Google Scholar] [CrossRef]
- Schrempel, F.; Gischkat, T.; Hartung, H.; Kley, E.-B.; Wesch, W. Ion Beam Enhanced Etching of LiNbO3. Nucl. Instr. Meth. B 2006, 250, 164–168. [Google Scholar] [CrossRef]
- Jetschke, S.; Hehl, K. Diffusion and Recrystallization Processes during Annealing of N+- and P+-Implanted LiNbO3. Phys. Stat. Sol. 1985, 88, 193–205. [Google Scholar] [CrossRef]
- Canut, B.; Brenier, R.; Meftah, A.; Moretti, P.; Ould Salem, S.; Ramos, S.M.M.; Thevenard, P.; Toulemonde, M. Damage Induced in LiNbO3 Single Crystals by GeV Gadolinium Ions. Nucl. Instr. Meth. B 1994, 91, 312–316. [Google Scholar] [CrossRef]
- Canut, B.; Brenier, R.; Meftah, A.; Moretti, P.; Salem, S.O.; Pitaval, M.; Ramos, S.M.M.; Thevenard, P.; Toulemonde, M. Latent track formation in LiNbO3 single crystals irradiated by GeV uranium ions. Rad. Eff. Def. Sol. 1995, 136, 307–310. [Google Scholar] [CrossRef]
- Canut, B.; Ramos, S.M.M.; Brenier, R.; Thevenard, P.; Loubet, J.L.; Toulemonde, M. Surface Modifications of LiNbO3 Single Crystals Induced by Swift Heavy Ions. Nucl. Instr. Meth. B 1996, 107, 194–198. [Google Scholar] [CrossRef]
- Bentini, G.G.; Bianconi, M.; Chiarini, M.; Correra, L.; Sada, C.; Mazzoldi, P.; Argiolas, N.; Bazzan, M.; Guzzi, R. Effect of Low Dose High Energy O3+ Implantation on Refractive Index and Linear Electro-Optic Properties in X-Cut LiNbO3: Planar Optical Waveguide Formation and Characterization. J. Appl. Phys. 2002, 92, 6477–6483. [Google Scholar] [CrossRef]
- Bentini, G.G.; Bianconi, M.; Cerutti, A.; Chiarini, M.; Pennestrì, G.; Sada, C.; Argiolas, N.; Bazzan, M.; Mazzoldi, P.; Guzzi, R. Structural and Compositional Characterization of X-Cut LiNbO3 Crystals Implanted with High Energy Oxygen and Carbon Ions. Nucl. Instr. Meth. B 2005, 240, 174–177. [Google Scholar] [CrossRef]
- Bentini, G.G.; Bianconi, M.; Correra, L.; Chiarini, M.; Mazzoldi, P.; Sada, C.; Argiolas, N.; Bazzan, M.; Guzzi, R. Damage Effects Produced in the Nearsurface Region of X-cut LiNbO3 by Low Dose, High Energy Implantation of Nitrogen, Oxygen, and Fluorine Ions. J. Appl. Phys. 2004, 96, 242–247. [Google Scholar] [CrossRef]
- Bianconi, M.; Argiolas, N.; Bazzan, M.; Bentini, G.G.; Chiarini, M.; Cerutti, A.; Mazzoldi, P.; Pennestrì, G.; Sada, C. On the Dynamics of the Damage Growth in 5 MeV Oxygen-Implanted Lithium Niobate. Appl. Phys. Lett. 2005, 87, 072901. [Google Scholar] [CrossRef]
- Olivares, J.; García-Navarro, A.; García, G.; Agulló-López, F.; Agulló-Rueda, F.; García-Cabañes, A.; Carrascosa, M. Buried Amorphous Layers by Electronic Excitation in Ion-Beam Irradiated Lithium Niobate: Structure and Kinetics. J. Appl. Phys. 2007, 101, 033512. [Google Scholar] [CrossRef] [Green Version]
- Olivares, J.; García, G.; García-Navarro, A.; Agulló-López, F.; Caballero, O.; García-Cabanes, A. Generation of High-Confinement Step-Like Optical Waveguides in LiNbO3 by Swift Heavy Ion-Beam Irradiation. Appl. Phys. Lett. 2005, 86, 183501. [Google Scholar] [CrossRef] [Green Version]
- Olivares, J.; García, G.; Agulló-López, F.; Agulló-Rueda, F.; Kling, A.; Soares, J.C. Generation of Amorphous Surface Layers in LiNbO3 by Ion Beam-Irradiation: Thresholding and Boundary Propagation. Appl. Phys. A 2005, 81, 1465–1469. [Google Scholar] [CrossRef] [Green Version]
- Rivera, A.; Olivares, J.; Crespillo, M.L.; García, G.; Bianconi, M.; Agulló-López, F. Assessment of Swift-Ion Damage by RBS/C: Determination of the Amorphization Threshold. Nucl. Instr. Meth. B 2009, 267, 1460–1463. [Google Scholar] [CrossRef]
- Ramos, S.M.M.; Canut, B.; Ambri, M.; Bonardi, N.; Pitaval, M.; Bernas, H.; Chaumont, J. Defect creation in LiNbO3 irradiated by medium masses ions in the electronic stopping power regime. Rad. Eff. Def. Sol. 1998, 143, 299–309. [Google Scholar] [CrossRef]
- Wesch, W.; Rensberg, J.; Schmidt, M.; Wendler, E. Damage evolution in LiNbO3 due to Electronic Energy Deposition below the Threshold for Direct Amorphous Track Formation. J. Appl. Phys. 2019, 126, 125105. [Google Scholar] [CrossRef]
- Agulló-López, F.; García, G.; Olivares, J. Lattice Preamorphization by Ion Irradiation: Fluence Dependence of the Electronic Stopping Power Threshold for Amorphization. J. Appl. Phys. 2005, 97, 093514. [Google Scholar] [CrossRef] [Green Version]
- Toulemonde, M.; Dufour, C.; Meftah, A.; Paumier, E. Transient thermal processes in heavy ion irradiation of crystalline inorganic insulators. Nucl. Instr. Meth. B 2000, 166–167, 903–912. [Google Scholar] [CrossRef]
- Agulló-López, F.; Climent-Font, A.; Muñoz-Martín, A.; Olivares, J.; Zucchiatti, A. Ion beam modification of dielectric materials in the electronic excitation regime: Cumulative and exciton models. Progr. Mat. Sci. 2016, 76, 1–58. [Google Scholar] [CrossRef]
- Agulló-López, F.; Mendez, A.; García, G.; Olivares, J.; Cabrera, J.M. Synergy between thermal spike and exciton decay mechanisms for ion damage and amorphization by electronic excitation. Phys. Rev. B 2006, 74, 174109. [Google Scholar] [CrossRef] [Green Version]
- García, G.; Rivera, A.; Crespillo, M.L.; Gordillo, N.; Olivares, J.; Agulló-López, F. Amorphization Kinetics under Swift Heavy Ion Irradiation: A Cumulative Overlapping-Track Approach. Nucl. Instr. Meth. B 2011, 269, 492–497. [Google Scholar] [CrossRef]
- Schrempel, F.; Steinbach, T.; Gischkat, T.; Wesch, W. Channeling irradiation of LiNbO3. Nucl. Instr. Meth. B 2008, 266, 2958–2961. [Google Scholar] [CrossRef]
- Steinbach, T.; Schrempel, F.; Gischkat, T.; Wesch, W. Influence of ion energy and ion species on ion channeling in LiNbO3. Phys. Rev. B 2008, 78, 184106. [Google Scholar] [CrossRef]
- Dowell, M.B.; Lefkowitz, I.; Taylor, G.W. Radiation damage in lithium niobate. Proc. 2nd Int. Meeting on Ferroelectricity, Kyoto, 1969. J. Phys. Soc. Japan 1970, 28, 442–444. [Google Scholar]
- Berg, N.; Speulstra, J. The operation of acoustic surface wave delay lines in a nuclear environment. IEEE Trans. Nucl. Sci. 1973, 20, 137–143. [Google Scholar] [CrossRef]
- Primak, W.; Anderson, T.T. Metamictization of lithium niobate by thermal neutrons. Nucl. Technol. 1976, 28, 235–248. [Google Scholar] [CrossRef]
- Primak, W.; Gavin, A.P.; Anderson, T.T.; Monahan, E. Stability of lithium niobate on irradiation at elevated reactors temperature. Nucl. Technol. 1977, 36, 79–84. [Google Scholar] [CrossRef]
- Marques, J.G. Evolution of nuclear fission reactors: Third generation and beyond. Energy Convers. Manag. 2010, 51, 1774–1780. [Google Scholar] [CrossRef]
- Giuliani, F.; Oliveira, C.; Collar, J.I.; Girard, T.A.; Morlat, T.; Limagne, D.; Marques, J.G.; Ramos, A.R.; Waysand, G. Response of SIMPLE SDDs to monochromatic neutron irradiations. Nucl. Instr. Meth. A 2004, 526, 348–358. [Google Scholar] [CrossRef]
- González, R.; Chen, Y.; Abraham, M.M. Transmutation-induced tritium in LiNbO3 single crystals. Phys. Rev. B 1988, 37, 6433–6435. [Google Scholar] [CrossRef]
- González, R.; Ballesteros, C.; Chen, Y.; Abraham, M.M. Diffusion of tritons, deuterons, and protons in LiNbO3 crystals. Phys. Rev. B 1989, 39, 11085–11092. [Google Scholar] [CrossRef] [PubMed]
- Verma, R.; Arunachalam, J.; Gangadharan, S.; Vyas, J.C.; Kothiyal, G.P.; Gupta, M.K. Trace characterisation of lithium niobate by neutron activation analysis. Fresenius J. Anal. Chem. 1992, 344, 261–264. [Google Scholar] [CrossRef]
- Brannon, P.J. Transient radiation-induced absorption at 1061 nm in LiNbO3 and MgO:LiNbO3. IEEE Trans. Nucl. Sci. 1994, 41, 642–647. [Google Scholar] [CrossRef]
- Marques, J.G.; Kling, A.; Soares, J.C.; Rebouta, L.; Da Silva, M.F.; Diéguez, E.; Agulló-López, F. Lattice site location of Hf in LiNbO3: Influence of dopant concentration and crystal stoichiometry. Nucl. Instr. Meth. B 1998, 136–138, 431–435. [Google Scholar] [CrossRef]
- Orlova, A.N.; Ped’ko, B.B.; Filinova, A.V.; Franko, N.Y.; Prokhorova, A.Y. Influence of gamma and gamma–neutron irradiation on the optical properties of LiNbO3 single crystals. Phys. Sol. State 2006, 48, 544–547. [Google Scholar] [CrossRef]
- Mandula, G.; Rupp, R.A.; Balaskó, M. Erasure of elementary holograms in LiNbO3:Fe by neutron irradiation. In Proceedings of the Holography 2005: International Conference on Holography, Optical Recording and Processing of Information; SPIE-International Society for Optics and Photonics: Bellingham, WA, USA, 2006; Volume 6252, p. 62520N. [Google Scholar] [CrossRef] [Green Version]
- Sha, G.; Harlow, C.; Chernatynskiy, A.; Daw, J.; Khafizov, M. In-situ measurement of irradiation behavior in LiNbO3. Nucl. Instr. Meth. B 2020, 472, 46–52. [Google Scholar] [CrossRef]
- Coltman, R.R.; Klabunde, C.E.; McDonald, D.L.; Redman, J.K. Reactor damage in pure metals. J. Appl. Phys. 1962, 33, 3509–3522. [Google Scholar] [CrossRef]
- Robinson, M.T. Basic physics of radiation damage production. J. Nucl. Mat. 1994, 216, 1–28. [Google Scholar] [CrossRef]
- Pritychenko, B.; Mughabghab, S.F. Neutron thermal cross sections, Westcott factors, resonance integrals, Maxwellian averaged cross sections and astrophysical reaction rates calculated from the ENDF/B-VII.1, JEFF-3.1.2, JENDL-4.0, ROSFOND-2010, CENDL-3.1 and EAF-2010 evaluated data libraries. Nucl. Data Sheets 2012, 113, 3120–3144. [Google Scholar] [CrossRef] [Green Version]
- Lorenz, K.; Marques, J.G.; Franco, N.; Alves, E.; Peres, M.; Correia, M.R.; Monteiro, T. Defect studies on fast and thermal neutron irradiated GaN. Nucl. Instr. Meth. B 2008, 266, 2780–2783. [Google Scholar] [CrossRef]
- Pelowitz, D.B. MCNPX User’s Manual Version 2.7, LA-CP-11-00438; Los Alamos National Laboratory: Los Alamos, NM, USA, 2011.
- Seitz, F. On the disordering of solids by action of fast massive particles. Discuss. Faraday Soc. 1949, 5, 271–282. [Google Scholar] [CrossRef]
- Nord, J.; Nordlund, K.; Keinonen, J. Molecular dynamics study of damage accumulation in GaN during ion beam irradiation. Phys. Rev. B 2003, 68, 184104. [Google Scholar] [CrossRef] [Green Version]
- Tsuchihira, H.; Oda, T.; Tanaka, S. Molecular-dynamics simulation of threshold displacement energies in lithium aluminate. Nucl. Instr. Meth. B 2011, 269, 1707–1711. [Google Scholar] [CrossRef]
- Lucas, G.; Pizzagalli, L. Ab initio molecular dynamics calculations of threshold displacement energies in silicon carbide. Phys. Rev. B 2005, 72, 161202. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Xiao, H.Y.; Zhang, Y.; Aidhy, D.S.; Weber, W.J. Ab initio molecular dynamics simulations of threshold displacement energies in SrTiO3. J. Phys. Cond. Matt. 2013, 25, 485003. [Google Scholar] [CrossRef]
- Petersen, B.A. Low Energy Recoil Simulations in MgO, LiNbO3, and LiTaO3 Using Ab Initio Molecular Dynamics. PhD Thesis, University of Tennessee, Knoxville, TN, USA, 2017. [Google Scholar]
- Hogdson, E.R.; Agulló-López, F. Oxygen vacancy centres induced by electron irradiation in LiNbO3. Solid State Commun. 1987, 64, 965–968. [Google Scholar] [CrossRef]
- Hogdson, E.R.; Agulló-López, F. Displacement damage in LiNbO3. Nucl. Instr. Meth. B 1988, 32, 42–44. [Google Scholar] [CrossRef]
- Popov, A.I.; Kotomin, E.A.; Maier, J. Basic properties of the F-type centers in halides, oxides and perovskites. Nucl. Instr. Meth. B 2010, 268, 3084–3089. [Google Scholar] [CrossRef]
- Alenius, G.; Arnell, S.E.; Schale, C.; Wallander, E. Low spin states in 181Hf from the thermal neutron capture reaction. Phys. Scrip. 1971, 3, 105–110. [Google Scholar] [CrossRef]
- Sears, V.F. Neutron scattering lengths and cross sections. Neutron News 1992, 3, 26–37. [Google Scholar] [CrossRef]
- Nakagawa, T.; Shibata, K.; Kawasaki, H. Curves and Tables of Neutron Cross Sections in JENDL-3.3. JAERI-Data/Code 2002-020; Japan Atomic Energy Research Institute: Tokaimura, Japan, 2002. [Google Scholar]
- Molnar, G. (Ed.) Handbook of Prompt Gamma Activation Analysis; Springer: Berlin, Germany, 2003; ISBN 978-1402013041. [Google Scholar]
- Dale, C.J.; Marshall, P.W.; Summers, G.P.; Wolicki, E.A.; Burke, E.A. Displacement damage equivalent to dose in silicon devices. Appl. Phys. Lett. 1989, 54, 451–453. [Google Scholar] [CrossRef]
- Angelescu, T.; Vasilescu, A. Comparative radiation hardness results obtained from various neutron sources and the NIEL problem. Nucl. Instr. Meth. A 1996, 374, 85–90. [Google Scholar] [CrossRef]
- Lindhard, J.; Nielsen, V.; Scharff, M.; Thonsen, P.V. Integral equations governing radiation effects (Notes on atomic collisions III). Matematisk-Fysiske Meddelelser 1963, 33, 1–42. [Google Scholar]
- Akkerman, A.; Barak, J. New partition factor calculations for evaluating the damage of low energy ions in silicon. IEEE Trans. Nucl. Sci. 2006, 53, 3667–3674. [Google Scholar] [CrossRef]
- Boschini, M.J.; Rancoita, P.G.; Tacconi, M. SR-NIEL Calculator: Screened Relativistic (SR) Treatment for Calculating the Displacement Damage and Nuclear Stopping Powers for Electrons, Protons, Light- and Heavy- Ions in Materials (version 6.9.0); INFN sez Bicocca: Milan, Italy, 2020; Volume 10, Available online: http://www.sr-niel.org/ (accessed on 31 March 2021).
- Ashkin, A.; Boyd, G.D.; Dziedzic, J.M.; Smith, R.G.; Ballman, A.A.; Levinstein, J.J.; Nassau, K. Optically-Induced Refractive Index Inhomogenities in LiNbO3 and LiTaO3. Appl. Phys. Lett. 1966, 9, 72–74. [Google Scholar] [CrossRef]
- Zhong, G.G.; Jian, J.; Wu, Z.-K. Proceedings of the 11th International Quantum Electronics Conference; Cat. No. 80 CH 1561-0; IEEE: New York, NY, USA, 1980; p. 631. [Google Scholar]
- Bryan, D.A.; Gerson, R.; Tomaschke, H.E. Increased Optical Damage Resistance in Lithium Niobate. Appl. Phys. Lett. 1984, 44, 847–849. [Google Scholar] [CrossRef]
- Volk, T.R.; Pryalkin, V.I.; Rubinina, N.M. Optical-Damage-Resistant LiNbO3:Zn Crystal. Opt. Lett. 1990, 15, 996–998. [Google Scholar] [CrossRef]
- Yamamoto, J.K.; Kitamura, K.; Iyi, N.; Kimura, S.; Furukawa, Y.; Sato, M. Increased Optical Damage Resistance in Sc2O3-Doped LiNbO3. Appl. Phys. Lett. 1992, 61, 2156–2158. [Google Scholar] [CrossRef]
- Volk, T.R.; Rubinina, N.M. A New Optical Damage Resistant Impurity in Lithium Niobate Crystals: Indium. Ferroelectrics Lett. 1992, 14, 37–43. [Google Scholar] [CrossRef]
- Kokanyan, E.P.; Razzari, L.; Cristiani, I.; Degiorgio, V.; Gruber, J.B. Reduced Photorefraction in Hafnium-Doped Single-Domain and Periodically Poled Lithium Niobate Crystals. Appl. Phys. Lett. 2004, 84, 1880–1882. [Google Scholar] [CrossRef]
- Sun, L.; Guo, F.; Lv, Q.; Yu, H.; Li, H.; Cai, W.; Xu, Y.; Zhao, L. Increased Optical Damage Resistance of Zr:LiNbO3 Crystals. Cryst. Res. Technol. 2007, 42, 1117–1122. [Google Scholar] [CrossRef]
- Zhang, Q.; Feng, X. Defect Structures and Densities of Mg-Doped Lithium Niobate. Phys. Stat. Sol. 1990, 121, 429–435. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, W.; Zhang, G. Defect Chemistry Analysis of the Defect Structure in Mg-Doped LiNbO3 Crystals. Phys. Stat. Sol. 1996, 156, 285–291. [Google Scholar] [CrossRef]
- Abdi, F.; Aillerie, M.; Bourson, P.; Fontana, M.D. Defect structure in Mg-doped LiNbO3: Revisited study. J. Appl. Phys. 2009, 106, 033519. [Google Scholar] [CrossRef]
- Iyi, N.; Kitamura, K.; Yajima, Y.; Kimura, S.; Furukawa, Y.; Sato, M. Defect Structure Model of MgO-Doped LiNbO3. J. Solid State Chem. 1995, 118, 148–152. [Google Scholar] [CrossRef]
- Donnerberg, H.J.; Tomlinson, S.M.; Catlow, C.R.A. Defects in LiNbO3, II. Computer Simulation. J. Phys. Chem. Solids 1991, 52, 201–210. [Google Scholar] [CrossRef]
- Donnerberg, H.J.; Tomlinson, S.M.; Catlow, C.R.A.; Schirmer, O.F. Computer-Simulation Studies of Extrinsic Defects in LiNbO3 Crystals. Phys. Rev. B 1991, 44, 4877–4883. [Google Scholar] [CrossRef]
- Donnerberg, H. Comments on the Defect Chemistry of Magnesium-Doped Lithium Niobate (LiNbO3). J. Solid State Chem. 1996, 123, 208–214. [Google Scholar] [CrossRef]
- Wöhlecke, M.; Volk, T.; Donnerberg, H. On the Role of Intrinsic Clusters in Damage-Resistant LiNbO3. Ferroelectr. Lett. Sect. 1997, 22, 53–58. [Google Scholar] [CrossRef]
- Kling, A.; Kollewe, D.; Grabmaier, B.C. Lattice site Investigations for Mg in LiNbO3 by Combined RBS-PIXE-NRA-Channeling Experiments. Nucl. Instr. Meth. B 1992, 64, 232–236. [Google Scholar] [CrossRef]
- Grabmaier, B.C.; Otto, F. Growth and Investigation of MgO-doped LiNbO3. J. Cryst. Growth 1986, 79, 682–688. [Google Scholar] [CrossRef]
- Grabmaier, B.C.; Otto, F. Growth of LiNbO3 Single Crystals for Optical Applications. Proc. SPIE 1986, 651, 2–6. [Google Scholar] [CrossRef]
- Sommerfeldt, R.; Holtmann, L.; Krätzig, E.; Grabmaier, B.C. Influence of Mg Doping and Composition on the Light-Induced Charge Transport in LiNbO3. Phys. Stat. Sol. 1988, 106, 89–98. [Google Scholar] [CrossRef]
- Koppitz, J.; Schirmer, O.F.; Wöhlecke, M.; Kuznetsov, A.I.; Grabmaier, B.C. Threshold Effects in LiNbO3:Mg Caused by Change of Electron-Lattice Coupling. Ferroelectrics 1989, 92, 233–241. [Google Scholar] [CrossRef]
- Grabmaier, B.C.; Wersing, W.; Koestler, W. Properties of Undoped and MgO-Doped LiNbO3; Correlation to the Defect Structure. J. Cryst. Growth 1991, 110, 339–347. [Google Scholar] [CrossRef]
- Schmidt, N.; Betzler, K.; Grabmaier, B.C. Composition dependence of the second harmonic phase-matching temperature in LiNbO3. Appl. Phys. Lett. 1991, 58, 34–35. [Google Scholar] [CrossRef]
- Nunomura, K.; Ishitani, A.; Matsubara, T.; Hayashi, I. Second Harmonic Generation in a Sputtered LiNbO3 Film on MgO. J. Crystal Growth 1978, 45, 355–360. [Google Scholar] [CrossRef]
- Kling, A.; Kollewe, D.; Grabmaier, B.C. Dependence of the 7Li(p,α)4He Minimum Yield on the Mg Concentration for Proton Channeling. Nucl. Instr. Meth. B 1994, 85, 490–493. [Google Scholar] [CrossRef]
- Feng, X.; Wang, D.; Zhang, J. NMR Spectra of Mg Nuclei in Mg-Doped LiNbO3 Crystals. Phys. Stat. Sol. 1990, 157, K127–K130. [Google Scholar] [CrossRef]
- Yatsenko, A.V.; Yevdokimov, S.V.; Sugak, D.Y.; Solskii, I.M. NMR Analysis of Mg Ion Localization in LiNbO3 Crystal. Acta Phys. Pol. A 2010, 117, 166–169. [Google Scholar] [CrossRef]
- Rebouta, L.; Soares, J.C.; da Silva, M.F.; Sanz-Garcia, J.A.; Diéguez, E.; Agulló-López, F. Lattice Sites for Eu, Hf and Nd in LiNbO3 by RBS/Channeling Experiments. Nucl. Instr. Meth. B 1990, 50, 428–430. [Google Scholar] [CrossRef]
- Marques, J.G.; Kling, A.; Rebouta, L.; da Silva, M.F.; Melo, A.A.; Soares, J.C.; Serrano, M.D.; Diéguez, E.; Agulló-López, F. Lattice Location of Hf in Near-stoichiometric LiNbO3: RBS/Channeling and PAC Studies. Mat. Sci. Forum 1997, 248/249, 395–398. [Google Scholar] [CrossRef]
- Rebouta, L.; da Silva, M.F.; Soares, J.C.; Santos, M.T.; Diéguez, E.; Agulló-López, F. Ion-Beam/Channeling Characterization of LiNbO3: Interaction between Impurity Sites. Rad. Eff. Def. Sol. 1995, 136, 137–139. [Google Scholar] [CrossRef]
- Rebouta, L.; da Silva, M.F.; Soares, J.C.; Santos, M.T.; Diéguez, E.; Agulló-López, F. Ion-Beam/Channeling Characterization of LiNbO3: Interaction between Impurity Sites. Opt. Mat. 1995, 4, 174–178. [Google Scholar] [CrossRef]
- Marques, J.G.; de Jesus, C.M.; Melo, A.A.; Soares, J.C.; Diéguez, E.; Agulló-López, F. PAC Study of the Interaction between Impurity Sites in LiNbO3 Doped with Hf and Mg. Hyperfine Interact. 1996, 1, 348–351. [Google Scholar]
- Dias, S.A.; Marques, J.G.; Correia, J.G.; Sanz, J.A.; Soares, J.C. The 181Hf/181Ta Probe in the Li and Nb Sites of Congruent LiNbO3 Co-Doped with Mg and Cr Ions Studied by PAC. Hyperfine Interact. 2004, 158, 323–328. [Google Scholar] [CrossRef]
- Kling, A.; Soares, J.C.; da Silva, M.F.; Rebouta, L.; Kollewe, D.; Krause, H.; Flagmeyer, R.-H.; Vogt, J. Determination of Impurity Lattice Sites in Single Crystals Using PIXE/channeling. X-Ray Spectrom. 1999, 28, 105–109. [Google Scholar] [CrossRef]
- Kovács, L.; Rebouta, L.; Soares, J.C.; da Silva, M.F.; Hage-Ali, M.; Stoquert, J.P.; Siffert, P.; Zaldo, C.; Szaller, Z.; Polgár, K. Lattice Site of Trivalent Impurities in Mg-Doped Lithium Niobate Crystals. Mat. Sci. Eng. B 1991, 9, 505–508. [Google Scholar] [CrossRef]
- Hesselink, L.; Orlov, S.S.; Bashaw, M.C. Holographic Data Storage Systems. Proc. IEEE 2004, 92, 1231–1280. [Google Scholar] [CrossRef] [Green Version]
- McMillen, D.K.; Hudson, T.D.; Wagner, J.; Singleton, J. Holographic Recording in Specially Doped Lithium Niobate Crystals. Opt. Express 1998, 2, 491–502. [Google Scholar] [CrossRef]
- Yue, X.; Adibi, A.; Hudson, T.; Buse, K.; Psaltis, D. Role of Cerium in Lithium Niobate for Holographic Recording. J. Appl. Phys. 2000, 87, 4051–4055. [Google Scholar] [CrossRef] [Green Version]
- Kong, Y.; Liu, S.; Xu, J. Recent Advances in the Photorefraction of Doped Lithium Niobate Crystals. Materials 2012, 5, 1954–1971. [Google Scholar] [CrossRef] [Green Version]
- Buse, K.; Adibi, A.; Psaltis, D. Non-Volatile Holographic Storage in Doubly Doped Lithium Niobate Crystals. Nature 1998, 393, 665–668. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.; Kong, Y.; Ge, X.; Liu, H.; Liu, S.; Chen, S.; Rupp, R.; Xu, J. Improved Sensitivity of Nonvolatile Holographic Storage in Triply Doped LiNbO3:Zr,Cu,Ce. Opt. Express 2010, 18, 6333–6339. [Google Scholar] [CrossRef] [PubMed]
- Valyashko, E.G.; Varina, T.M.; Kuz’min, R.N.; Rubinina, N.M.; Smirnov, V.A.; Shagdarov, V.M. Spectroscopic properties of single crystals of lithium metaniobate containing iron and neodymium ions as impurity. J. Appl. Spectrosc. 1974, 21, 877–880. [Google Scholar] [CrossRef]
- Keune, W.; Date, S.K.; Gonser, U.; Bunzel, H. Mössbauer Effect Study of Fe57 Doped LiNbO3 and LiTaO3. Ferroelectrics 1976, 13, 443–445. [Google Scholar] [CrossRef]
- Kurz, H.; Krätzig, E.; Keune, W.; Engelmann, H.; Gonser, U.; Dischler, B.; Räuber, A. Photorefractive Centres in LiNbO3 Studied by Optical-, Mössbauer- and EPR-Methods. Appl. Phys. 1977, 12, 355–368. [Google Scholar] [CrossRef]
- Gonser, U.; Sakai, H.; Keune, W. Mössbauer Spectroscopy of 57Fe2+ Impurities in LiNbO3. J. Electrochem. Soc. 1976, 123, 1915–1917. [Google Scholar] [CrossRef]
- Becze-Deák, T.; Bottyán, L.; Corradi, G.; Korecz, L.; Nagy, D.L.; Polgár, K.; Sayed, S.; Spiering, H. Electron Trapping Centres and Cross Sections in LiNbO3 Studied by 57Co Mössbauer Emission Spectroscopy. J. Phys. Condens. Matt. 1999, 11, 6239–6250. [Google Scholar] [CrossRef]
- Becze-Deák, T.; Bottyán, L.; Corradi, G.; Korecz, L.; Nagy, D.L.; Polgár, K.; Sayed, S.; Spiering, H. 57Co Mössbauer Emission Study of LiNbO3, Fe:LiNbO3 and Mg:LiNbO3 in Various Thermochemical Reduction States. J. Radioanalyt. Nucl. Chem. 2000, 246, 33–37. [Google Scholar] [CrossRef]
- Rebouta, L.; da Silva, M.F.; Soares, J.C.; Hage-Ali, M.; Stoquert, J.P.; Siffert, P.; Sanz-García, J.A.; Diéguez, E.; Agulló-López, F. Lattice Site of Iron in LiNbO3(Fe3+) by the PIXE/Channeling Technique. Europhys. Lett. 1991, 14, 557–561. [Google Scholar] [CrossRef]
- Malovichko, G.I.; Grachev, V.G. Determination of Iron Group Impurity Positions in Ferroelectric LiNbO3 using nuclear-quadrupole splitting. Sov. Phys. Sol. State 1985, 27, 1678–1679. [Google Scholar]
- Zaltron, A.; Argiolas, N.; De Salvador, D.; Bazzan, M.; Ciampolillo, M.V.; Bacci, L.; Sada, C. Iron Site Location in Fe-Diffused Lithium Niobate Crystals by Combined RBS-PIXE-NRA Analysis. Nucl. Instr. Meth. B 2012, 275, 11–15. [Google Scholar] [CrossRef]
- Szilágy, E.; Becze-Deák, T.; Bottyán, L.; Kocsonya, A.; Kótai, E.; Nagy, D.L.; Kling, A.; Battistig, G.; Khan, N.Q.; Polgár, K. Lattice Site Determination of Co in Low Doped Congruent LiNbO3 Single Crystal Using PIXE/Channeling. Sol. State Commun. 2000, 115, 535–538. [Google Scholar] [CrossRef]
- Buchal, C.; Mantl, S.; Thomas, D.K. Channeling Investigation of the Lattice Location of Ti in Ti-Implanted Optical Waveguides in LiNbO3. Mat. Res. Soc. Symp. Proc. 1987, 100, 317–324. [Google Scholar] [CrossRef]
- Kollewe, D.; Kling, A.; Grabmaier, B.C.; Bremer, T.; Heiland, W.; Zimmermann, W. Lattice Site Location of Ti Diffused and Doped in LiNbO3. Phys. Lett. A 1992, 169, 177–180. [Google Scholar] [CrossRef]
- Hauer, B.; Vianden, R.; da Silva, M.F.; Rebouta, L.; Soares, J.C.; Diéguez, E.; Agulló-López, F. The Lattice Site of Ti in LiNbO3. J. Phys. Condens. Matter 1994, 6, 267–274. [Google Scholar] [CrossRef]
- Johnson, L.F.; Ballman, A.A. Coherent Emission from Rare Earth Ions in Electro-Optic Crystals. J. Appl. Phys. 1969, 40, 297–302. [Google Scholar] [CrossRef]
- Kovács, L.; Rebouta, L.; Soares, J.C.; da Silva, M.F. Lattice Site of Er in LiNbO3:Mg,Er Crystals. Rad. Eff. Def. Sol. 1991, 119–121, 445–450. [Google Scholar] [CrossRef]
- Kovács, L.; Rebouta, L.; Soares, J.C.; da Silva, M.F.; Hage-Ali, M.; Stoquert, J.P.; Siffert, P.; Sanz-García, J.A.; Corradi, G.; Szaller, Z.; et al. On the Lattice Site of Trivalent Dopants and the Structure of Mg2+--OH--M3+ Defects in LiNbO3:Mg Crystals. J. Phys.: Condens. Matter 1993, 5, 781–794. [Google Scholar] [CrossRef]
- Rebouta, L.; Soares, J.C.; da Silva, M.F.; Serrano, D.; Díeguez, E.; Agulló-López, F.; Tornero, J. Nonaxial Sites for Er in LiNbO3. Appl. Phys. Lett. 1997, 70, 1070–1072. [Google Scholar] [CrossRef]
- Lorenzo, A.; Jaffrezic, H.; Roux, B.; Boulon, G.; Bausá, L.E.; García Solé, J. Lattice Location of Pr3+ Ions in LiNbO3. Phys. Rev. B 1995, 52, 6278–6284. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo, A.; Jaffrezic, H.; Roux, B.; Boulon, G.; García Solé, J. Lattice Location of Rare-Earth Ions in LiNbO3. Appl. Phys. Lett. 1995, 67, 3735–3737. [Google Scholar] [CrossRef]
- Lorenzo, A.; Loro, H.; Muñoz Santiuste, J.E.; Terrile, M.C.; Boulon, G.; Bausá, L.E.; García Solé, J. RBS/Channeling to Locate Active Ions in Laser Materials: Application to Rare Earth Activated LiNbO3. Opt. Mat. 1997, 8, 55–63. [Google Scholar] [CrossRef]
- García Solé, J.; Petit, T.; Jaffrezic, H.; Boulon, G. Lattice Location of the Non-Equivalent Nd3+ Ions in LiNbO3:Nd and LiNbO3:MgO:Nd. Europhys. Lett. 1993, 24, 719–724. [Google Scholar] [CrossRef]
- García-Solé, J.; Lorenzo, A.; Petit, T.; Boulon, G.; Roux, B.; Jaffrezic, H. Site Selective Spectroscopy and RBS/Channeling in Optically Active Ion Doped LiNbO3 crystals. J. Phys. IV 1994, 4, C4-293–C4-296. [Google Scholar]
- Rebouta, L.; Soares, J.C.; da Silva, M.F.; Sanz-García, J.A.; Diéguez, E.; Agulló-López, F. Lattice Site for Transition and Rare-Earth Impurities in LiNbO3 by Ion-Beam Methods. J. Mater. Res. 1992, 7, 130–135. [Google Scholar] [CrossRef]
- Camarillo, E.; Tocho, J.; Vergara, I.; Díeguez, E.; García-Solé, J.; Jaque, F. Optical Bands of Cr3+ induced by Mg2+ Ions in LiNbO3:Cr,Mg. Phys. Rev. B 1992, 45, 4600–4604. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Caro, J.; García-Solé, J.; Bravo, D.; Sanz-García, A.; Lopez, F.J.; Jaque, F. MgO Codoping-Induced Change in the Site Distribution of Cr3+ Ions in LiNbO3. Phys. Rev. B 1996, 54, 13042–13046. [Google Scholar] [CrossRef] [PubMed]
- Kling, A.; Soares, J.C.; da Silva, M.F. Optical and Structural Properties of Chromium Implanted Lithium Niobate—Cluster Formation and Substitutional Incorporation. Nucl. Instr. Meth. B 1999, 148, 1044–1048. [Google Scholar] [CrossRef]
- Almeida, J.M.; Boyle, G.; Leite, A.P.; De La Rue, R.M.; Ironside, C.N.; Caccavale, F.; Chakraborty, P.; Mansour, I. Chromium Diffusion in Lithium Niobate for Active Optical Waveguides. J. Appl. Phys. 1995, 78, 2193–2197. [Google Scholar] [CrossRef]
- Macfarlane, P.I.; Holliday, K.; Nicholls, J.F.H.; Henderson, B. Characterization of Cr3+ Centres in LiNbO3 Using Fluorescence Line Narrowing. J. Phys. Condens. Matter 1995, 7, 9643–9656. [Google Scholar] [CrossRef]
- Jaque, F.; García-Solé, J.; Camarillo, E.; López, F.J.; Murrieta, S.H.; Hernández, A.J. Detection of Cr3+ sites in LiNbO3:MgO,Cr3+ and LiNbO3:Cr3+. Phys. Rev. B 1993, 47, 5432–5434. [Google Scholar] [CrossRef]
- Corradi, G.; Chadwick, A.V.; West, A.R.; Cruickshank, K.; Paul, M. On the substitution site of Cr and Fe in LiNbO3: An EXAFS study. Rad. Eff. Def. Solids 1995, 134, 219–222. [Google Scholar] [CrossRef]
- Kling, A.; Soares, J.C.; da Silva, M.F.; Sanz-García, J.A.; Diéguez, E.; Agulló-López, F. Lattice Site Determination of Cr in Low Doped Lithium Niobate Single Crystals Using PIXE/channeling. Nucl. Instr. Meth. B 1998, 136-138, 426–430. [Google Scholar] [CrossRef]
- Fernández-Ruiz, R.; Bermúdez, V. Determination of the Ta and Nb ratio in LiNb1−xTaxO3 by total reflection X-ray fluorescence spectrometry. Spectrochim. Acta Part B At. Spectrosc. 2005, 60, 231–235. [Google Scholar] [CrossRef]
- Tian, T.; Kong, Y.F.; Liu, S.G.; Li, W.; Wu, L.; Chen, S.L.; Xu, J.J. Photorefraction of molybdenum-doped lithium niobate crystals. Opt. Lett. 2012, 37, 2679–2681. [Google Scholar] [CrossRef] [PubMed]
- Kling, A.; Marques, J.G.; Soares, J.C.; da Silva, M.F.; Diéguez, E.; Agulló-López, F. Valence Effect on the Incorporation of Tungsten Implanted into Lithium Niobate. Nucl. Instr. Meth. B 1997, 127/128, 520–523. [Google Scholar] [CrossRef]
- Kling, A.; Marques, J.G.; da Silva, M.F.; Serrano, M.D.; Diéguez, E.; Sanz-García, J.A.; García-Solé, J.; Agulló-López, F.; Soares, J.C. Incorporation of Hexavalent Impurities into LiNbO3. Rad. Eff. Def. Solids 1999, 150, 249–253. [Google Scholar] [CrossRef]
- Kling, A.; Valdrez, C.; Marques, J.G.; da Silva, M.F.; Soares, J.C. Incorporation of Tungsten in Lithium Niobate by Diffusion. Nucl. Instr. Meth. B 2002, 190, 524–527. [Google Scholar] [CrossRef]
- Calvo, J.A.; Bausá, L.E.; Sanz, J.A.; Voda, M.; García-Solé, J. Spectroscopy of Uranium Ions in LiNbO3. Ferroelectrics 1996, 185, 41–44. [Google Scholar] [CrossRef]
- Kling, A.; da Silva, M.F.; Soares, J.C.; Sanz-García, J.A.; García-Solé, J. Change of Uranium Lattice Site in LiNbO3 Induced by Thermal Reduction Treatment. Rad. Eff. Def. Solids 2001, 155, 229–233. [Google Scholar] [CrossRef]
- Freestone, I.; Meeks, N.; Sax, M.; Higgitt, C. The Lycurgus Cup—A Roman Nanotechnology. Gold Bull. 2007, 40, 270–277. [Google Scholar] [CrossRef] [Green Version]
- Saito, Y.; Suganomata, S. Coloration of LiNbO3 by Metal Ion Implantation. Jpn. J. Appl. Phys. 1987, 26, 1941–1942. [Google Scholar] [CrossRef]
- Saito, Y.; Shang, D.Y.; Kitsutaka, R.; Kitahara, A. Optical Properties of Cu-Implanted LiNbO3. J. Appl. Phys. 1997, 81, 3621–3626. [Google Scholar] [CrossRef]
- Shang, D.Y.; Saito, Y.; Kittaka, R.; Taniguchi, S.; Kitahara, A. Optical Properties of LiNbO3 Implanted with Ag Ions. J. Appl. Phys. 1996, 80, 6651–6654. [Google Scholar] [CrossRef]
- Williams, E.K.; Ila, D.; Sarkisov, S.; Curley, M.; Cochrane, J.C.; Poker, D.B.; Hensley, D.K.; Borel, C. Study of the Effects of MeV Ag and Au Implantation on the Optical Properties of LiNbO3. Nucl. Instr. Meth. B 1998, 141, 268–273. [Google Scholar] [CrossRef]
- Saito, Y.; Kitahara, A. Absorption in the Visible Region of LiNbO3 Sequentially Implanted with Ag and Cu Ions. J. Appl. Phys. 2000, 87, 1276–1279. [Google Scholar] [CrossRef]
- Shi, B.-R.; Lu, F.; Meng, M.-Q.; Wang, F.-X.; Li, W.; Liu, X.-D.; Wang, K.-M.; Wang, Z.-L. Damage Behaviours in LiNbO3 Crystals Induced by MeV Au+ Irradiation. Nucl. Instr. Meth. B 1998, 135, 275–279. [Google Scholar] [CrossRef]
- Ziegler, J.F.; Ziegler, M.D.; Biersack, J.P. SRIM—The stopping and range of ions in matter. Nucl. Instr. Meth. B 2010, 268, 1818–1823. [Google Scholar] [CrossRef] [Green Version]
- Takahiro, K.; Kunimatsu, A.; Nagata, S.; Yamaguchi, S.; Yamamoto, S.; Aoki, Y.; Naramoto, H. Crystal Structure and Optical Absorption of Au Implanted MgO, SrTiO3 and LiNbO3. Nucl. Instr. Meth. B 1999, 152, 314–318. [Google Scholar] [CrossRef]
- Dev, B.N.; Kuri, G.; Satyam, P.V.; Sundaravel, B.; Gog, T.; Materlik, G. X-ray Standing Wave and Ion Scattering Studies on Au-Implanted LiNbO3 (001) Single Crystals. Appl. Surf. Sci. 1998, 125, 163–172. [Google Scholar] [CrossRef]
- Kling, A.; da Silva, M.F.; Soares, J.C.; Fichtner, P.F.P.; Amaral, L.; Zawislak, F.C. Formation of Coherent Gold Nanoclusters in Lithium Niobate. Nucl. Instr. Meth. B 2002, 191, 478–481. [Google Scholar] [CrossRef]
- Kling, A.; da Silva, M.F.; Soares, J.C.; Fichtner, P.F.P.; Amaral, L.; Zawislak, F.C. Influence of Helium Co-Implantation on the Formation of Gold Nanoclusters in Lithium Niobate. Mod. Phys. Lett. B 2001, 15, 1348–1354. [Google Scholar] [CrossRef]
- Wong-Leung, J.; Williams, J.S.; Eliman, R.G.; Nygren, E.; Eaglesham, D.J.; Jacobson, D.C.; Poate, J.M. Proximity Gettering of Au to Ion Beam Induced Defects in Silicon. Nucl. Instr. Meth. B 1995, 96, 253–256. [Google Scholar] [CrossRef]
- Milz, S.; Rensberg, J.; Ronning, C.; Wesch, W. Correlation between damage evolution, cluster formation and optical properties of silver implanted lithium niobate. Nucl. Instr. Meth. B 2012, 286, 67–71. [Google Scholar] [CrossRef]
- Williams, E.K.; Ila, D.; Darwish, A.; Poker, D.B.; Sarkisov, S.S.; Curley, M.J.; Wang, J.-C.; Svetchnikov, V.L.; Zandbergen, H.W. Characterization of Silver Colloids Formed in LiNbO3 by Ag and O Implantation at Room and Elevated Temperatures. Nucl. Instr. Meth. B 1999, 148, 1074–1078. [Google Scholar] [CrossRef]
- Kling, A.; Soares, J.C.; da Silva, M.F. Platinum Implanted Lithium Niobate—Annealing Behavior and Dopant Redistribution. Nucl. Instr. Meth. B 1998, 141, 436–440. [Google Scholar] [CrossRef]
- Kling, A.; Soares, J.C.; da Silva, M.F. Redistribution and Incorporation of Iridium Implanted into Lithium Niobate. Nucl. Instr. Meth. B 2000, 166–167, 280–283. [Google Scholar] [CrossRef]
- Bazzan, M.; Sada, C. Optical Waveguides in Lithium Niobate: Recent Developments and Applications. Appl. Phys. Rev. 2015, 2, 040603. [Google Scholar] [CrossRef]
- Kaminow, I.P.; Carruthers, J.R. Optical waveguiding layers in LiNbO3 and LiTaO3. Appl. Phys. Lett. 1973, 22, 326–328. [Google Scholar] [CrossRef]
- Burns, W.K.; Klein, P.H.; West, E.J.; Plew, L.E. Ti diffusion in Ti:LiNbO3 planar and channel optical waveguides. J. Appl. Phys. 1979, 50, 6175–6182. [Google Scholar] [CrossRef]
- Armenise, M.N.; Canali, C.; De Sario, M.; Carnera, A.; Mazzoldi, P.; Celotti, G. Evaluation of the Ti diffusion process during fabrication of Ti:LiNbO3 optical waveguides. J. Non-Cryst. Sol. 1982, 47, 255–257. [Google Scholar] [CrossRef]
- Armenise, M.N.; Canali, C.; De Sario, M.; Carnera, A.; Mazzoldi, P.; Celotti, G. Characterization of (Ti0.65Nb0.35)O2 Compound as a Source for Ti Diffusion During Ti:LiNbO3 Optical Waveguides Fabrication. J. Appl. Phys. 1983, 54, 62–70. [Google Scholar] [CrossRef]
- Bremer, T.; Kollewe, D.; Koschmieder, H.; Heiland, W. SIMS Investigations of Titanium Profiles in LiNbO3 Produced by Ion Beam Mixing and Diffusion. Fresenius Z. Anal. Chem. 1989, 333, 485–487. [Google Scholar] [CrossRef]
- Caccavale, F.; Chakraborty, P.; Quaranta, A.; Mansour, I.; Gianello, G.; Bosso, S.; Corsini, R.; Mussi, G. Secondary-Ion-Mass Spectrometry and Near-Field Studies of Ti:LiNbO3 Optical Waveguides. J. Appl. Phys. 1995, 78, 5345–5350. [Google Scholar] [CrossRef]
- Caccavale, F.; Gonella, F.; Quaranta, A.; Mansour, I. Analysis of Ti:LiNbO3 Waveguides Using Secondary Ion Mass Spectrometry and Near Field Method. Elect. Lett. 1995, 31, 1054–1056. [Google Scholar] [CrossRef]
- Caccavale, F.; Sada, C.; Segato, F.; Cavuoti, F. Secondary Ion Mass Spectrometry and Optical Characterization of Ti:LiNbO3 Optical Waveguides. Appl. Surf. Sci. 1999, 150, 195–201. [Google Scholar] [CrossRef]
- Zhang, D.-L.; Yang, Z.; Wong, W.H.; Pun, E.Y.B. Secondary-ion-mass spectrometry study on nearstoichiometric LiNbO3 strip waveguide fabricated by vapour transport equilibration and Ti codiffusion. Philos. Mag. 2007, 87, 63–75. [Google Scholar] [CrossRef]
- Bremer, T.; Hertel, P.; Oelschig, S.; Sommerfeldt, R.; Heiland, W. Depth Profiling of Magnesium and Titanium-Doped LiNbO3 Waveguides. Thin Sol. Films 1989, 175, 235–239. [Google Scholar] [CrossRef]
- Caccavale, F.; Chakraborty, P.; Capobianco, A.; Gianello, G.; Mansour, I. Characterization and Optimization of Ti-Diffused LiNbO3 Optical Waveguides by Second Diffusion of Magnesium. J. Appl. Phys. 1995, 78, 187–193. [Google Scholar] [CrossRef]
- Caccavale, F.; Chakraborty, P.; Mansour, I.; Gianello, G.; Mazzoleni, M.; Elena, M. A Secondary-Ion-Mass Spectrometry Study of Magnesium Diffusion in Lithium Niobate. J. Appl. Phys. 1994, 76, 7552–7558. [Google Scholar] [CrossRef]
- Mohan Kumar, R.; Yamamoto, F.; Ichikawa, J.; Ryoken, H.; Sakaguchi, I.; Liu, X.; Nakamura, M.; Terabe, K.; Takekawa, S.; Haneda, H.; et al. SIMS-depth profile and microstructure studies of Ti-diffused Mg-doped near-stoichiometric lithium niobate waveguide. J. Cryst. Growth 2006, 287, 472–477. [Google Scholar] [CrossRef]
- Herreros, B.; Lifante, G. LiNbO3 optical waveguides by Zn diffusion from vapor phase. Appl. Phys. Lett. 1995, 66, 1449–1451. [Google Scholar] [CrossRef]
- Nevado, R.; Cussó, F.; Lifante, G.; Caccavale, F.; Sada, C.; Segato, F. Correlation between compositional and refractive index profiles in diffused optical waveguides. J. Appl. Phys. 2000, 88, 6183–6186. [Google Scholar] [CrossRef]
- Nevado, R.; Cantelar, E.; Segato, F.; Caccavale, F.; Kling, A.; Soares, J.C. Compositional Characterization of Zn-Diffused Lithium Niobate Waveguides. Appl. Phys. B 2001, 73, 555–558. [Google Scholar] [CrossRef]
- Espeso-Gil, O.; García, G.; Agulló-López, F.; Climent-Font, A.; Sajavaara, T.; Domenech, M.; Cantelar, E.; Lifante, G. Characterization of surface layers in Zn-diffused LiNbO3 waveguides by heavy ion elastic recoil detection. Appl. Phys. Lett. 2002, 81, 1981–1983. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.-L.; Qiu, C.-X.; Wong, W.-H.; Pun, E.Y.-B. Diffusion Properties of Scandium in Lithium Niobate Crystal. J. Am. Ceram. Soc. 2014, 97, 2903–2908. [Google Scholar] [CrossRef]
- Zhang, D.-L.; Qiu, C.-X.; Zhang, W.-Z.; Hua, P.-R.; Yu, D.-Y.; Pun, E.Y.-B. Diffusion Characteristics of Zr4+ in LiNbO3 Single-Crystal. J. Am. Ceram. Soc. 2013, 96, 2722–2724. [Google Scholar] [CrossRef]
- Tsai, W.-S.; Chiang, T.-Y.; Liu, L.-Y.; Chang, P.-C.; Su, Y.-K. Time and Temperature Dependent Study of Zn and Ni Codiffused LiNbO3 Waveguides. J. Light. Technol. 2015, 33, 4850–4859. [Google Scholar] [CrossRef]
- Zhang, D.-L.; Qiu, C.-X.; Wong, W.-H.; Du, W.-J.; Pun, E.Y.-B. Zr4+/Ti4+ Codiffusion Characteristics in Lithium Niobate. J. Am. Ceram. Soc. 2015, 98, 567–573. [Google Scholar] [CrossRef]
- Zhang, D.-L.; Zhang, Q.; Qiu, C.-X.; Wong, W.-H.; Dao, Y.-Y.; Pun, E.Y.-B. Diffusion control of an ion by another in LiNbO3 and LiTaO3 crystals. Sci. Rep. 2015, 5, 10018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Almeida, J.M.M.M.; Marinho, F.; Alexandre, D.; Sada, C. Secondary Ion Mass Spectrometry Study of Erbium Titanium Codiffusion in Lithium Niobate. IEEE Phot. Lett. Tech. 2014, 26, 1307–1309. [Google Scholar] [CrossRef] [Green Version]
- Jackel, J.J.; Rice, C.E. Topotactic LiNbO3 to Cubic Perovskite Structural Transformation in LiNbO3 and LiTaO3. Ferroelectrics 1982, 38, 801–8040. [Google Scholar] [CrossRef]
- Jackel, J.J.; Rice, C.E.; Veselka, J.J. Proton exchange for high-index waveguides in LiNbO3. Appl. Phys. Lett. 1982, 41, 607–608. [Google Scholar] [CrossRef]
- Cabrera, J.M.; Olivares, J.; Carrascosa, M.; Rams, J.; Müller, R.; Diéguez, E. Hydrogen in Lithium Niobate. Adv. Phys. 1996, 45, 349–392. [Google Scholar] [CrossRef]
- Campari, A.; Ferrari, C.; Mazzi, G.; Summonte, C.; Al-Shukri, S.M.; Dawar, A.; De La Rue, R.M.; Nutt, A.C.G. Strain and Surface Damage Induced by Proton Exchange in Y-cut LiNbO3. J. Appl. Phys. 1985, 58, 4521–4524. [Google Scholar] [CrossRef]
- De Micheli, M.; Ostrowsky, D.B.; Barety, J.P.; Mazzi, G.; Papuchon, M. Crystalline and Optical Quality of Proton Exchanged Waveguides. J. Light. Tech. 1986, LT-4, 743–745. [Google Scholar] [CrossRef]
- Canali, C.; Carnera, A.; Della Mea, G.; Mazzoldi, P.; Al Shukri, S.M.; Nutt, A.C.G.; De La Rue, R.M. Structural Characterization of Proton Exchanged LiNbO3 Optical Waveguides. J. Appl. Phys. 1986, 59, 2643–2649. [Google Scholar] [CrossRef]
- Olivares, J.; Cabrera, J.M.; Agulló-López, F.; Rebouta, L.; da Silva, M.F.; Soares, J.C. Structural Characterization of LiNbO3 Proton-Exchanged Waveguides by Ion-Beam Methods. Ferroelectrics 1995, 174, 93–99. [Google Scholar] [CrossRef]
- Hu, H.; Lu, F.; Chen, F.; Wang, F.-X.; Zhang, J.-H.; Liu, X.-D.; Wang, K.-M. Channeling Study of Proton-Exchanged LiNbO3 Optical Waveguides. Phys. Stat. Sol. 2000, 181, 509–513. [Google Scholar] [CrossRef]
- Cargo, J.T.; Filo, A.J.; Hughes, M.C.; Kannan, V.C.; Stevie, F.A.; Taylor, J.A.; Holmes, R.J. Characterization of Sulfuric Acid Proton-Exchanged Lithium Niobate. J. Appl. Phys. 1990, 67, 627–633. [Google Scholar] [CrossRef]
- Paz-Pujalt, G.R.; Tuschel, D.D.; Braunstein, G.; Blanton, T.; Tong Lee, S.; Salter, L.M. Characterization of Proton Exchange Lithium Niobate Waveguides. J. Appl. Phys. 1994, 76, 3981–3987. [Google Scholar] [CrossRef] [Green Version]
- Hsu, W.-Y.; Braunstein, G.; Gopalan, V.; Willand, C.S.; Gupta, M.C. Correlation between Structural and Optical Properties in Proton-Exchanged LiNbO3. Appl. Phys. Lett. 1992, 61, 3083–3085. [Google Scholar] [CrossRef]
- Olivares, J.; Cabrera, J.M.; Agulló-López, F.; Rebouta, L.; da Silva, M.F.; Soares, J.C. Ion-Beam Channeling Characterization of Proton-Exchanged LiNbO3. In Proceedings of the 6th European Conference on Integrated Optics and Technical Exhibit: ECIO 93, Neuchâtel, Switzerland, 18–22 April 1993; Roth, P., Parriaux, O.M., Eds.; ECIO: Neuchâtel, Switzerland, 1993; pp. 9-14–9-15. [Google Scholar]
- Kovács, L.; Wöhlecke, M.; Jovanović, A.; Polgár, K.; Kapphan, S. Infrared absorption study of the OH vibrational band in LiNbO3 crystals. J. Phys. Chem. Solids 1991, 52, 707–803. [Google Scholar] [CrossRef]
- Ito, K.; Kawamoto, K. Dependence of Lattice Constant Deviation and Refractive Index on Proton Concentration in Proton-Exchanged Optical Waveguides on a Single Crystal of LiNbO3. Jpn. J. Appl. Phys. 1992, 31, 3882–3887. [Google Scholar] [CrossRef]
- Rottschalk, M.; Bachmann, T.; Witzmann, A. Investigations of Proton Exchanged Optical Waveguides in LiNbO3 Using Elastic Recoil Detection. Nucl. Instr. Meth. B 1991, 61, 91–93. [Google Scholar] [CrossRef]
- Hagner, G.; Bachmann, T. Refractive Index Profiles and Exchange Ratios of Proton-Exchanged Waveguides in Congruent and MgO-Doped LiNbO3. Phys. Stat. Sol. 1998, 165, 205–212. [Google Scholar] [CrossRef]
- Casey, H.C., Jr.; Chen, C.-H.; Zavada, J.M.; Novak, S.W. Analysis of Hydrogen Diffusion from Proton-Exchanged Layers in LiNbO3. Appl. Phys. Lett. 1993, 63, 718–720. [Google Scholar] [CrossRef]
- Zavada, J.M.; Casey, H.C., Jr.; States, R.J.; Novak, S.W.; Loni, A. Correlation of Substitutional Hydrogen to Refractive Index Profiles in Annealed Proton-Exchanged Z- and X-Cut LiNbO3. J. Appl. Phys. 1995, 77, 2697–2708. [Google Scholar] [CrossRef] [Green Version]
- Engelsberg, M.; do Nascimento, G.C.; Pacobahyba, L.H. 1H Atomic Motion in Proton-Exchanged LiNbO3. J. Appl. Phys. 1993, 74, 6427–6429. [Google Scholar] [CrossRef]
- De Souza, R.E.; Engelsberg, M.; Pacobahyba, L.H.; do Nascimento, G.C. Nuclear Magnetic Resonance Study of Proton Exchanged LiNbO3. J. Appl. Phys. 1995, 77, 408–410. [Google Scholar] [CrossRef]
- Engelsberg, M.; de Souza, R.E.; Pacobahyba, L.H.; do Nascimento, G.C. Structural Determination of Hydrogen Site Occupation in Proton-Exchanged LiNbO3 by Nuclear Magnetic Resonance. Appl. Phys. Lett. 1995, 67, 359–361. [Google Scholar] [CrossRef]
- Yamamoto, K.; Taniuchi, T. Characteristics of Pyrophosphoric Acid Proton-Exchanged Waveguides in LiNbO3. J. Appl. Phys. 1991, 70, 6663–6668. [Google Scholar] [CrossRef]
- Cheng, C.-C.; Horng, R.-C.; Chen, Y.-C. Formation and Properties of Proton-Exchanged and Annealed LiNbO3 Waveguides for Surface Acoustic Wave. IEEE Trans. Ultras. Ferroel. Freq. Control. 2001, 48, 387–391. [Google Scholar] [CrossRef]
- Chen, F.; Wang, X.-L.; Wang, K.-M. Development of Ion-Implanted Optical Waveguides in Optical Materials: A Review. Opt. Mat. 2007, 29, 1523–1542. [Google Scholar] [CrossRef]
- Peña-Rodríguez, O.; Olivares, J.; Carrascosa, M.; García-Cabañes, A.; Rivera, A.; Agulló-López, F. Optical Waveguides Fabricated by Ion Implantation/Irradiation: A Review. In Ion Implantation; Goorsky, M., Ed.; InTech: Rijeka, Croatia, 2012; pp. 267–314. ISBN 978-953-51-0634-0. [Google Scholar]
- Destefanis, G.L.; Townsend, P.D.; Gailliard, J.P. Optical Waveguides in LiNbO3 Formed by Ion Implantation of Helium. Appl. Phys. Lett. 1978, 32, 293–294. [Google Scholar] [CrossRef]
- Barfoot, K.M.; Laursen, T.; Whitton, J.L.; Weiss, B.L.; Webb, R.P. In Situ Channeling Analysis During Thermal Annealing of 4He+-Implanted LiNbO3. Nucl. Instr. Meth. B 1989, 44, 141–145. [Google Scholar] [CrossRef]
- Williams, E.K.; Ila, D.; Sarkisov, S.; Venkateswarlu, P.; Poker, D.B. Application of NRA/Channeling to Study He+ Implanted Waveguides. Nucl. Instr. Meth. B 1986, 118, 57–61. [Google Scholar] [CrossRef]
- Al-Chalabi, S.A.M.; Weiss, B.L.; Barfoot, K.M.; Arnold, G.W. Analysis of He-implanted LiNbO3 by Elastic Recoil Detection. J. Appl. Phys. 1988, 63, 1032–1036. [Google Scholar] [CrossRef]
- Kling, A.; da Silva, M.F.; Soares, J.C.; Fichtner, P.F.P.; Amaral, L.; Zawislak, F. Defect Evolution and Characterization in He-Implanted LiNbO3. Nucl. Instr. Meth. B 2001, 175–177, 394–397. [Google Scholar] [CrossRef]
- Fichtner, P.F.P.; Kaschny, J.R.; Kling, A.; Trinkaus, H.; Yankov, R.A.; Mücklich, A.; Skorupa, W.; Zawislak, F.C.; Amaral, L.; da Silva, M.F.; et al. Nucleation and Growth of Platelet Bubble Structures in He+ Implanted Silicon. Nucl. Instr. Meth. B 1998, 136–138, 460–464. [Google Scholar] [CrossRef]
- Gischkat, T.; Schrempel, F.; Höche, T.; Wesch, W. Annealing Behavior of Lithium Niobate Irradiated with He-Ions at 100 K. Nucl. Instr. Meth. B 2009, 267, 1492–1495. [Google Scholar] [CrossRef]
- Olivares, J.; García, G.; Agulló-López, F.; Agulló-Rueda, F.; Soares, J.C.; Kling, A. Optical Investigations of the Propagation of the Amorphous-Crystalline Boundary in Ion-beam Irradiated LiNbO3. Nucl. Instr. Meth. B 2006, 242, 534–537. [Google Scholar] [CrossRef]
- Hu, H.; Lu, F.; Chen, F.; Wang, F.-X.; Zhang, J.-H.; Liu, X.-D.; Wang, K.-M.; Shi, B.-R. Optical waveguide formation by MeV H+ implanted into LiNbO3 crystal. Opt. Comm. 2000, 177, 189–193. [Google Scholar] [CrossRef]
- Zhao, J.-H.; Huang, Q.; Wang, L.; Fu, G.; Qin, X.F.; Liu, P.; Guo, S.-S.; Liu, T.; Wang, X.-L. The Properties of Ion-Implanted LiNbO3 Waveguides Measured by the RBS and Ion Beam Etching Stripping Methods. Opt. Mat. 2011, 33, 1357–1361. [Google Scholar] [CrossRef]
- Wang, L.; Xiang, B.-X. Planar waveguides in magnesium doped stoichiometric LiNbO3 crystals formed by MeV oxygen ion implantations. Nucl. Instr. Meth. B 2012, 272, 121–124. [Google Scholar] [CrossRef]
- Song, Q.; Lu, F.; Ma, X.; Liu, H.; Liu, X.; Zhang, R.; Wang, X. MgO:LiNbO3 Planar Waveguide Formed by MeV O2+ Implantation and Its Annealing Characteristics. Laser Phys. 2008, 18, 815–818. [Google Scholar] [CrossRef]
- Bremer, T.; Heiland, W.; Buchal, C.; Irmscher, R.; Stritzker, B. Recrystallization and Refractive Index Profiles of Titanium-Implanted Optical Waveguides in LiNbO3. J. Appl. Phys. 1990, 67, 1183–1187. [Google Scholar] [CrossRef]
- Zhang, S.-M.; Peng, Y.-D.; Wang, P.; Liu, Q.-X. Influences on Proton Exchange by He Ion Implantation in LiNbO3. Opt. Mat. Expr. 2015, 5, 1526–1531. [Google Scholar] [CrossRef]
- Huang, Q.; Liu, P.; Liu, T.; Guo, S.-S.; Zhang, L.; Wang, X.-L. Lattice damage and waveguide properties of a proton-exchanged LiNbO3 crystal after oxygen-ion implantation. Nucl. Instr. Meth. B 2012, 286, 318–321. [Google Scholar] [CrossRef]
- Herreros, B.; Lifante, G.; Cussó, F.; Kling, A.; Soares, J.C.; da Silva, M.F.; Townsend, P.D.; Chandler, P.J. Structural and Optical Properties of Rare-earth Doped Lithium Niobate Waveguides Formed by MeV Helium Implantation. Mat. Res. Soc. Symp. Proc. 1996, 396, 355–360. [Google Scholar] [CrossRef]
- Herreros, B.; Lifante, G.; Cussó, F.; Sanz, J.A.; Kling, A.; Soares, J.C.; da Silva, M.F.; Townsend, P.D.; Chandler, P.J. Photoluminescence and Rutherford Backscattering Spectrometry Study of Ion-implanted Er3+-doped LiNbO3 Planar Waveguides. J. Phys. Condens. Matter 1998, 10, 3275–3283. [Google Scholar] [CrossRef]
- Herreros, B.; Lifante, G.; Kling, A.; Soares, J.C.; da Silva, M.F.; Townsend, P.D.; Chandler, P.J.; Olivares, J.; Cabrera, J.M. RBS/channeling Study of Ion-implanted and Proton-exchanged LiNbO3:Nd3+:MgO Planar Waveguides. Opt. Mat. 1996, 6, 281–286. [Google Scholar] [CrossRef]
- Cajzl, J.; Nekvindová, P.; Macková, A.; Malinský, P.; Oswald, J.; Staněk, S.; Vytykáčová, S.; Špirková, J. Optical waveguides in Er:LiNbO3 fabricated by different techniques—A Comparison. Opt. Mat. 2016, 53, 160–168. [Google Scholar] [CrossRef]
Dopant | Main Activation Reaction(s) | Relative Weight [%] | Max γ Energy [MeV] | Max Induced Recoil [eV] | Importance | ||
---|---|---|---|---|---|---|---|
Er | 159.4 | 167Er(n,γ)168Er | 642.3 | 92 | 7.691 | 188 | High |
Fe | 2.56 | 56Fe(n,γ)57Fe | 2.59 | 93 | 7.646 | 551 | Moderate |
Hf | 104.1 | 177Hf(n,γ)178Hf | 375.5 | 67 | 6.451 | 126 | High |
In | 193.8 | 115In(n,γ)116In | 201.0 | 99 | 6.561 | 199 | High |
Mg | 0.063 | 24Mg(n,γ)25Mg | 0.05 | 63 | 7.329 | 1153 | Low |
Nd | 50.5 | 143Nd(n,γ)144Nd | 325.0 | 78 | 6.502 | 158 | High |
Sc | 27.14 | 45Sc(n,γ)46Sc | 27.14 | 100 | 8.760 | 896 | High |
Ti | 6.09 | 48Ti(n,γ)49Ti | 7.84 | 95 | 6.760 | 501 | Moderate |
Yb | 34.8 | 174Yb(n,γ)175Yb | 69.4 | 63 | 5.308 | 86 | Moderate |
Zn | 1.11 | 64Zn(n,γ)65Zn | 0.93 | 41 | 7.864 | 511 | Moderate |
67Zn(n,γ)68Zn | 6.8 | 28 | 9.120 | 657 | Moderate |
Energy | NIEL e− | NIEL n | NIEL p | NIEL α |
---|---|---|---|---|
[MeV] | [MeV·cm2/g] | [MeV·cm2/g] | [MeV·cm2/g] | [MeV·cm2/g] |
0.001 | 1.886 × 10−5 | 4.255 | 4.285 × 10+1 | |
0.01 | 5.984 × 10−5 | 1.914 | 2.450 × 10+1 | |
0.1 | 2.346 × 10−7 | 4.229 × 10−4 | 3.932 × 10−1 | 6.528 |
1 | 1.506 × 10−5 | 2.568 × 10−3 | 5.537 × 10−2 | 9.452 × 10−1 |
10 | 8.037 × 10−5 | 1.962 × 10−3 | 7.368 × 10−3 | 1.090 × 10−1 |
Melt Type | Concentration in Melt (mol%) | Concentration in Crystal (mol%) | Distribution Coefficient |
---|---|---|---|
congruent | 1.0 | 1.3 | 1.3 |
congruent | 6.0 | 3.5–5.1 | 0.58–0.85 |
stoichiometric | 0.2 | 0.6 | 3.0 |
stoichiometric | 1.0 | 1.7 | 1.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kling, A.; Marques, J.G. Unveiling the Defect Structure of Lithium Niobate with Nuclear Methods. Crystals 2021, 11, 501. https://doi.org/10.3390/cryst11050501
Kling A, Marques JG. Unveiling the Defect Structure of Lithium Niobate with Nuclear Methods. Crystals. 2021; 11(5):501. https://doi.org/10.3390/cryst11050501
Chicago/Turabian StyleKling, Andreas, and José G. Marques. 2021. "Unveiling the Defect Structure of Lithium Niobate with Nuclear Methods" Crystals 11, no. 5: 501. https://doi.org/10.3390/cryst11050501
APA StyleKling, A., & Marques, J. G. (2021). Unveiling the Defect Structure of Lithium Niobate with Nuclear Methods. Crystals, 11(5), 501. https://doi.org/10.3390/cryst11050501