Mechanical Properties of Glass-Based Geopolymers Affected by Activator and Curing Conditions under Optimal Aging Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Activator
2.3. Aging Process
2.4. Curing Process
2.5. Specimen Strength Development
3. Results and Discussion
3.1. Effects of the AE% on the Curing Process
3.2. Effects of the Curing Temperature on the Compressive Strength
3.3. Effects of the Curing Duration on the Compressive Strength
3.4. Effects of the Curing Process on Long-Term Strength Development
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Arndt, N.T.; Fontboté, L.; Hedenquist, J.W.; Kesler, S.E.; Thompson, J.F.; Wood, D.G. Future global mineral resources. Geochem. Perspect. 2017, 6, 1–171. [Google Scholar] [CrossRef] [Green Version]
- Hodges, C.A. Mineral resources, environmental issues, and land use. Science 1995, 268, 1305–1312. [Google Scholar] [CrossRef] [PubMed]
- Davidovits, J. Geopolymer cements to minimise carbon-dioxide greenhouse-warming. Ceram. Trans. 1993, 37, 165–182. [Google Scholar]
- Mehta, P.K. Reducing the environmental impact of concrete. Concr. Int. 2001, 23, 61–66. [Google Scholar]
- Xu, H.; Van Deventer, J.S.J. The geopolymerisation of alumino-silicate minerals. Int. J. Miner. Process. 2000, 59, 247–266. [Google Scholar] [CrossRef] [Green Version]
- Krizan, D.; Zivanovic, B. Effects of dosage and modulus of water glass on early hydration of alkali-slag cements. Cem. Concr. Res. 2002, 32, 1181–1188. [Google Scholar] [CrossRef]
- Davidovits, J. Geopolymers: Man-made rock geosynthesis and the resulting development of very early high strength cement. J. Mater. Educ. 1994, 16, 91–139. [Google Scholar]
- Davidovits, J. 30 years of successes and failures in geopolymer applications. Market trends and potential breakthroughs. In Proceedings of the Keynote Conference on Geopolymer Conference, Melbourne, VIC, Australia, 28–29 October 2002. [Google Scholar]
- Davidovits, J. Geopolymers: Inorganic polymeric new materials. J. Therm. Anal. 1991, 37, 1633–1656. [Google Scholar] [CrossRef]
- Wang, S.D.; Pu, X.C.; Scrivener, K.; Pratt, P.L. Alkali-activated slag cement and concrete: A review of properties and problems. Adv. Cem. Res. 1995, 7, 93–102. [Google Scholar] [CrossRef]
- Roy, D.M. Alkali-activated cements opportunities and challenges. Cem. Concr. Res. 1999, 29, 249–254. [Google Scholar] [CrossRef]
- Medri, V.; Papa, E.; Lizion, J.; Landi, E. Metakaolin-based geopolymer beads: Production methods and characterization. J. Clean. Prod. 2019, 244, 118844. [Google Scholar] [CrossRef]
- Ez-zaki, H.; Bellotto, M.; Valentini, L.; Garbin, E.; Artioli, G. Influence of cellulose nanofibrils on the rheology, microstructure and strength of alkali activated ground granulated blast-furnace slag: A comparison with ordinary Portland cement. Mater. Struct. 2021, 54, 1–18. [Google Scholar] [CrossRef]
- Atiş, C.D.; Görür, E.B.; Karahan, O.; Bilim, C.; Ilkentapar, S.; Luga, E. Very high strength (120 MPa) class F fly ash geopolymer mortar activated at different NaOH amount, Heat Curing Temperature and Heat Curing Duration. Constr. Build. Mater. 2015, 96, 673–678. [Google Scholar] [CrossRef]
- Bahrami, M.; Shalbafan, A.; Welling, J. Development of plywood using geopolymer as binder: Effect of silica fume on the plywood and binder characteristics. Eur. J. Wood Prod. 2019, 77, 981–994. [Google Scholar] [CrossRef]
- Chindaprasirt, P.; Jaturapitakkul, C.; Chalee, W.; Rattanasak, U. Comparative study on the characteristics of fly ash and bottom ash geopolymers. Waste Manag. 2009, 29, 539–543. [Google Scholar] [CrossRef]
- Sun, Q.; Liu, J.; Cheng, H.; Mou, Y.; Liu, J.; Peng, Y.; Chen, M. Fabrication of 3D structures via direct ink writing of kaolin/graphene oxide composite suspensions at ambient temperature. Ceram. Int. 2019, 45, 18972–18979. [Google Scholar] [CrossRef]
- Lampris, C.; Lupo, R.; Cheeseman, C.R. Geopolymerisation of silt generated from construction and demolition waste washing plants. Waste Manag. 2009, 29, 368–373. [Google Scholar] [CrossRef] [PubMed]
- Shekhawat, P.; Sharma, G.; Singh, R.M. Strength behavior of alkaline activated eggshell powder and flyash geopolymer cured at ambient temperature. Constr. Build. Mater. 2019, 223, 1112–1122. [Google Scholar] [CrossRef]
- Yang, K.H.; Lo, C.W.; Huang, J.S. Production and properties of foamed reservoir sludge inorganic polymers. Cem. Concr. Compos. 2013, 38, 50–56. [Google Scholar] [CrossRef]
- Dung, N.T.; Chang, T.P.; Chen, C.T.; Yang, T.R. Cementitious properties and microstructure of an innovative slag eco-binder. Mater. Struct. 2016, 49, 2009–2024. [Google Scholar] [CrossRef]
- Mehta, A.; Siddique, R. Properties of low-calcium fly ash based geopolymer concrete incorporating OPC as partial replacement of fly ash. Constr. Build. Mater. 2017, 150, 792–807. [Google Scholar] [CrossRef]
- Nguyen, H.A.; Chang, T.P.; Shih, J.Y.; Chen, C.T. Influence of low calcium fly ash on compressive strength and hydration product of low energy super sulfated cement paste. Cem. Concr. Compos. 2019, 99, 40–48. [Google Scholar] [CrossRef]
- Habert, G.; d’Espinose de Lacaillerie, J.B.; Roussel, N. An environmental evaluation of geopolymer based concrete production: Reviewing current research trends. J. Clean. Prod. 2011, 19, 1229–1238. [Google Scholar] [CrossRef]
- Luhar, S.; Cheng, T.W.; Nicolaides, D.; Luhar, I.; Panias, D.; Sakkas, K. Valorisation of glass wastes for the development of geopolymer composites–Durability, thermal and microstructural properties: A review. Constr. Build. Mater. 2019, 222, 673–687. [Google Scholar] [CrossRef]
- Adediran, A.; Lemougna, P.N.; Yliniemi, J.; Tanskanen, P.; Kinnunen, P.; Roning, J.; Illikainen, M. Recycling glass wool as a fluxing agent in the production of clay-and waste-based ceramics. J. Clean. Prod. 2021, 289, 125673. [Google Scholar] [CrossRef]
- Chen, G.; Lee, H.; Young, K.L.; Yue, P.L.; Wong, A.; Tao, T.; Choi, K.K. Glass recycling in cement production—an innovative approach. Waste Manag. 2002, 22, 747–753. [Google Scholar] [CrossRef]
- Suvorova, O.V.; Manakova, N.K.; Makarov, D.V. Use of Bulk Industrial Wastes in the Production of Glass Foam Materials. Glass Ceram. 2021, 77, 384–389. [Google Scholar] [CrossRef]
- Ali, S.; Iqbal, S.; Room, S.; Ali, A.; Rehman, Z.U. Value added usage of granular steel slag and milled glass in concrete production. J. Eng. Res. 2021, 9. [Google Scholar] [CrossRef]
- Simone, A.; Mazzotta, F.; Eskandarsefat, S.; Sangiorgi, C.; Vignali, V.; Lantieri, C.; Dondi, G. Experimental application of waste glass powder filler in recycled dense-graded asphalt mixtures. Road Mater. Pavement Des. 2019, 20, 592–607. [Google Scholar] [CrossRef] [Green Version]
- Christiansen, M.U. Effects of Composition and Activator Type on Glass-Based Geopolymers. ACI Mater. J. 2019, 116, 239–250. [Google Scholar] [CrossRef]
- Chen, T.A.; Chen, J.H.; Huang, J.S. Effects of activator and aging process on the compressive strengths of alkali-activated glass inorganic binders. Cem. Concr. Compos. 2017, 76, 1–12. [Google Scholar] [CrossRef]
- Chen, T.A. Optimum curing temperature and duration of alkali-activated glass inorganic binders. J. Chin. Inst. Eng. 2020, 43, 592–602. [Google Scholar] [CrossRef]
- Hosoi, K.; Kawai, S.; Yanagisawa, K.; Yamasaki, N. Densification process for spherical glass powders with the same particle size by hydrothermal hot pressing. J. Mater. Sci. 1991, 26, 6448–6452. [Google Scholar] [CrossRef]
- Verma, M.; Dev, N. Effect of ground granulated blast furnace slag and fly ash ratio and the curing conditions on the mechanical properties of geopolymer concrete. Struct. Concr. 2021. [Google Scholar] [CrossRef]
- Swanepoel, J.C.; Strydom, C.A. Utilisation of fly ash in a geopolymer material. Appl. Geochem. 2002, 17, 1143–1148. [Google Scholar] [CrossRef]
SiO2 | Al2O3 | Fe2O3 | CaO | MgO | Na2O | K2O | Gs | Absorption | Specific Surface Area |
---|---|---|---|---|---|---|---|---|---|
72.5% | 2% | 0.06% | 10.5% | 1% | 13% | 0.5% | 2.55 | 0.2% | 4303 cm2/g |
W/B | AE% | Sodium Hydroxide (g) | Water (g) | Glass Powder (g) |
---|---|---|---|---|
0.3 | 1% | 12.91 | 303.87 | 1000 |
2% | 25.82 | 307.75 | 1000 | |
3% | 38.73 | 311.62 | 1000 | |
4% | 51.64 | 315.49 | 1000 | |
5% | 64.55 | 319.37 | 1000 | |
6% | 77.47 | 323.24 | 1000 |
AE% = 1% | AE% = 2% | AE% = 3% | ||||
Curing Temperature (°C) | Curing Duration (h) | Compressive Strength (MPa) | Curing Duration (h) | Compressive Strength (MPa) | Curing Duration (h) | Compressive Strength (MPa) |
60 | 96 | <55.24> | 96 | <76.26> | 96 | 129.65 |
70 | 88 | 71.97 | 88 | 106.72 | 80 | 136.77 |
80 | 64 | 69.53 | 48 | 101.89 | 48 | 129.97 |
90 | 48 | 69.96 | 32 | 85.89 | 32 | 126.83 |
100 | 24 | 65.31 | 24 | 82.31 | 24 | 96.21 |
Ultimate compressive strength | 69.19 | 94.20 | 123.89 | |||
AE% = 4% | AE% = 5% | AE% = 6% | ||||
Curing Temperature (℃) | Curing Duration (h) | Compressive Strength (MPa) | Curing Duration (h) | Compressive Strength (MPa) | Curing Duration (h) | Compressive Strength (MPa) |
60 | 96 | 122.62 | 88 | 119.25 | 88 | 108.17 |
70 | 64 | 119.65 | 64 | 107.96 | 56 | 103.60 |
80 | 48 | 105.34 | 48 | 114.84 | 40 | 115.91 |
90 | 32 | 103.05 | 32 | 100.72 | 24 | 109.37 |
100 | 16 | 111.24 | 16 | 97.01 | 8 | 96.86 |
Ultimate compressive strength | 112.38 | 107.96 | 106.78 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, T.-A. Mechanical Properties of Glass-Based Geopolymers Affected by Activator and Curing Conditions under Optimal Aging Conditions. Crystals 2021, 11, 502. https://doi.org/10.3390/cryst11050502
Chen T-A. Mechanical Properties of Glass-Based Geopolymers Affected by Activator and Curing Conditions under Optimal Aging Conditions. Crystals. 2021; 11(5):502. https://doi.org/10.3390/cryst11050502
Chicago/Turabian StyleChen, Tai-An. 2021. "Mechanical Properties of Glass-Based Geopolymers Affected by Activator and Curing Conditions under Optimal Aging Conditions" Crystals 11, no. 5: 502. https://doi.org/10.3390/cryst11050502
APA StyleChen, T. -A. (2021). Mechanical Properties of Glass-Based Geopolymers Affected by Activator and Curing Conditions under Optimal Aging Conditions. Crystals, 11(5), 502. https://doi.org/10.3390/cryst11050502