Optical Spectroscopy of Li6Y(BO3)3 Single Crystals Doped with Dysprosium
Abstract
:1. Introduction
2. Experimental
3. Results and Discussion
3.1. Absorption Spectra
3.2. Luminescence
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Becker, P. Borate Materials in Nonlinear Optics. Adv. Mater. 1998, 10, 979–992. [Google Scholar] [CrossRef]
- Arun Kumar, R. Borate Crystals for Nonlinear Optical and Laser Applications: A Review. J. Chem. 2013, 2013, 154862. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Sasaki, T.; Li, R.; Wu, Y.; Lin, Z.; Mori, Y.; Hu, Z.; Wang, J.; Uda, S.; Yoshimura, M.; et al. Nonlinear Optical Borate Crystals; Wiley-VCH GmbH & Co.: Weinheim, Germany; KGaA: Weinheim, Germany, 2012. [Google Scholar] [CrossRef]
- Dorenbos, P.; van Eijk, C.W.E. Proceedings of the International Conference on Inorganic Scintillators and Their Applications, Delft, The Netherlands, 28 August–1 September 1995; Delft University Press: Delft, The Netherlands, 1996. [Google Scholar]
- Knitel, M.J. New Inorganic Scintillators and Storage Phosphors for Detection of Thermal Neutrons. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 1998. [Google Scholar]
- Skvortsova, V.; Mironova-Ulmane, N.; Ulmanis, U.; Matkovskii, A. Radiation effects in Li2B4O7 oxide crystals. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2000, 166–167, 284–288. [Google Scholar] [CrossRef]
- Burak, Y.V.; Adamiv, V.T.; Teslyuk, I.M.; Shevel, V.M. Optical absorption of isotopically enriched Li2B4O7 single crystals irradiated by thermal neutrons. Radiat. Meas. 2004, 38, 681–684. [Google Scholar] [CrossRef]
- Sangeeta; Chennakesavulu, K.; Desai, D.G.; Sabharwal, S.C.; Alex, M.; Ghodgaonkar, M.D. Neutron flux measurements with a Li2B4O7 crystal. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2007, 571, 699–703. [Google Scholar] [CrossRef]
- Singh, A.K.; Tyagi, M.; Singh, S.G.; Tiwari, B.; Desai, D.G.; Sen, S.; Desai, S.S.; Ghodke, S.S.; Gadkaria, S.C. Performance characteristics of thermal neutron detectors based on Li6Y(BO3)3:Ce single crystals. Nucl. Instrum. Methods A 2015, 804, 189–193. [Google Scholar] [CrossRef]
- Fawad, U.; Kim, H.J.; Khan, S.; Khan, M.; Ali, L. Photoluminescent properties of white-light-emitting Li6Y(BO3)3:Dy3+ phosphor. Solid State Sci. 2016, 62, 1–5. [Google Scholar] [CrossRef]
- Singh, A.K.; Singh, S.G.; Tyagi, M.; Desai, D.G.; Sen, S.; Gadkari, S.C. Growth and characterization of lithium yttrium borate single crystals. AIP Conf. Proc. 2014, 1591, 1250–1252. [Google Scholar] [CrossRef]
- Kaewnuam, E.; Wantana, N.; Kim, H.J.; Kaewkhao, J. Development of lithium yttrium borate glass doped with Dy3+ for laser medium, W-LEDs and scintillation materials applications. J. Non-Cryst. Solids 2017, 464, 96–103. [Google Scholar] [CrossRef]
- Chaminade, J.P.; Viraphong, O.; Guillen, F.; Fouassier, C.; Czirr, B. Crystal growth and optical properties of new neutron detectors Ce3+: Li6R(BO3)3 (R = Gd, Y). IEEE Trans. Nucl. Sci. 2001, 48, 1158–1161. [Google Scholar] [CrossRef]
- Tu, C.; Jiang, A.; Luo, Z. The structure of a new laser crystal—Nd3+: Li6Y(BO3)3 (NLYB). Jiegou Huaxue Chin. J. Struct. Chem. 1989, 8, 215–219. [Google Scholar]
- Yavetski, R.P.; Dolzhenkova, E.F.; Dubovik, M.F.; Korshikova, T.I.; Tolmachev, A.V. Growth of single crystals of Li6Y1−xEux(BO3)3 (x = 0–1) solid solutions by the Czochralski method. Crystallogr. Rep. 2005, 50, 88–91. [Google Scholar] [CrossRef]
- Yavetskiy, R.; Tolmachev, A.; Dubovik, M.; Korshikova, T.; Parkhomenko, S. Growth of Li6Gd1−xYx(BO3)3:Eu3+ crystals for thermoluminescent dosimetry. Opt. Mater. 2007, 30, 119–121. [Google Scholar] [CrossRef]
- Yavetskiy, R.; Dolzhenkova, E.; Dubovik, M.; Korshikova, T.; Tolmachev, A. Czochralski growth and optical properties of Li6Gd1−xEux(BO3)3 (x = 0–1) single crystals. J. Cryst. Growth 2005, 276, 485–490. [Google Scholar] [CrossRef]
- Lengyel, K.; Tichy-Racs, E.; Timpmann, K.; Vielhauer, S.; Romet, I.; Kovacs, L.; Corradi, G.; Butkus, R.; Vengris, M.; Grigonis, R.; et al. Cooperative luminescence of Yb3+ ion pairs in Li6Y(BO3)3:Yb single crystals. J. Lumin. 2021, 230, 117732. [Google Scholar] [CrossRef]
- Karunakaran, R.T.; Marimuthu, K.; Babu, S.S.; Arumugam, S. Dysprosium doped alkali fluoroborate glasses-Thermal, structural and optical investigations. J. Lumin. 2010, 130, 1067–1072. [Google Scholar] [CrossRef]
- Kumar, J.S.; Pavani, K.; Babu, A.M.; Giri, N.K.; Rai, S.B.; Moorthy, L.R. Fluorescence characteristics of Dy3+ ions in calcium fluoroborate glasses. J. Lumin. 2010, 130, 1916–1923. [Google Scholar] [CrossRef]
- Dominiak-Dzik, G.; Solarz, P.; Ryba-Romanowski, W.; Beregi, E.; Kovács, L. Dysprosium-doped YAl3(BO3)4 (YAB) crystals: An investigation of radiative and non-radiative processes. J. Alloys Compd. 2003, 359, 51–58. [Google Scholar] [CrossRef]
- Equall, R.W.; Cone, R.L.; Macfarlane, R.M. Homogeneous broadening and hyperfine structure of optical transitions in Pr3+:Y2SiO5. Phys. Rev. B 1995, 52, 3963–3969. [Google Scholar] [CrossRef]
- Auzel, F. Upconversion and anti-Stokes processes with f and d ions in solids. Chem. Rev. 2004, 104, 139–173. [Google Scholar] [CrossRef]
- Saha, S.; Kim, H.J.; Khan, A.; Daniel, D.J.; Absar, R.; Barman, R.; Aryal, P.; Kaewkhao, J.; Kothan, S. Luminescence and Scintillation Properties of Dy3+ doped Li6Y(BO3)3 crystal. Opt. Mater. 2020, 106, 109973. [Google Scholar] [CrossRef]
- Péter, Á.; Polgár, K.; Tóth, M. Synthesis and crystallization of lithium-yttrium orthoborate Li6Y(BO3)3 phase. J. Cryst. Growth 2012, 346, 69–74. [Google Scholar] [CrossRef]
- Zhao, Y.W.; Gong, X.H.; Chen, Y.J.; Huang, L.X.; Lin, Y.F.; Zhang, G.; Tan, Q.G.; Luo, Z.D.; Huang, Y.D. Spectroscopic properties of Er3+ ions in Li6Y(BO3)3 crystal. Appl. Phys. B 2007, 88, 51–55. [Google Scholar] [CrossRef]
- Spassky, D.A.; Kozlova, N.S.; Brik, M.G.; Nagirnyi, V.; Omelkov, S.; Buzanov, O.A.; Buryi, M.; Laguta, V.; Shlegel, V.N.; Ivannikova, N.V. Luminescent, optical and electronic properties of Na2Mo2O7 single crystals. J. Lumin. 2017, 192, 1264–1272. [Google Scholar] [CrossRef]
- Dieke, G.H.; Crosswhite, H.M. The Spectra of the Doubly and Triply Ionized Rare Earths. Appl. Opt. 1963, 2, 675–686. [Google Scholar] [CrossRef]
- Macalik, L.; Hanuza, J.; Macalik, B.; Ryba-Romanowski, W.; Golab, S.; Pietraszko, A. Optical spectroscopy of Dy3+ ions doped in KY(WO4)2 crystals. J. Lumin. 1998, 79, 9–19. [Google Scholar] [CrossRef]
- Dominiak-Dzik, G.; Ryba-Romanowski, W.; Lisiecki, R.; Solarz, P.; Berkowski, M. Dy-doped Lu2SiO5 single crystal: Spectroscopic characteristics and luminescence dynamics. Appl. Phys. B 2010, 99, 285–297. [Google Scholar] [CrossRef]
- Kovács, L.; Casas, S.A.; Corradi, G.; Tichy-Rács, É.; Kocsor, L.; Lengyel, K.; Ryba-Romanowski, W.; Strzep, A.; Scholle, A.; Greulich-Weber, S. Optical and EPR spectroscopy of Er3+ in lithium yttrium borate, Li6Y(BO3)3:Er single crystals. Opt. Mater. 2017, 72, 270–275. [Google Scholar] [CrossRef] [Green Version]
- Joshi, B.C.; Lohani, R. Non-radiative energy transfer from Dy3+ to Ho3+ in zinc phosphate glass. J. Non-Cryst. Solids 1995, 189, 242–245. [Google Scholar] [CrossRef]
- Cavalli, E.; Bovero, E.; Belletti, A. Optical spectroscopy of CaMoO4:Dy3+ single crystals. J. Phys. Condens. Matter 2002, 14, 5221–5228. [Google Scholar] [CrossRef]
- Rao, B.V.; Buddhudu, S. Emission analysis of RE3+ (Dy3+ or Tb3+):Ca3Ln(Y,Gd)(VO4)3 powder phosphors. Mater. Chem. Phys. 2008, 111, 65–68. [Google Scholar] [CrossRef]
- Hsu, C.; Powell, R.C. Energy transfer in europium doped yttrium vanadate crystals. J. Lumin. 1975, 10, 273–293. [Google Scholar] [CrossRef]
- Yu, M.; Lin, J.; Wang, Z.; Fu, J.; Wang, S.; Zhang, H.J.; Han, Y.C. Fabrication, patterning, and optical properties of nanocrystalline YVO4:A (A = Eu3+, Dy3+, Sm3+, Er3+) phosphor films via sol-gel soft lithography. Chem. Mater. 2002, 14, 2224–2231. [Google Scholar] [CrossRef]
- Brik, M.G.; Ishii, T.; Tkachuk, A.M.; Tanaka, I. Energy Level Structure of LiYF4:Dy3+: Crystal Field Analysis. Mater. Trans. 2004, 45, 2026–2030. [Google Scholar] [CrossRef] [Green Version]
- Carnall, W.T.; Fields, P.R.; Rajnak, K. Electronic Energy Levels in the Trivalent Lanthanide Aquo Ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+. J. Chem. Phys. 1968, 49, 4424–4442. [Google Scholar] [CrossRef]
- Kofod, N.; Arppe-Tabbara, R.; Sørensen, T.J. Electronic energy levels of dysprosium(III) ions in solution—Assigning the emitting state, the intraconfigurational 4f-4f transitions in the vis-NIR, and photophysical characterization of Dy(III) in water, methanol and dimethylsulfoxide. J. Phys. Chem. A 2019, 123, 2734–2744. [Google Scholar] [CrossRef] [PubMed]
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Ntheory | ΔE | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
6H15/2 | 0 | 42 | 79 | 134 | 244 | 389 | 503 | 598 | 8 | 598 | ||
6H13/2 | 3564.7 | 3590.5 | 3631.8 | 3692.9 | 3745.8 | 3794.0 | 3861.7 | 7 | 297 | |||
6H11/2 | 5901.2 | 5941.9 | 5989.8 | 6022.8 | 6068.0 | 6115.0 | 6 | 214 | ||||
6H9/2 + 6F11/2 | 7613.4 | 7698.9 | 7713.5 | 7766.0 | 7798.5 | 7870.0 | 7896.5 | 7947.2 | 7980.9 | 8151.1 | 11 | 619 |
8232.1 | ||||||||||||
6H7/2 + 6F9/2 | 8980.3 | 9045.2 | 9085.5 | 9237.6 | 9270.9 | 9299.0 | 9350.0 | 9382.0 | 9602.0 | 9 | 622 | |
6H5/2 | 10,233.0 | 10,312.0 | 10,460.0 | 3 | 223 | |||||||
6F7/2 | 11,038.6 | 11,173.1 | 11,223.9 | 11,276.9 | 4 | 238 | ||||||
6F5/2 | 12,470.0 | 12,528.4 | 12,615.5 | 3 | 135 | |||||||
6F3/2 | 13,327.2 | 13,340.7 | 2 | 13.5 | ||||||||
6F1/2 | 13,873.6 | 1 | 0 | |||||||||
4F9/2 | 20,897 | 20,997 | 21,108 | 21,136 | 21,473 | 5 | 576 | |||||
4I15/2 | 21,928.7 | 21,995 | 22,061 | 22,130 | 22,313 | 22,359 | 22,375 | 22,418 | 8 | 489 | ||
4G11/2 | 23,378 | 23,434 | 23,458 | 23,507 | 23,539 | 23,596 | 6 | 218 | ||||
4F7/2 | 24,769 | 24,834 | 24,916 | 24,935 | 4 | 166 | ||||||
4I13/2–4M19/2 | about 20 lines | |||||||||||
6P5/2 + 6P3/2 | 27,342 | 27,384 | 27,415 | 27,435 | 27,504 | 5 | 162 | |||||
4I11/2 | 27,831 | 27,880 | 27,906 | 27,962 | 28,036 | 28,074 | 6 | 243 | ||||
4M15/2 | 28,382 | 28,394 | 28,442 | 28,467 | 28,480 | 28,512 | 28,541 | 28,565 | 8 | 183 | ||
6P7/2–2F7/2 | about 40 lines | |||||||||||
4H13/2 | 33,061 | 33,084 | 33,097 | 33,110 | 33,130 | 33,146 | 33,156 | 7 | 95 | |||
4K13/2 + 4F3/2 | 33,384 | 33,398 | 33,415 | 33,442 | 33,456 | 33,484 | 33,533 | 33,560 | 33,576 | 9 | 192 | |
4D7/2 | 33,854 | 33,881 | 33,916 | 33,950 | 4 | 96 | ||||||
4F5/2–4F3/2 | about 25–30 lines | |||||||||||
4P5/2 + 4P3/2 | 38,705 | 38,875 | 39,019 | 39,050 | 39,074 | 5 | 369 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tichy-Rács, É.; Romet, I.; Kovács, L.; Lengyel, K.; Corradi, G.; Nagirnyi, V. Optical Spectroscopy of Li6Y(BO3)3 Single Crystals Doped with Dysprosium. Crystals 2021, 11, 503. https://doi.org/10.3390/cryst11050503
Tichy-Rács É, Romet I, Kovács L, Lengyel K, Corradi G, Nagirnyi V. Optical Spectroscopy of Li6Y(BO3)3 Single Crystals Doped with Dysprosium. Crystals. 2021; 11(5):503. https://doi.org/10.3390/cryst11050503
Chicago/Turabian StyleTichy-Rács, Éva, Ivo Romet, László Kovács, Krisztián Lengyel, Gábor Corradi, and Vitali Nagirnyi. 2021. "Optical Spectroscopy of Li6Y(BO3)3 Single Crystals Doped with Dysprosium" Crystals 11, no. 5: 503. https://doi.org/10.3390/cryst11050503
APA StyleTichy-Rács, É., Romet, I., Kovács, L., Lengyel, K., Corradi, G., & Nagirnyi, V. (2021). Optical Spectroscopy of Li6Y(BO3)3 Single Crystals Doped with Dysprosium. Crystals, 11(5), 503. https://doi.org/10.3390/cryst11050503