The Crystallization Behavior of TiO2-CaO-SiO2-Al2O3-MgO Pentabasic Slag with a Basicity of 1.1–1.4
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Thermodynamic Calculation
3.2. The Experimental Results
3.3. The Crystallization Mechanism
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ball, C.J.; Begg, B.D.; Cookson, D.J.; Thorogood, G.J.; Vance, E.R. Structures in the system CaTiO3/SrTiO3. J. Solid State Chem. 1998, 139, 238–247. [Google Scholar] [CrossRef]
- Liao, J.L.; Li, J.; Wang, X.D.; Zhang, Z.T. Influence of TiO2 and basicity on viscosity of Ti bearing slag. Ironmak. Steelmak. 2012, 39, 133–139. [Google Scholar] [CrossRef]
- Hu, M.L.; Wei, R.R.; Gao, L.Z.; Liu, L.; Bai, C.G. Effect of the Basicity on the Crystallization Behavior of Titanium Bearing Blast Furnace Slag. High Temp. Mater. Processes. 2018, 37, 193–200. [Google Scholar]
- Liu, Y.; Zhang, Z.; Hou, G.; Yan, P. Preparation of sustainable and green cement -based composite binders with high -volume steel slag powder and ultra fine blast furnace slag powder. J. Clean. Prod. 2021, 289, 125133. [Google Scholar] [CrossRef]
- Yang, H.; Ma, M.L.; Gao, M.L.; Xue, X.X.; Tang, Y.Q. Research on Heat Treatment Process of Foam Glass Prepared by Titania-Bearing Blast Furnace Slag. Adv Mat Res. 2009, 1587–1590. [Google Scholar] [CrossRef]
- Xiong, Y.; Aldahri, T.; Liu, W.; Chu, G.; Zhang, G.; Luo, D.; Yue, H.; Liang, B.; Li, C. Simultaneous preparation of TiO2 and ammonium alum, and microporous SiO2 during the mineral carbonation of titanium-bearing blast furnace slag. Chin. J. Chem. Eng. 2020, 28, 2256–2266. [Google Scholar] [CrossRef]
- Liu, S.S.; Guo, Y.F.; Qiu, G.Z.; Jiang, T.; Chen, F. Preparation of Ti-rich material from titanium slag by activation roasting followed by acid leaching. Trans. Nonferrous Met. Soc. China 2013, 23, 1174–1178. [Google Scholar] [CrossRef]
- Peng, B.; Wu, L.; Zhu, J.H.; Hou, Y.; Zhang, G.H. A novel method for preparing Ti5Si3 from Ti-bearing blast furnace slag. Metall. Res. Technol. 2020, 117, 614. [Google Scholar] [CrossRef]
- Chen, K.Y.; Li, Y.; Meng, X.Y.; Meng, L.; Guo, Z.C. New integrated method to recover the TiO2 component and prepare glass-ceramics from molten titanium-bearing blast furnace slag. Ceram. Int. 2009, 45, 24236–24243. [Google Scholar] [CrossRef]
- Lai, F.F.; Leng, M.; Li, J.L.; Liu, Q.C. The Crystallization Behaviors of SiO2-Al2O3-CaO-MgO-TiO2 Glass-Ceramic Systems. Crystals 2020, 10, 794. [Google Scholar] [CrossRef]
- Alencar, M.V.S.; Bezerra, G.V.P.; Silva, L.D.; Schneider, J.F.; Jesus Pascual, M.; Cabral, A.A. Structure, Glass Stability and Crystallization Activation Energy of SrO-CaO-B2O3-SiO2 glasses doped with TiO2. J. Non-Cryst. Solids 2021, 554, 120605. [Google Scholar] [CrossRef]
- Kavitha, S.; Jayamani, N.; Barathi, D. Investigation on SnO2/TiO2 nanocomposites and their enhanced photocatalytic properties for the degradation of methylene blue under solar light irradiation. Bull. Mater. Sci. 2021, 44. [Google Scholar] [CrossRef]
- Lei, X.F.; Xue, X.X. Preparation and characterization of perovskite-type Titania-bearing blast furnace slag photocatalyst. Mater. Sci. Semicond. Process. 2008, 11, 117–121. [Google Scholar] [CrossRef]
- Lei, X.F.; Xue, X.X. Preparation, characterization and photocatalytic activity of sulfuric acid-modified titanium-bearing blast furnace slag. Trans. Nonferrous Met. Soc. China 2010, 20, 2294–2298. [Google Scholar] [CrossRef]
- Jiao, H.D.; Tian, D.H.; Wang, S.; Zhu, J.; Jiao, S.Q. Direct Preparation of Titanium Alloys from Ti-Bearing Blast Furnace Slag. J. Electrochem. Soc. 2017, 164, D511–D516. [Google Scholar] [CrossRef]
- Fan, G.Q.; Dang, J.; Lv, X.W.; Hu, M.L. Effect of basicity on the crystallization behavior of TiO2-CaO-SiO2 ternary system slag. CrystEngComm 2018, 20, 5422–5431. [Google Scholar] [CrossRef]
- Zhang, R.; Dang, J.; Liu, D.; Lv, Z.P.; Fan, G.Q.; Hu, L.W. Reduction of perovskite-geikielite by methane-hydrogen gas mixture: Thermodynamic analysis and experimental results. Sci. Total Environ. 2020, 699, 13. [Google Scholar] [CrossRef] [PubMed]
- Fan, G.Q.; Wang, M.; Dang, J.; Zhang, R.; Lv, Z.P.; He, W.C.; Lv, X.W. A novel recycling approach for efficient extraction of titanium from high-titanium-bearing blast furnace slag. Waste Manag. 2020, 120, 626–634. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhang, Z.T.; Liu, L.L.; Wang, W.L.; Wang, X.D. Influence of Basicity and TiO2 Content on the Precipitation Behavior of the Ti-bearing Blast Furnace Slags. ISIJ Int. 2013, 53, 1696–1703. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Hu, M.L.; Bai, C.G.; Lu, X.W.; Xu, Y.Z.; Deng, Q.Y. Effect of cooling rate on the crystallization behavior of perovskite in high titanium-bearing blast furnace slag. Int. J. Miner. Metall. Mater. 2014, 21, 1052–1061. [Google Scholar] [CrossRef] [Green Version]
CaO | SiO2 | MgO | Al2O3 | TiO2 | Other | Total | R * |
---|---|---|---|---|---|---|---|
27.53 | 24.04 | 7.97 | 13.7 | 22.57 | 4.19 | 100 | 1.15 |
No. | TiO2 | CaO | SiO2 | MgO | Al2O3 | R | R4 |
---|---|---|---|---|---|---|---|
1 | 24 | 28.29 | 25.71 | 8 | 14 | 1.1 | 0.91 |
2 | 24 | 29.45 | 24.55 | 8 | 14 | 1.2 | 0.97 |
3 | 24 | 30.52 | 23.48 | 8 | 14 | 1.3 | 1.03 |
4 | 24 | 31.5 | 22.5 | 8 | 14 | 1.4 | 1.08 |
Point | Ti | Ca | O | Mg | Al | Si |
---|---|---|---|---|---|---|
a | 18.70 | 18.93 | 62.38 | 0 | 0 | 0 |
b | 18.09 | 18.39 | 63.52 | 0 | 0 | 0 |
c | 2.45 | 9.73 | 56.45 | 7.09 | 8.93 | 15.35 |
d | 0.43 | 0 | 55.84 | 15.05 | 28.68 | 0 |
e | 18.53 | 18.79 | 62.68 | 0 | 0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lei, H.; Tan, C.; Fan, G.; Huang, D.; Ding, X.; Dang, J. The Crystallization Behavior of TiO2-CaO-SiO2-Al2O3-MgO Pentabasic Slag with a Basicity of 1.1–1.4. Crystals 2021, 11, 583. https://doi.org/10.3390/cryst11060583
Lei H, Tan C, Fan G, Huang D, Ding X, Dang J. The Crystallization Behavior of TiO2-CaO-SiO2-Al2O3-MgO Pentabasic Slag with a Basicity of 1.1–1.4. Crystals. 2021; 11(6):583. https://doi.org/10.3390/cryst11060583
Chicago/Turabian StyleLei, Huxu, Chaowen Tan, Gangqiang Fan, Dejun Huang, Xiaoming Ding, and Jie Dang. 2021. "The Crystallization Behavior of TiO2-CaO-SiO2-Al2O3-MgO Pentabasic Slag with a Basicity of 1.1–1.4" Crystals 11, no. 6: 583. https://doi.org/10.3390/cryst11060583
APA StyleLei, H., Tan, C., Fan, G., Huang, D., Ding, X., & Dang, J. (2021). The Crystallization Behavior of TiO2-CaO-SiO2-Al2O3-MgO Pentabasic Slag with a Basicity of 1.1–1.4. Crystals, 11(6), 583. https://doi.org/10.3390/cryst11060583