Potential Efficient Separation of Oil from Bilgewater and Kitchen Wastewater by Fractional Freezing Process
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fractional Freezing Setup
2.3. Experimental Procedure for Fractional Freezing
2.4. Determination of Oil/Grease Value
- C0 = Initial concentration of oil and grease (mg/L)
- Cf = Final concentration of oil and grease (mg/L)
- Vo = Initial volume of wastewater sample (L)
- Vf = Final volume of wastewater sample (L)
- Vrec = Volume of recovered oil (L)
- mo = Mass of initial oil (mg)
- mrec = Mass of recovered oil (mg).
2.5. Determination of Free Fatty Acid Content (FFA%)
- N = Normality of KOH = 0.1
- AV = Acid value.
2.6. p-Value Calculation
- ‘array1’ = the data range for the first data set (before)
- ‘array2’ = the data range for the second data set (after)
- ‘tails’ = number of distribution tails
- ‘type’ = type of t-test to perform.
3. Results and Discussion
3.1. Effect of Coolant Temperature
3.2. Effect of Freezing Time
3.3. Effect of Stirring Rate
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Feng, C.; Sugiura, N.; Shimada, S.; Maekawa, T. Development of a high performance electrochemical wastewater treatment system. J. Hazard. Mater. 2003, 103, 65–78. [Google Scholar] [CrossRef]
- Owa, F.W. Water pollution: Sources, effects, control and management. Int. Lett. Nat. Sci. 2014, 3, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Metcalf & Eddy Inc. Wastewater Engineering: Treatment and Resource Recovery, 5th ed.; McGraw-Hill: New York, NY, USA, 2014. [Google Scholar]
- Potters, G. Marine Pollution, 1st ed.; bookboon.com: London, UK, 2013; ISBN 978-87-403-0540-1. [Google Scholar]
- Perić, T. Wastewater pollution from cruise ships in coastal sea area of the Republic of Croatia. J. Marit. Res. 2016, 30, 160–164. [Google Scholar] [CrossRef]
- Magnusson, K.; Jalkanen, J.P.; Johansson, L.; Smailys, V.; Telemo, P.; Winnes, H. Risk assessment of bilge water discharges in two Baltic shipping lanes. Mar. Pollut. Bull. 2018, 126, 575–584. [Google Scholar] [CrossRef] [PubMed]
- Tiselius, P.; Magnusson, K. Toxicity of treated bilge water: The need for revised regulatory control. Mar. Pollut. Bull. 2017, 114, 860–866. [Google Scholar] [CrossRef] [PubMed]
- Harrison, R.M. Pollution: Causes, Effects and Control, 4th ed.; Harrison, R.M., Ed.; Royal Society of Chemistry: London, UK, 2001; ISBN 9780854046218. [Google Scholar]
- Gryta, M.; Karakulski, K.; Morawski, A.W. Purification of oily wastewater by hybrid UF/MD. Water Res. 2001, 35, 3665–3669. [Google Scholar] [CrossRef]
- Vikas, M.; Dwarakish, G.S. Coastal pollution: A review. Aquat. Procedia 2015, 4, 381–388. [Google Scholar] [CrossRef]
- Yu, L.; Han, M.; He, F. A review of treating oily wastewater. Arab. J. Chem. 2017, 10, S1913–S1922. [Google Scholar] [CrossRef] [Green Version]
- Hammond, E.W. Vegetable oils. Types and properties. In Encyclopedia of Food Sciences and Nutrition, 2nd ed.; Academic Press: Cambridge, MA, USA, 2003; pp. 5899–5904. [Google Scholar]
- Kheang, L.O.H.S.O.H.; May, C.Y.; Foon, C.S.I.T.; Ngan, M.A. Recovery and conversion of palm olein-derived used frying oil to methyl esters for biodiesel. J. Oil Palm Res. 2006, 18, 247–252. [Google Scholar]
- Azeman, N.H.; Yusof, N.A.; Othman, A.I. Detection of free fatty acid in crude palm oil. Asian J. Chem. 2015, 27, 1569–1573. [Google Scholar] [CrossRef]
- Bahadi, M.A.; Japir, A.; Salih, N.; Salimon, J. Free fatty acids separation from Malaysian high free fatty acid crude palm oil using molecular distillation. Malays. J. Anal. Sci. 2016, 20, 1042–1051. [Google Scholar]
- Kumar, P.K.P.; Krishna, A.G.G. Physico-chemical characteristics and nutraceutical distribution of crude palm oil and its fractions. Grasas Aceites 2014, 65, e018. [Google Scholar]
- Azlan, A.; Prasad, K.N.; Khoo, H.E.; Abdul-Aziz, N.; Mohamad, A.; Ismail, A.; Amom, Z. Comparison of fatty acids, vitamin E and physicochemical properties of Canarium odontophyllum Miq. (dabai), olive and palm oils. J. Food Compos. Anal. 2010, 23, 772–776. [Google Scholar] [CrossRef]
- Shahbandeh, M. Egetable Oils: Global Consumption by Oil Type 2013/14 to 2019/2020. Available online: https://www.statista.com/statistics/263937/vegetable-oils-global-consumption/ (accessed on 11 April 2020).
- Hanisah, K.; Kumar, S.; Tajul, A.Y. The management of waste cooking oil: A preliminary survey. Health Environ. J. 2013, 4, 76–81. [Google Scholar]
- Hui, L.; Yan, W.; Juan, W.; Zhongming, L. A review: Recent advances in oily wastewater treatment. Recent Innov. Chem. Eng. 2015, 7, 17–24. [Google Scholar] [CrossRef]
- Tran, V.T.; Xu, X.; Mredha, M.T.I.; Cui, J.; Vlassak, J.J.; Jeon, I. Hydrogel bowls for cleaning oil spills on water. Water Res. 2018, 145, 640–649. [Google Scholar] [CrossRef]
- Minton, P.E. Handbook of Evaporation Technology; William Andrew: Norwich, NY, USA, 1986; ISBN 0-8155-1097-7. [Google Scholar]
- Amran, N.A.; Jusoh, M. Effect of coolant temperature and circulation flowrate on the performance of a vertical finned crystallizer. Procedia Eng. 2016, 148, 1408–1415. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Sun, X.; Sheng, Q.; Chen, J.; Huang, W.; Zhan, J. Effect of suspension freeze-concentration technology on the quality of wine. South Afr. J. Enol. Vitic. 2016, 37, 39–46. [Google Scholar] [CrossRef]
- Miyawaki, O. Freeze concentration. In Encyclopedia of Agricultural, Food, and Biological Engineering; Heldman, D.R., Moraru, C.I., Eds.; Taylor & Francis: New York, NY, USA, 2010; pp. 385–387. [Google Scholar]
- Ab Hamid, F.H.; Zakaria, Z.Y.; Ngadi, N.; Jusoh, M. Application of progressive freeze concentration for water purification using rotating crystallizer with anti-supercooling holes. In Proceedings of the 2015 5th International Conference on Environment Science and Engineering, Istanbul, Turkey, 24–25 April 2015; Volume 83, pp. 41–47. [Google Scholar]
- Luo, C.S.; Chen, W.W.; Han, W.F. Experimental study on factors affecting the quality of ice crystal during the freezing concentration for the brackish water. Desalination 2010, 260, 231–238. [Google Scholar] [CrossRef]
- Amran, N.A.; Samsuri, S.; Safiei, N.Z.; Zakaria, Z.Y.; Jusoh, M. Review: Parametric study on the performance of progressive cryoconcentration system. Chem. Eng. Commun. 2016, 203, 957–975. [Google Scholar] [CrossRef]
- Jusoh, M.; Mohamed Nor, N.N. Progressive freeze concentration of coconut water: Effect of circulation flowrate and circulation time. J. Teknol. 2014, 67, 91–96. [Google Scholar] [CrossRef] [Green Version]
- Fujioka, R.; Wang, L.P.; Dodbiba, G.; Fujita, T. Application of progressive freeze-concentration for desalination. Desalination 2013, 319, 33–37. [Google Scholar] [CrossRef]
- Auleda, J.M.; Raventós, M.; Hernández, E. Calculation method for designing a multi-plate freeze-concentrator for concentration of fruit juices. J. Food Eng. 2011, 107, 27–35. [Google Scholar] [CrossRef]
- Hernández, E.; Raventós, M.; Auleda, J.M.; Ibarz, A. Concentration of apple and pear juices in a multi-plate freeze concentrator. Innov. Food Sci. Emerg. Technol. 2009, 10, 348–355. [Google Scholar] [CrossRef]
- Raventós, M.; Hernández, E.; Auleda, J.; Ibarz, A. Concentration of aqueous sugar solutions in a multi-plate cryoconcentrator. J. Food Eng. 2007, 79, 577–585. [Google Scholar] [CrossRef]
- Sanchez, J.; Hernandez, E.; Auleda, J.M.; Raventós, M. Review: Freeze concentration technology applied to dairy products. Food Sci. Technol. Int. 2011, 17, 5–13. [Google Scholar] [CrossRef]
- Jusoh, M. Development of a Novel System for Progressive Freeze Concentration Process. Ph.D. Thesis, Universiti Teknologi Malaysia, Johor, Malaysia, 2010. [Google Scholar]
- Amran, N.A. Development of a Vertical Finned Crystallizer for Progressive Freeze Concentration Process. Ph.D Thesis, Universiti Teknologi Malaysia, Skudai, Malaysia, 2015. [Google Scholar]
- Langmann, K. How to Calculate P Value in Excel. Available online: https://spreadsheeto.com/p-value-excel/ (accessed on 6 February 2021).
- Miyawaki, O.; Liu, L.; Shirai, Y.; Sakashita, S.; Kagitani, K. Tubular ice system for scale-up of progressive freeze-concentration. J. Food Eng. 2005, 69, 107–113. [Google Scholar] [CrossRef]
- Jusoh, M.; Yunus, R.M.; Abu Hassan, M.A. Effect of initial concentration of solution and coolant temperature on a new progressive freeze concentration system. J. Chem. Nat. Resour. Eng. 2008, 122–129. [Google Scholar]
- Hanim, F.; Hamid, A.; Ibrahim, N.S.; Nizamuddin, M.; Zolfakar, M. Progressive freeze concentration in removing methylene blue from dye wastewater. Int. J. Appl. Sci. Eng. 2019, 16, 229–239. [Google Scholar] [CrossRef]
- Jusoh, M.; Mohd Yunus, R.; Mohd Ariffin, A.H. Development of a new crystallisation chamber for a progressive freeze concentration system. In Recent Advances in Technologies; Strangio, M.A., Ed.; InTech: London, UK, 2009; ISBN 978-953-307-017-9. [Google Scholar]
- Amran, N.A.; Samsuri, S.; Jusoh, M. Effect of freezing time and shaking speed on the performance of progressive Freeze Concentration via Vertical Finned Crystallizer. Int. J. Automot. Mech. Eng. 2018, 15, 5356–5366. [Google Scholar] [CrossRef]
- Chen, P.; Chen, X.D.; Free, K.W. Solute inclusion in ice formed from sucrose solutions on a sub-cooled surface—An experimental study. J. Food Eng. 1998, 38, 1–13. [Google Scholar] [CrossRef]
- Chen, Y.H.; Cao, E.; Cui, Z.F. An experimental study of freeze concentration in biological media. Food Bioprod. Process. 2001, 79, 35–40. [Google Scholar] [CrossRef]
- Yahya, N.; Ismail, N.; Zakaria, Z.Y.; Ngadi, N.; Rahman, R.A.; Jusoh, M. The effect of coolant temperature and stirrer speed for concentration of sugarcane via progressive freeze concentration process. Chem. Eng. Trans. 2017, 56, 1147–1152. [Google Scholar] [CrossRef]
- Okawa, S.; Ito, T.; Saito, A. Effect of crystal orientation on freeze concentration of solutions. Int. J. Refrig. 2009, 32, 246–252. [Google Scholar] [CrossRef]
Varied Parameter | Varied Parameter Range | Constant Parameter Values | ||
---|---|---|---|---|
Coolant Temperature (°C) | Freezing Time (min) | Stirring Rate (rpm) | ||
Coolant temperature (°C) | −10 until −2 | 50 | 200 | |
Freezing time (min) | 20–60 | −10 | 200 | |
Stirring rate (rpm) | 50–250 | −10 | 50 |
Varied Parameter | Varied Parameter Range | Constant Parameter Values | ||
---|---|---|---|---|
Coolant Temperature (°C) | Freezing Time (min) | Stirring Rate (rpm) | ||
Coolant temperature (°C) | 2–5 | 50 | 50 | |
Freezing time (min) | 30–60 | 3 | 50 | |
Stirring rate (rpm) | 50–200 | 3 | 50 |
Sample | Coolant Temperature, °C | Initial Oil and Grease Value (Array 1), mg/L | Final Oil and Grease Value (Array 2), mg/L | p-Values |
---|---|---|---|---|
Bilgewater | −2 | 63 | 45.7 | 0.0037 |
−4 | 63 | 32.5 | ||
−6 | 63 | 13.2 | ||
−8 | 63 | 17.3 | ||
−10 | 63 | 14 | ||
Kitchen wastewater | 2 | 185 | 73 | 0.0011 |
3 | 185 | 57 | ||
4 | 185 | 83 | ||
5 | 185 | 98 |
Sample | Freezing Time, min | Initial Oil and Grease Value (Array 1), mg/L | Final Oil and Grease Value (Array 2), mg/L | p-Values |
---|---|---|---|---|
Bilgewater | 20 | 63 | 5.2 | 3.85 × 10−6 |
30 | 63 | 11.2 | ||
40 | 63 | 12 | ||
50 | 63 | 14 | ||
60 | 63 | 9.2 | ||
Kitchen wastewater | 30 | 185 | 95 | 0.001 |
40 | 185 | 73 | ||
50 | 185 | 55 | ||
60 | 185 | 60 |
Sample | Stirring Rate, rpm | Initial Oil and Grease Value (Array 1), mg/L | Final Oil and Grease Value (Array 2), mg/L | p-Values |
---|---|---|---|---|
Bilgewater | 50 | 63 | 14.5 | 0.0004 |
100 | 63 | 25.5 | ||
150 | 63 | 31.9 | ||
200 | 63 | 14 | ||
250 | 63 | 27.8 | ||
Kitchen wastewater | 50 | 185 | 54 | 0.0014 |
100 | 185 | 78 | ||
150 | 185 | 89 | ||
200 | 185 | 96 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mustapha, S.N.A.; Amran, N.A.; Roslan, I.L.; Chandra Segaran, R.; Samsuri, S. Potential Efficient Separation of Oil from Bilgewater and Kitchen Wastewater by Fractional Freezing Process. Crystals 2021, 11, 685. https://doi.org/10.3390/cryst11060685
Mustapha SNA, Amran NA, Roslan IL, Chandra Segaran R, Samsuri S. Potential Efficient Separation of Oil from Bilgewater and Kitchen Wastewater by Fractional Freezing Process. Crystals. 2021; 11(6):685. https://doi.org/10.3390/cryst11060685
Chicago/Turabian StyleMustapha, Siti Nor Adibah, Nurul Aini Amran, Intan Lyana Roslan, Rubini Chandra Segaran, and Shafirah Samsuri. 2021. "Potential Efficient Separation of Oil from Bilgewater and Kitchen Wastewater by Fractional Freezing Process" Crystals 11, no. 6: 685. https://doi.org/10.3390/cryst11060685
APA StyleMustapha, S. N. A., Amran, N. A., Roslan, I. L., Chandra Segaran, R., & Samsuri, S. (2021). Potential Efficient Separation of Oil from Bilgewater and Kitchen Wastewater by Fractional Freezing Process. Crystals, 11(6), 685. https://doi.org/10.3390/cryst11060685