Gap-Size-Dependent Effective Phase Transition in Metasurfaces of Closed-Ring Resonators
Abstract
:1. Introduction
2. Theoretical Model
3. Retrieval of Effective Indices of the Metasurface from Transmission and Reflection Coefficients
4. Discussion
4.1. The Origin of the Metal-to-Insulator Transition: Macroscopic Channel Competition
4.2. Test of the Validity of the Effective Parameters
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zylbersztejn, A.; Mott, N.F. Metal-insulator transition in vanadium dioxide. Phys. Rev. B 1975, 11, 4383. [Google Scholar] [CrossRef] [Green Version]
- Kibis, O.V. Metal-insulator transition in graphene induced by circularly polarized photons. Phys. Rev. B Condens. Matter Mater. Phys. 2010, 81, 165433. [Google Scholar] [CrossRef] [Green Version]
- Seo, M.; Kyoung, J.; Park, H.; Koo, S.; Kim, H.S.; Bernien, H.; Kim, B.J.; Choe, J.H.; Ahn, Y.H.; Kim, H.T.; et al. Active terahertz nanoantennas based on VO2 phase transition. Nano Lett. 2010, 10, 2064–2068. [Google Scholar] [CrossRef] [Green Version]
- Choi, M.; Lee, S.H.; Kim, Y.; Kang, S.B.; Shin, J.; Kwak, M.H.; Kang, K.Y.; Lee, Y.H.; Park, N.; Min, B. A terahertz metamaterial with unnaturally high refractive index. Nature 2011, 470, 369–373. [Google Scholar] [CrossRef] [PubMed]
- Takano, K.; Shibuya, K.; Akiyama, K.; Nagashima, T.; Miyamaru, F.; Hangyo, M. A metal-to-insulator transition in cut-wire-grid metamaterials in the terahertz region. J. Appl. Phys. 2010, 107, 024907. [Google Scholar] [CrossRef]
- Smith, D.R.; Schurig, D. Electromagnetic Wave Propagation in Media with Indefinite Permittivity and Permeability Tensors. Phys. Rev. Lett. 2003, 90, 077405. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Kim, W.T.; Kang, J.H.; Kang, B.J.; Rotermund, F.; Park, Q.H. Single-Layer Metasurfaces as Spectrally Tunable Terahertz Half- A nd Quarter-Waveplates. ACS Appl. Mater. Interfaces 2019, 11, 7655–7660. [Google Scholar] [CrossRef] [PubMed]
- Luan, P.G. Effective electrodynamics theory for the hyperbolic metamaterial consisting of metal–dielectric layers. Crystals 2020, 10, 863. [Google Scholar] [CrossRef]
- Biehs, S.A.; Tschikin, M.; Ben-Abdallah, P. Hyperbolic metamaterials as an analog of a blackbody in the near field. Phys. Rev. Lett. 2012, 109, 104301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salandrino, A.; Engheta, N. Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations. Phys. Rev. B Condens. Matter Mater. Phys. 2006, 74, 075103. [Google Scholar] [CrossRef] [Green Version]
- Slobozhanyuk, A.P.; Ginzburg, P.; Powell, D.A.; Iorsh, I.; Shalin, A.S.; Segovia, P.; Krasavin, A.V.; Wurtz, G.A.; Podolskiy, V.A.; Belov, P.A.; et al. Purcell effect in hyperbolic metamaterial resonators. Phys. Rev. B Condens. Matter Mater. Phys. 2015, 92, 195127. [Google Scholar] [CrossRef] [Green Version]
- Maas, R.; Parsons, J.; Engheta, N.; Polman, A. Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths. Nat. Photonics 2013, 7, 907–912. [Google Scholar] [CrossRef]
- Decker, M.; Feth, N.; Soukoulis, C.M.; Linden, S.; Wegener, M. Retarded long-range interaction in split-ring-resonator square arrays. Phys. Rev. B Condens. Matter Mater. Phys. 2011, 84, 085416. [Google Scholar] [CrossRef] [Green Version]
- Kang, J.; Lee, S.; Kang, B.J.; Kim, W.T.; Rotermund, F.; Park, Q.-H. Anomalous Wavelength Scaling of Tightly-Coupled Terahertz Metasurfaces. ACS Appl. Mater. Interfaces 2018, 10, 19331–19335. [Google Scholar] [CrossRef] [PubMed]
- Yoo, S.J.; Park, Q.-H. Effective permittivity for resonant plasmonic nanoparticle systems via dressed polarizability. Opt. Express 2012, 20, 16480–16489. [Google Scholar] [CrossRef]
- Kim, K.-H.; Jung, G.-H.; Lee, S.-J.; Park, H.-G.; Park, Q.-H. Ultrathin Capacitive Metasurfaces for Strong Electric Response. Adv. Opt. Mater. 2016, 4, 1501–1506. [Google Scholar] [CrossRef]
- Kang, J.H.; Kim, D.S.; Park, Q.H. Local capacitor model for plasmonic electric field enhancement. Phys. Rev. Lett. 2009, 102, 093906. [Google Scholar] [CrossRef]
- Seo, M.A.; Park, H.R.; Koo, S.M.; Park, D.J.; Kang, J.H.; Suwal, O.K.; Choi, S.S.; Planken, P.C.M.; Park, G.S.; Park, N.K.; et al. Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit. Nat. Photonics 2009, 3, 152–156. [Google Scholar] [CrossRef]
- Kang, J.-H.; Wang, S.; Shi, Z.; Zhao, W.; Yablonovitch, E.; Wang, F. Goos-Hänchen Shift and Even–Odd Peak Oscillations in Edge-Reflections of Surface Polaritons in Atomically Thin Crystals. Nano Lett. 2017, 17, 1768–1774. [Google Scholar] [CrossRef]
- Kang, J.H.; Choe, J.-H.; Kim, D.-S.; Park, Q.-H. Substrate effect on aperture resonances in a thin metal film. Opt. Express 2009, 17, 15652–15658. [Google Scholar] [CrossRef]
- Smith, D.R.; Vier, D.C.; Koschny, T.; Soukoulis, C.M. Electromagnetic parameter retrieval from inhomogeneous metamaterials. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2005, 71, 036617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pendry, J.B.; Martín-Moreno, L.; Garcia-Vidal, F.J. Mimicking surface plasmons with structured surfaces. Science 2004, 305, 847–848. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Wen, W.; Chan, C.T.; Sheng, P. Electromagnetic-wave tunneling through negative-permittivity media with high magnetic fields. Phys. Rev. Lett. 2005, 94, 243905. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.; Kang, J.-H. Gap-Size-Dependent Effective Phase Transition in Metasurfaces of Closed-Ring Resonators. Crystals 2021, 11, 684. https://doi.org/10.3390/cryst11060684
Lee S, Kang J-H. Gap-Size-Dependent Effective Phase Transition in Metasurfaces of Closed-Ring Resonators. Crystals. 2021; 11(6):684. https://doi.org/10.3390/cryst11060684
Chicago/Turabian StyleLee, Seojoo, and Ji-Hun Kang. 2021. "Gap-Size-Dependent Effective Phase Transition in Metasurfaces of Closed-Ring Resonators" Crystals 11, no. 6: 684. https://doi.org/10.3390/cryst11060684
APA StyleLee, S., & Kang, J. -H. (2021). Gap-Size-Dependent Effective Phase Transition in Metasurfaces of Closed-Ring Resonators. Crystals, 11(6), 684. https://doi.org/10.3390/cryst11060684