Wafer-Scale Semipolar Micro-Pyramid Lighting-Emitting Diode Array
Abstract
:1. Introduction
2. Materials and Methods
2.1. Template Preparation
2.2. Formation of Pyramid µLED Array
2.3. Characterization
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tan, G.; Huang, Y.; Li, M.C.; Lee, S.L.; Wu, S.T. High dynamic range liquid crystal displays with a mini-LED backlight. Opt. Express 2018, 26, 16572–16584. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.; Hua, M.; Liu, D.; Kim, J.; Chen, K.J.; Ma, Z. Efficiency enhancement of InGaN/GaN blue light-emitting diodes with top surface deposition of AlN/Al2O3. Nano Energy 2018, 43, 259–269. [Google Scholar] [CrossRef]
- Wu, T.; Lin, Y.; Zhu, H.; Guo, Z.; Zheng, L.; Lu, Y.; Shih, T.M.; Chen, Z. Multi-function indoor light sources based on light-emitting diodes-a solution for healthy lighting. Opt. Express 2016, 24, 24401–24412. [Google Scholar] [CrossRef]
- Jin, S.X.; Shakya, J.; Lin, J.Y.; Jiang, H.X. Size dependence of III-nitride microdisk light-emitting diode characteristics. Appl. Phys. Lett. 2001, 78, 3532–3534. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Peng, D.; Lau, K.M.; Liu, Z. Fully-integrated active matrix programmable UV and blue micro-LED display system-on-panel (SoP). J. Soc. Inf. Disp. 2017, 25, 240–248. [Google Scholar] [CrossRef]
- Iga, K. Forty years of vertical-cavity surface-emitting laser: Invention and innovation. Jpn. J. Appl. Phys. 2018, 57, 08PA01. [Google Scholar] [CrossRef]
- Jiang, H.X.; Lin, J.Y. Nitride micro-LEDs and beyond--A decade progress review. Opt. Express 2013, 21 (Suppl. 3), A475–A484. [Google Scholar] [CrossRef]
- Lin, J.Y.; Jiang, H.X. Development of microLED. Appl. Phys. Lett. 2020, 116, 100502. [Google Scholar] [CrossRef]
- Tabataba-Vakili, F.; Brimont, C.; Alloing, B.; Damilano, B.; Doyennette, L.; Guillet, T.; el Kurdi, M.; Chenot, S.; Brändli, V.; Frayssinet, E.; et al. Analysis of low-threshold optically pumped III-nitride microdisk lasers. Appl. Phys. Lett. 2020, 117, 121103. [Google Scholar] [CrossRef]
- Makela, M.; Gordon, P.; Tu, D.; Soliman, C.; Cote, G.L.; Maitland, K.; Lin, P.T. Benzene Derivatives Analysis Using Aluminum Nitride Waveguide Raman Sensors. Anal. Chem. 2020, 92, 8917–8922. [Google Scholar] [CrossRef]
- Lu, T.J.; Fanto, M.; Choi, H.; Thomas, P.; Steidle, J.; Mouradian, S.; Kong, W.; Zhu, D.; Moon, H.; Berggren, K.; et al. Aluminum nitride integrated photonics platform for the ultraviolet to visible spectrum. Opt. Express 2018, 26, 11147–11160. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.H.; Zoulkarneev, A.; Kim, S.I.; Baik, C.W.; Yang, M.H.; Park, S.S.; Suh, H.; Kim, U.J.; Son, H.B.; Lee, J.S.; et al. Nearly single-crystalline GaN light-emitting diodes on amorphous glass substrates. Nature Photonics 2011, 5, 763–769. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, X.; Ren, F.; Yin, Y.; Feng, T.; Song, W.; Wang, G.; Liang, M.; Xu, J.; Wang, J.; et al. High responsivity GaN nanowire UVA photodetector synthesized by hydride vapor phase epitaxy. J. Appl. Phys. 2020, 128, 155705. [Google Scholar] [CrossRef]
- Zhang, L.; Ou, F.; Chong, W.C.; Chen, Y.; Li, Q. Wafer-scale monolithic hybrid integration of Si-based IC and III-V epi-layers-A mass manufacturable approach for active matrix micro-LED micro-displays. J. Soc. Inf. Disp. 2018, 26, 137–145. [Google Scholar] [CrossRef]
- Zhuang, Z.; Guo, X.; Liu, B.; Hu, F.; Li, Y.; Tao, T.; Dai, J.; Zhi, T.; Xie, Z.; Chen, P.; et al. High Color Rendering Index Hybrid III-Nitride/Nanocrystals White Light-Emitting Diodes. Adv. Funct. Mater. 2016, 26, 36–43. [Google Scholar] [CrossRef]
- Chen, Z.; Yan, S.; Danesh, C. MicroLED technologies and applications: Characteristics, fabrication, progress, and challenges. J. Phys. D Appl. Phys. 2021, 54, 123001. [Google Scholar] [CrossRef]
- Olivier, F.; Tirano, S.; Dupré, L.; Aventurier, B.; Largeron, C.; Templier, F. Influence of size-reduction on the performances of GaN-based micro-LEDs for display application. J. Lumin. 2017, 191, 112–116. [Google Scholar] [CrossRef]
- Tian, P.; McKendry, J.J.D.; Gong, Z.; Guilhabert, B.; Watson, I.M.; Gu, E.; Chen, Z.; Zhang, G.; Dawson, M.D. Size-dependent efficiency and efficiency droop of blue InGaN micro-light emitting diodes. Appl. Phys. Lett. 2012, 101, 231110. [Google Scholar] [CrossRef]
- Wong, M.S.; Hwang, D.; Alhassan, A.I.; Lee, C.; Ley, R.; Nakamura, S.; DenBaars, S.P. High efficiency of III-nitride micro-light-emitting diodes by sidewall passivation using atomic layer deposition. Opt. Express 2018, 26, 21324–21331. [Google Scholar] [CrossRef] [PubMed]
- Craven, M.D.; Lim, S.H.; Wu, F.; Speck, J.S.; DenBaars, S.P. Structural characterization of nonpolar (112¯0) a-plane GaN thin films grown on (11¯02) r-plane sapphire. Appl. Phys. Lett. 2002, 81, 469–471. [Google Scholar] [CrossRef]
- Northrup, J.E. GaN and InGaN(112̱2) surfaces: Group-III adlayers and indium incorporation. Appl. Phys. Lett. 2009, 95, 133107. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, R.; Siddique, A.; Anderson, J.; Gautam, C.; Holtz, M.; Piner, E. Integration of GaN and Diamond Using Epitaxial Lateral Overgrowth. ACS Appl. Mater. Interfaces 2020, 12, 39397–39404. [Google Scholar] [CrossRef] [PubMed]
- Wernicke, T.; Schade, L.; Netzel, C.; Rass, J.; Hoffmann, V.; Ploch, S.; Knauer, A.; Weyers, M.; Schwarz, U.; Kneissl, M. Indium incorporation and emission wavelength of polar, nonpolar and semipolar InGaN quantum wells. Semicond. Sci. Technol. 2012, 27, 27. [Google Scholar] [CrossRef]
- Ni, R.; Chen, X.; Yan, J.; Zhang, L.; Guo, Y.; Wang, J.; Li, J.; Zhang, Y. Reducing stimulated emission threshold power density of AlGaN/AlN multiple quantum wells by nano-trench-patterned AlN template. J. Alloys Compd. 2019, 777, 344–349. [Google Scholar] [CrossRef]
- Lee, S.R.; West, A.M.; Allerman, A.A.; Waldrip, K.E.; Follstaedt, D.M.; Provencio, P.P.; Koleske, D.D.; Abernathy, C.R. Effect of threading dislocations on the Bragg peakwidths of GaN, AlGaN, and AlN heterolayers. Appl. Phys. Lett. 2005, 86, 241904. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, B.; Ren, F.; Yin, Y.; Wang, Y.; Chen, Z.; Jiang, B.; Liu, B.; Liu, Z.; Sun, J.; et al. Graphene-Nanorod Enhanced Quasi-Van Der Waals Epitaxy for High Indium Composition Nitride Films. Small 2021, 17, e2100098. [Google Scholar] [CrossRef]
- Muhammed, M.M.; Roldan, M.A.; Yamashita, Y.; Sahonta, S.L.; Ajia, I.A.; Iizuka, K.; Kuramata, A.; Humphreys, C.J.; Roqan, I.S. High-quality III-nitride films on conductive, transparent (201)-oriented beta-Ga2O3 using a GaN buffer layer. Sci. Rep. 2016, 6, 29747. [Google Scholar] [CrossRef] [Green Version]
- Park, A.H.; Seo, T.H.; Chandramohan, S.; Lee, G.H.; Min, K.H.; Lee, S.; Kim, M.J.; Hwang, Y.G.; Suh, E.K. Efficient stress-relaxation in InGaN/GaN light-emitting diodes using carbon nanotubes. Nanoscale 2015, 7, 15099–15105. [Google Scholar] [CrossRef]
- Huang, H.-W.; Kao, C.C.; Chu, J.T.; Kuo, H.C.; Wang, S.C.; Yu, C.C. Improvement of InGaN-GaN light-emitting diode performance with a nano-roughened p-GaN surface. IPTL 2005, 17, 983–985. [Google Scholar] [CrossRef] [Green Version]
- Gîrgel, I.; Edwards, P.R.; le Boulbar, E.; Coulon, P.-M.; Sahonta, S.-L.; Allsopp, D.W.E.; Martin, R.W.; Humphreys, C.J.; Shields, P.A. Investigation of indium gallium nitride facet-dependent nonpolar growth rates and composition for core–shell light-emitting diodes. J. Nanophotonics 2016, 10, 16010. [Google Scholar] [CrossRef] [Green Version]
- Bi, Z.; Gustafsson, A.; Lenrick, F.; Lindgren, D.; Hultin, O.; Wallenberg, L.R.; Ohlsson, B.J.; Monemar, B.; Samuelson, L. High In-content InGaN nano-pyramids: Tuning crystal homogeneity by optimized nucleation of GaN seeds. J. Appl. Phys. 2018, 123, 25102. [Google Scholar] [CrossRef]
- Senawiratne, J.; Chatterjee, A.; Detchprohm, T.; Zhao, W.; Li, Y.; Zhu, M.; Xia, Y.; Li, X.; Plawsky, J.; Wetzel, C. Junction temperature, spectral shift, and efficiency in GaInN-based blue and green light emitting diodes. Thin Solid Films 2010, 518, 1732–1736. [Google Scholar] [CrossRef]
- Brown, I.H.; Pope, I.A.; Smowton, P.M.; Blood, P.; Thomson, J.D.; Chow, W.W.; Bour, D.P.; Kneissl, M. Determination of the piezoelectric field in InGaN quantum wells. Appl. Phys. Lett. 2005, 86, 131108. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Wei, T.; Guo, E.; Yi, X.; Wang, L.; Wang, J.; Wang, G.; Shi, Y.; Ferguson, I.; Li, J. Efficiency droop in InGaN/GaN multiple-quantum-well blue light-emitting diodes grown on free-standing GaN substrate. Appl. Phys. Lett. 2011, 99, 91104. [Google Scholar] [CrossRef]
- Griffiths, J.T.; Oehler, F.; Tang, F.; Zhang, S.; Fu, W.Y.; Zhu, T.; Findlay, S.D.; Zheng, C.; Etheridge, J.; Martin, T.L.; et al. The microstructure of non-polar a-plane (11 2¯0) InGaN quantum wells. J. Appl. Phys. 2016, 119, 175703. [Google Scholar] [CrossRef] [Green Version]
- de Mierry, P.; Guehne, T.; Nemoz, M.; Chenot, S.; Beraudo, E.; Nataf, G. Comparison between Polar (0001) and Semipolar (11\bar22) Nitride Blue–Green Light-Emitting Diodes Grown onc- andm-Plane Sapphire Substrates. Jpn. J. Appl. Phys. 2009, 48, 48. [Google Scholar] [CrossRef]
- Li, L.; Li, P.; Wen, Y.; Wen, J.; Zhu, Y. Temperature dependences of photoluminescence and electroluminescence spectra in light-emitting diodes. Appl. Phys. Lett. 2009, 94, 261103. [Google Scholar] [CrossRef]
Step | Temperature (°C) | Time (min) | NH3 (slm) | TMGa (sccm) | TEGa (sccm) | TMAl (sccm) | TMIn (sccm) | SiH4 (sccm) | Cp2Mg (sccm) |
n-GaN | 1070 | 30 | 50 | 328 | / | / | / | 23.7 | / |
InGaN/GaN SW/SB (LOOP 3) | 860 | 4 | 40 | / | 218 | / | 570 | / | / |
860 | 2 | 40 | / | 172 | / | / | / | / | |
InGaN/GaN QW/QB (LOOP 4) | 760 | 4 | 40 | / | 140 | / | 500 | / | / |
885 | 8 | 40 | / | 450 | / | / | / | / | |
AlGaN/GaN EBL (LOOP 10) | 950 | 0.5 | 10 | 67 | / | 62 | / | / | 160 |
950 | 0.5 | 10 | 67 | / | / | / | / | / | |
p-GaN | 950 | 10 | 50 | 80 | / | / | / | / | 340 |
p-GaN CL | 680 | 1.5 | 40 | / | 140 | / | 352 | / | 175 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Yan, Y.; Feng, T.; Yin, Y.; Ren, F.; Liang, M.; Wu, C.; Yi, X.; Wang, J.; Li, J.; et al. Wafer-Scale Semipolar Micro-Pyramid Lighting-Emitting Diode Array. Crystals 2021, 11, 686. https://doi.org/10.3390/cryst11060686
Zhang S, Yan Y, Feng T, Yin Y, Ren F, Liang M, Wu C, Yi X, Wang J, Li J, et al. Wafer-Scale Semipolar Micro-Pyramid Lighting-Emitting Diode Array. Crystals. 2021; 11(6):686. https://doi.org/10.3390/cryst11060686
Chicago/Turabian StyleZhang, Shuo, Yan Yan, Tao Feng, Yue Yin, Fang Ren, Meng Liang, Chaoxing Wu, Xiaoyan Yi, Junxi Wang, Jinmin Li, and et al. 2021. "Wafer-Scale Semipolar Micro-Pyramid Lighting-Emitting Diode Array" Crystals 11, no. 6: 686. https://doi.org/10.3390/cryst11060686
APA StyleZhang, S., Yan, Y., Feng, T., Yin, Y., Ren, F., Liang, M., Wu, C., Yi, X., Wang, J., Li, J., & Liu, Z. (2021). Wafer-Scale Semipolar Micro-Pyramid Lighting-Emitting Diode Array. Crystals, 11(6), 686. https://doi.org/10.3390/cryst11060686