A Review of Grain Boundary and Heterointerface Characterization in Polycrystalline Oxides by (Scanning) Transmission Electron Microscopy
Abstract
:1. Introduction
1.1. Background and Motivation
1.2. Types of Interfaces
1.2.1. Heterointerface
1.2.2. Coherent/Incoherent
1.3. Additional GB Terminology
1.3.1. GB Character
1.3.2. Low Angle GBs
1.3.3. High Angle GBs
1.3.4. Special, Twin, and Coincident Site Lattice (CSL) GBs
1.3.5. Bicrystals
1.3.6. GB Complexions
1.4. How Do GBs and HIs Form in Polycrystalline Oxides?
1.5. How Are GBs and HIs Characterized?
2. Characterizing GBs and HIs in S/TEM
2.1. A Brief Introduction to TEM and STEM
2.2. Imaging and Selected Area Electron Diffraction in the TEM
2.3. Imaging Techniques in the STEM
2.4. Specimen Preparation and Requirements for S/TEM
2.4.1. Focused Ion Beam (FIB) Lift-Out and Milling
2.4.2. Mechanical Polishing
2.4.3. Ultramicrotome
2.4.4. Nanomilling
2.5. Specimen Contamination in S/TEM
2.6. Analytical Techniques in TEM/STEM
2.6.1. Energy Dispersive X-ray Spectroscopy (EDXS)
2.6.2. Electron Energy-Loss Spectroscopy (EELS)
2.7. Other Emerging Techniques
2.7.1. Cathodoluminescence (CL) in S/TEM
2.7.2. Electron Beam Induced Current (EBIC-S/TEM)
2.8. Scanning Electron Diffraction Techniques
2.8.1. Precession-Electron Nano Diffraction (PEND)
2.8.2. D-STEM
2.9. In-Situ S/TEM
2.10. Electron Beam Damage
3. Applications of TEM to Oxide GBs and HIs Characterization
3.1. Imaging Atomic and Nano Structures
3.2. Measuring GB Character
3.3. Chemical Analysis by EDXS and EELS
3.4. In Situ S/TEM of GBs and HIs
4. Corelating GB Characterization with Properties
4.1. Electrical Properties
4.2. Thermal Properties
4.3. Mechanical Properties
4.4. Magnetic Properties
4.5. Optical Properties
5. Conclusions and Future Perspective
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Reynolds, W.T. Interfaces in Crystalline Materials By, A.P. Sutton (University of Oxford) and R. W. Balluffi (MIT). Oxford University Press: New York. 1995. xxvii + 819 pp. $165. ISBN 0-19-851385-2. J. Am. Chem. Soc. 1997, 119, 2343–2343. [Google Scholar] [CrossRef]
- Pryds, N.; Esposito, V.; Dk, N.; Dk, V. When two become one: An insight into 2D conductive oxide interfaces. J. Electroceramics 2017, 38, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Klie, R.F.; Ito, Y.; Stemmer, S.; Browning, N.D. Observation of oxygen vacancy ordering and segregation in Perovskite oxides. Ultramicroscopy 2001, 86, 289–302. [Google Scholar] [CrossRef]
- Carter, C.B.; Norton, M.G. Ceramic Materials: Science and Engineering; Springer: Berlin/Heidelberg, Germany, 2007; Volume 716. [Google Scholar]
- Lin, Y.; Fang, S.; Su, D.; Brinkman, K.S.; Chen, F. Enhancing grain boundary ionic conductivity in mixed ionic-electronic conductors. Nat. Commun. 2015, 6, 6824. [Google Scholar] [CrossRef] [Green Version]
- Feng, B.; Lugg, N.R.; Kumamoto, A.; Ikuhara, Y.; Shibata, N. Direct Observation of Oxygen Vacancy Distribution across Yttria-Stabilized Zirconia Grain Boundaries. ACS Nano 2017, 11, 11376–11382. [Google Scholar] [CrossRef]
- Bowman, W.J.; Darbal, A.; Crozier, P.A. Linking Macroscopic and Nanoscopic Ionic Conductivity: A Semiempirical Framework for Characterizing Grain Boundary Conductivity in Polycrystalline Ceramics. ACS Appl. Mater. Interfaces 2020, 12, 507–517. [Google Scholar] [CrossRef] [PubMed]
- Bowman, W.J.; Zhu, J.; Sharma, R.; Crozier, P.A. Electrical conductivity and grain boundary composition of Gd-doped and Gd/Pr co-doped ceria. Solid State Ion. 2015, 272, 9–17. [Google Scholar] [CrossRef]
- Orlovskaya, N.; Browning, N. (Eds.) Mixed Ionic Electronic Conducting Perovskites for Advanced Energy Systems; Springer Science & Business Media: Secaucus, NJ, USA, 2012; Volume 173. [Google Scholar]
- Dong, Y.; Zhang, Z.; Alvarez, A.; Chen, I.-W. Potential jumps at transport bottlenecks cause instability of nominally ionic solid electrolytes in electrochemical cells. Acta Mater. 2020, 199, 264–277. [Google Scholar] [CrossRef]
- Giuntini, D.; Torresani, E.; Chan, K.T.; Blankenburg, M.; Saviot, L.; Bor, B.; Domènech, B.; Shachar, M.; Müller, M.; Olevsky, E.A.; et al. Iron oxide-based nanostructured ceramics with tailored magnetic and mechanical properties: Development of mechanically robust, bulk superparamagnetic materials. Nanoscale Adv. 2019, 1, 3139–3150. [Google Scholar] [CrossRef] [Green Version]
- Gilde, G.; Patel, P.; Sands, J.; Patterson, P.; Blodgett, D.; Duncan, D.; Hahn, D. Evaluation of hot isostatic pressing parameters on the optical and ballistic properties of spinel for transparent armor. Army Res. Lab. Aberd. Proving Ground Md 2006, 88, 2747–2751. [Google Scholar]
- Sutorik, A.C.; Gilde, G.; Kilczewski, S.; Patel, P.; Sands, J.M. Development of transparent ceramic spinel (MgAl2O4) for armor applications. In Proceedings of the Optics InfoBase Conference Papers, Optical Society of America, Jackson Hole, WY, USA, 13–17 June 2010; p. OWA6. [Google Scholar]
- Lange, F.F.; Clarke, D.R. Morphological Changes of an Intergranular Thin Film in a Poly crystalline Spinel. J. Am. Ceram. Soc. 1982, 65, 502–506. [Google Scholar] [CrossRef]
- Smith, D.; Auvray, S.; Absi, J.; Kadiebu, S.; Fayette, S. Grain-boundary thermal resistance in polycrystalline oxides: Alumina, tin oxide, and magnesia. High. Temp. High. Press. 2003, 35–36, 93–99. [Google Scholar] [CrossRef]
- Szot, K.; Rodenbücher, C.; Bihlmayer, G.; Speier, W.; Ishikawa, R.; Shibata, N.; Ikuhara, Y. Influence of dislocations in transition metal oxides on selected physical and chemical properties. Crystals 2018, 8, 241. [Google Scholar] [CrossRef] [Green Version]
- Kingery, W.D.; Bowen, H.K.; Uhlmann, D.R. Introduction to Ceramics; John Wiley & Sons: Hoboken, NJ, USA, 1976; Volume 17. [Google Scholar]
- Mebane, D.S.; De Souza, R.A. A generalised space-charge theory for extended defects in oxygen-ion conducting electrolytes: From dilute to concentrated solid solutions. Energy Environ. Sci. 2015, 8, 2935–2940. [Google Scholar] [CrossRef]
- Xu, X.; Liu, Y.; Wang, J.; Isheim, D.; Dravid, V.P.; Phatak, C.; Haile, S.M. Variability and origins of grain boundary electric potential detected by electron holography and atom-probe tomography. Nat. Mater. 2020, 19, 887–893. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Chen, K.; Liang, C.; Nan, C.W.; Ishikawa, R.; More, K.; Chi, M. Atomic-scale origin of the large grain-boundary resistance in perovskite Li-ion-conducting solid electrolytes. Energy Environ. Sci. 2014, 7, 1638–1642. [Google Scholar] [CrossRef] [Green Version]
- Bowman, W.J.; Kelly, M.N.; Rohrer, G.S.; Hernandez, C.A.; Crozier, P.A. Enhanced ionic conductivity in electroceramics by nanoscale enrichment of grain boundaries with high solute concentration. Nanoscale 2017, 9, 17293–17302. [Google Scholar] [CrossRef] [Green Version]
- Tong, X.; Bowman, W.J.; Mejia-Giraldo, A.; Crozier, P.A.; Mebane, D.S. New Data-Driven Interacting-Defect Model Describing Nanoscopic Grain Boundary Compositions in Ceramics. J. Phys. Chem. C 2020, 124, 23619–23625. [Google Scholar] [CrossRef]
- Alekseeva, I.; Dymshits, O.; Tsenter, M.; Zhilin, A.; Golubkov, V.; Denisov, I.; Skoptsov, N.; Malyarevich, A.; Yumashev, K. Optical applications of glass-ceramics. J. Non Cryst. Solids 2010, 356, 3042–3058. [Google Scholar] [CrossRef]
- Cao, X.Q.; Vassen, R.; Stoever, D. Ceramic materials for thermal barrier coatings. J. Eur. Ceram. Soc. 2004, 24, 1–10. [Google Scholar] [CrossRef]
- Handwerker, C.A.; Morris, P.A.; Coble, R.L. Effects of Chemical Inhomogeneities on Grain Growth and Microstructure in Al2O3. J. Am. Ceram. Soc. 1989, 72, 130–136. [Google Scholar] [CrossRef]
- Shibata, N.; Findlay, S.D.; Azuma, S.; Mizoguchi, T.; Yamamoto, T.; Ikuhara, Y. Atomic-scale imaging of individual dopant atoms in a buried interface. Nat. Mater. 2009, 8, 654–658. [Google Scholar] [CrossRef]
- An, J.; Park, J.S.; Koh, A.L.; Lee, H.B.; Jung, H.J.; Schoonman, J.; Sinclair, R.; Gür, T.M.; Prinz, F.B. Atomic scale verification of oxide-ion vacancy distribution near a single grain boundary in YSZ. Sci. Rep. 2013, 3, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Xia, G.; Lemmon, J.P.; Yang, Z. Advanced materials for sodium-beta alumina batteries: Status, challenges and perspectives. J. Power Sources 2010, 195, 2431–2442. [Google Scholar] [CrossRef]
- Yoon, H.; Choi, M.; Lim, T.W.; Kwon, H.; Ihm, K.; Kim, J.K.; Choi, S.Y.; Son, J. Reversible phase modulation and hydrogen storage in multivalent VO2 epitaxial thin films. Nat. Mater. 2016, 15, 1113–1119. [Google Scholar] [CrossRef]
- Oshima, Y.; Lee, S.; Takayanagi, K. Visualization of lithium ions by annular bright field imaging. Microscopy 2017, 66, 15–24. [Google Scholar] [CrossRef] [Green Version]
- Bowman, W.J.; Hernandez, C.A.; McGuinness, K.; Crozier, P.A. Quantifying and Correlating the Composition and Conductivity of Grain Boundaries in Ca-doped CeO2 Electrolytes, an AC-STEM EELS Study. Microsc. Microanal. 2015, 21, 1727–1728. [Google Scholar] [CrossRef] [Green Version]
- Garvie, L.A.J.; Buseck, P.R. Determination of Ce4+/Ce3+ in electron-beam-damaged CeO2 by electron energy-loss spectroscopy. J. Phys. Chem. Solids 1999, 60, 1943–1947. [Google Scholar] [CrossRef]
- Lei, Y.; Ito, Y.; Browning, N.D.; Mazanec, T.J. Segregation Effects at Grain Boundaries in Fluorite-Structured Ceramics. J. Am. Ceram. Soc. 2002, 85, 2359–2363. [Google Scholar] [CrossRef]
- Hojo, H.; Mizoguchi, T.; Ohta, H.; Findlay, S.D.; Shibata, N.; Yamamoto, T.; Ikuhara, Y. Atomic structure of a CeO2 grain boundary: The role of oxygen vacancies. Nano Lett. 2010, 10, 4668–4672. [Google Scholar] [CrossRef]
- Dufour, L.; Monty, C. Surfaces and Interfaces of Ceramic Materials; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- McGee, T.D. Grain boundaries in ceramic materials. In Materials Science Research; Springer: Berlin/Heidelberg, Germany, 1965; pp. 3–32. [Google Scholar]
- Ernst, F.; Kienzle, O.; Rühle, M. Structure and Composition of Grain Boundaries in Ceramics. J. Eur. Ceram. Soc. 1999, 19, 665–673. [Google Scholar] [CrossRef]
- Clarke, D. Grain Boundaries In Polycrystalline Ceramics. Annu. Rev. Mater. Sci. 2003, 17, 57–74. [Google Scholar] [CrossRef]
- Kingery, W.D. The chemistry of ceramic grain boundaries. Pure Appl. Chem. 1984, 56, 1703–1714. [Google Scholar] [CrossRef] [Green Version]
- Burgers, J.M. Geometrical considerations concerning the structural irregularities to be assumed in a crystal. Proc. Phys. Soc. 1940, 52, 23–33. [Google Scholar] [CrossRef]
- Syed, K.; Xu, M.; Ohtaki, K.K.; Kok, D.; Karandikar, K.K.; Graeve, O.A.; Bowman, W.J.; Mecartney, M.L. Correlations of grain boundary segregation to sintering techniques in a three-phase ceramic. Materialia 2020, 14, 100890. [Google Scholar] [CrossRef]
- Smallman, R.E.; Ngan, A.H.W. Chapter 10—Surfaces, grain boundaries and interfaces. In Modern Physical Metallurgy, 8th ed.; Elsevier: Oxford, UK, 2014; pp. 415–442. ISBN 978-0-08-098204-5. [Google Scholar]
- Porter, D.A.; Easterling, K.E. Phase Transformations in Metals and Alloys (Revised Reprint); CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Olmsted, D.L.; Foiles, S.M.; Holm, E.A. Survey of computed grain boundary properties in face-centered cubic metals: I. Grain boundary energy. Acta Mater. 2009, 57, 3694–3703. [Google Scholar] [CrossRef]
- Randle, V. ‘Special’ boundaries and grain boundary plane engineering. Scr. Mater. 2006, 54, 1011–1015. [Google Scholar] [CrossRef]
- Ghamarian, I.; Samimi, P.; Rohrer, G.S.; Collins, P.C. Determination of the five parameter grain boundary character distribution of nanocrystalline alpha-zirconium thin films using transmission electron microscopy. Acta Mater. 2017, 130, 164–176. [Google Scholar] [CrossRef] [Green Version]
- Guziewski, M.; Banadaki, A.D.; Patala, S.; Coleman, S.P. Application of Monte Carlo techniques to grain boundary structure optimization in silicon and silicon-carbide. Comput. Mater. Sci. 2020, 182, 109771–109771. [Google Scholar] [CrossRef]
- Echeverri Restrepo, S.; Tamayo Giraldo, S.; Thijsse, B.J. Using artificial neural networks to predict grain boundary energies. Comput. Mater. Sci. 2014, 86, 170–173. [Google Scholar] [CrossRef]
- Kim, H.K.; Ko, W.S.; Lee, H.J.; Kim, S.G.; Lee, B.J. An identification scheme of grain boundaries and construction of a grain boundary energy database. Scr. Mater. 2011, 64, 1152–1155. [Google Scholar] [CrossRef]
- Soifer, Y.M.; Verdyan, A.; Kazakevich, M.; Rabkin, E. Nanohardness of copper in the vicinity of grain boundaries. Scr. Mater. 2002, 47, 799–804. [Google Scholar] [CrossRef]
- Han, J.; Thomas, S.L.; Srolovitz, D.J. Grain-Boundary Kinetics: A Unified Approach. Prog. Mater. Sci. 2018, 98, 386–476. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Pérez, F.J.; Smith, R. Structural changes at grain boundaries in bcc iron induced by atomic collisions. Nucl. Instrum. Methods Phys. Res. Sect. b Beam Interact. Mater. At. 2020, 164, 487–494. [Google Scholar] [CrossRef] [Green Version]
- Dickey, E.C.; Fan, X.; Pennycook, S.J. Structure and chemistry of yttria-stabilized cubic-zirconia symmetric tilt grain boundaries. J. Am. Ceram. Soc. 2001, 84, 1361–1368. [Google Scholar] [CrossRef]
- Tochigi, E.; Nakamura, A.; Shibata, N.; Ikuhara, Y. Dislocation Structures in Low-Angle Grain Boundaries of α-Al2O3. Crystals 2018, 8, 133. [Google Scholar] [CrossRef] [Green Version]
- Gottstein, G. Physical Foundations of Materials Science; Springer: Berlin Heidelberg, Germany, 2004; ISBN 978-3-540-40139-1. [Google Scholar]
- Dillon, S.J.; Tang, M.; Carter, W.C.; Harmer, M.P. Complexion: A new concept for kinetic engineering in materials science. Acta Mater. 2007, 55, 6208–6218. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, C.; Yuan, L.; Cai, R.; Liu, X.; Li, C.; Zhou, G. Coincidence-site-lattice twist boundaries in bicrystalline α-Fe2O3 nanoblades. J. Phys. Chem. C 2014, 118, 5796–5801. [Google Scholar] [CrossRef]
- Sato, Y.; Buban, J.P.; Mizoguchi, T.; Shibata, N.; Yodogawa, M.; Yamamoto, T.; Ikuhara, Y. Role of Pr segregation in acceptor-state formation at ZnO grain boundaries. Phys. Rev. Lett. 2006, 97, 106802. [Google Scholar] [CrossRef] [PubMed]
- Shibata, N.; Painter, G.S.; Satet, R.L.; Hoffmann, M.J.; Pennycook, S.J.; Becher, P.F. Rare-earth adsorption at intergranular interfaces in silicon nitride ceramics: Subnanometer observations and theory. Phys. Rev. B 2005, 72, 140101. [Google Scholar] [CrossRef]
- Imai, H. Mesostructured crystals: Growth processes and features. Prog. Cryst. Growth Charact. Mater. 2016, 62, 212–226. [Google Scholar] [CrossRef]
- Schuler, J.D.; Rupert, T.J. Materials selection rules for amorphous complexion formation in binary metallic alloys. Acta Mater. 2017, 140, 196–205. [Google Scholar] [CrossRef] [Green Version]
- Cantwell, P.R.; Frolov, T.; Rupert, T.J.; Krause, A.R.; Marvel, C.J.; Rohrer, G.S.; Rickman, J.M.; Harmer, M.P. Grain boundary complexion transitions. In Annual Review of Materials Research; Annual Reviews Inc.: Palo Alto, CA, USA, 2020; Volume 50, pp. 465–492. [Google Scholar]
- Mwema, F.; Akinlabi, E.; Oladijo, O. Sputtered Thin Films: Theory and Fractal Descriptions; CRC Press: Boca Raton, FL, USA, 2021. [Google Scholar]
- Liu, H. Growth kinetics of thin film epitaxy. In 21st Century Surface Science—A Handbook; IntechOpen: London, UK, 2020. [Google Scholar]
- Hubler, G.K. Pulsed Laser Deposition. MRS Bull. 1992, 17, 26–29. [Google Scholar] [CrossRef]
- Sediva, E.; Bowman, W.J.; Gonzalez-Rosillo, J.C.; Rupp, J.L. Investigation of the eightwise switching mechanism and its suppression in SrTiO3 modulated by humidity and interchanged top and bottom platinum and LaNiO3 electrode contacts. Adv. Electron. Mater. 2019, 5, 1800566. [Google Scholar] [CrossRef]
- Schweiger, S.; Pfenninger, R.; Bowman, W.J.; Aschauer, U.; Rupp, J.L. Designing strained interface heterostructures for memristive devices. Adv. Mater. 2017, 29, 1605049. [Google Scholar] [CrossRef] [PubMed]
- Sheth, J.; Chen, D.; Kim, J.J.; Bowman, W.J.; Crozier, P.A.; Tuller, H.L.; Misture, S.T.; Zdzieszynski, S.; Sheldon, B.W.; Bishop, S.R. Coupling of strain, stress, and oxygen non-stoichiometry in thin film Pr0.1Ce0.9O2−δ. Nanoscale 2016, 8, 16499–16510. [Google Scholar] [CrossRef]
- Garbayo, I.; Struzik, M.; Bowman, W.J.; Pfenninger, R.; Stilp, E.; Rupp, J.L. Glass-Type Polyamorphism in Li-Garnet Thin Film Solid State Battery Conductors. Adv. Energy Mater. 2018, 8, 1702265. [Google Scholar] [CrossRef]
- Taylor, R.I.; Coad, J.P.; Brook, R.J. Grain Boundary Segregation in Al2O3. J. Am. Ceram. Soc. 1974, 57, 539–540. [Google Scholar] [CrossRef]
- Gregori, G.; Merkle, R.; Maier, J. Ion conduction and redistribution at grain boundaries in oxide systems. Prog. Mater. Sci. 2017, 89, 252–305. [Google Scholar] [CrossRef]
- Rohrer, G.S. Grain boundary energy anisotropy: A review. J. Mater. Sci. 2011, 46, 5881–5895. [Google Scholar] [CrossRef] [Green Version]
- Krivanek, O.L.; Isoda, S.; Kobayashi, K. Lattice imaging of a grain boundary in crystalline germanium. Philos. Mag. 1977, 36, 931–940. [Google Scholar] [CrossRef]
- Gust, M.; Goo, G.; Wolfenstine, J.; Mecartney, M.L. Influence of Amorphous Grain Boundary Phases on the Superplastic Behavior of 3-mol%-Yttria-Stabilized Tetragonal Zirconia Polycrystals (3Y-TZP). J. Am. Ceram. Soc. 1993, 76, 1681–1690. [Google Scholar] [CrossRef]
- Steele, B.C.H. Mass transport in materials incorporated in electrochemical energy conversion systems. Solid State Ion. 1984, 12, 391–406. [Google Scholar] [CrossRef]
- Guo, X.; Sigle, W.; Maier, J. Blocking Grain Boundaries in Yttria-Doped and Undoped Ceria Ceramics of High Purity. J. Am. Ceram. Soc. 2003, 86, 77–87. [Google Scholar] [CrossRef]
- Kelly, T.F.; Miller, M.K. 2007. Atom probe tomography. Rev. Sci. Instrum. 2007, 78, 031101. [Google Scholar] [CrossRef] [PubMed]
- von Harrach, H.S.; Klenov, D.; Freitag, B.; Schlossmacher, P.; Collins, P.C.; Fraser, H.L. Comparison of the detection limits of EDS and EELS in S/TEM. Microsc. Microanal. 2010, 16, 1312–1313. [Google Scholar] [CrossRef] [Green Version]
- Diercks, D.R.; Tong, J.; Zhu, H.; Kee, R.; Baure, G.; Nino, J.C.; O’Hayre, R.; Gorman, B.P. Three-dimensional quantification of composition and electrostatic potential at individual grain boundaries in doped ceria. J. Mater. Chem. A 2016, 4, 5167–5175. [Google Scholar] [CrossRef]
- Ross, F.M.; Minor, A.M. In situ transmission electron microscopy. In Springer Handbooks; Springer: Berlin/Heidelberg, Germany, 2019; pp. 101–187. [Google Scholar]
- Vurpillot, F.; Lefebvre, W.; Cairney, J.M.; Oberdorfer, C.; Geiser, B.P.; Rajan, K. Advanced volume reconstruction and data mining methods in atom probe tomography. MRS Bull. 2016, 41, 46–51. [Google Scholar] [CrossRef]
- Wu, Q.; Yu, Z.; Wang, Y.; Diercks, D.; Gorman, B.P.; Rickman, J.M.; Harmer, M.P.; Chan, H.M. Influence of codoping with Hf and La on grain-boundary transport in alumina. J. Am. Ceram. Soc. 2021, 104, 514–523. [Google Scholar] [CrossRef]
- Burton, G.L.; Ricote, S.; Foran, B.J.; Diercks, D.R.; Gorman, B.P. Quantification of grain boundary defect chemistry in a mixed proton-electron conducting oxide composite. J. Am. Ceram. Soc. 2020, 103, 3217–3230. [Google Scholar] [CrossRef]
- Mutas, S.; Klein, C. Importance of the Protective Layers and the Specimen Preparation for Reproducible APT Results. Microsc. Microanal. 2011, 17, 730–731. [Google Scholar] [CrossRef] [Green Version]
- Gupta, D. Diffusion, solute segregations and interfacial energies in some material: An overview. Interface Sci. 2003, 11, 7–20. [Google Scholar] [CrossRef]
- Foiles, S.M. Temperature dependence of grain boundary free energy and elastic constants. Scr. Mater. 2010, 62, 231–234. [Google Scholar] [CrossRef]
- Munoz, N.E.; Gilliss, S.R.; Carter, C.B. Remnant grooves on alumina surfaces. Surf. Sci. 2004, 573, 391–402. [Google Scholar] [CrossRef]
- Saylor, D.M.; Rohrer, G.S. Measuring the influence of grain-boundary misorientation on thermal groove geometry in ceramic polycrystals. J. Am. Ceram. Soc. 1999, 82, 1529–1536. [Google Scholar] [CrossRef]
- Kelly, M.N.; Bojarski, S.A.; Rohrer, G.S. The temperature dependence of the relative grain-boundary energy of yttria-doped alumina. J. Am. Ceram. Soc. 2017, 100, 783–791. [Google Scholar] [CrossRef]
- Yoshida, H.; Yokoyama, K.; Shibata, N.; Ikuhara, Y.; Sakuma, T. High-temperature grain boundary sliding behavior and grain boundary energy in cubic zirconia bicrystals. Acta Mater. 2004, 52, 2349–2357. [Google Scholar] [CrossRef]
- Dillon, S.J.; Harmer, M.P.; Rohrer, G.S. The relative energies of normally and abnormally growing grain boundaries in alumina displaying different complexions. J. Am. Ceram. Soc. 2010, 93, 1796–1802. [Google Scholar] [CrossRef]
- Williams, D.B.; Carter, C.B. Transmission Electron. Microscopy: A Textbook for Materials Science; Springer: Berlin/Heidelberg, Germany, 2009; p. 760. ISBN 978-0-387-76500-6. [Google Scholar]
- Thomas, J.; Gemming, T. Analytical Transmission Electron. Microscopy: An Introduction for Operators; Springer Science & Business Media: Secaucus, NJ, USA, 2014. [Google Scholar]
- Ikuhara, Y. Towards new transmission electron microscopy in advanced ceramics. J. Ceram. Soc. Jpn. 2002, 110, 139–145. [Google Scholar] [CrossRef] [Green Version]
- Rukari, T.; Babita, A. Review Article Transmission Electron Microscopy—An Overview. Int. Res. J. Invent. Pharm. Sci. 2013, 1, 1–7. [Google Scholar]
- Winey, M.; Meehl, J.B.; O’Toole, E.T.; Giddings, T.H. Conventional transmission electron microscopy. Mol. Biol. Cell 2014, 25, 319–323. [Google Scholar] [CrossRef] [PubMed]
- Hawkes, P.W.; Spence, J.C. Springer Handbook of Microscopy; Springer Nature: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Pennycook, S.J. A Scan Through the History of STEM. In Scanning Transmission Electron Microscopy; Springer: New York, NY, USA, 2011; pp. 1–90. [Google Scholar]
- Pennycook, S.J.; Nellist, P.D. (Eds.) Scanning Transmission Electron Microscopy: Imaging and Analysis; Springer Science & Business Media: Secaucus, NJ, USA, 2011; ISBN 978-1-4419-7200-2. [Google Scholar]
- Bacon, N.J.; Corbin, G.J.; Dellby, N.; Hrncirik, P.; Krivanek, O.L.; McManama-Smith, A.; Murfitt, M.F.; Szilagyi, Z.S. Nion UltraSTEM: An aberration-corrected STEM for imaging and analysis. Microsc. Microanal. 2005, 11, 1422–1423. [Google Scholar] [CrossRef] [Green Version]
- MacLaren, I.; Ramasse, Q.M. Aberration-corrected scanning transmission electron microscopy for atomic-resolution studies of functional oxides. Int. Mater. Rev. 2014, 59, 115–131. [Google Scholar] [CrossRef] [Green Version]
- Botton, G.; Prabhudev, S. Analytical electron microscopy. In Springer Handbook of Microscopy; Springer: Cham, Switzerland, 2019; pp. 345–453. [Google Scholar]
- Hren, J. Introduction to Analytical Electron. Microscopy; Springer Science & Business Media: Secaucus, NJ, USA, 2013; ISBN 978-1-4757-5581-7. [Google Scholar]
- Shindo, D.; Oikawa, T. Analytical Electron. Microscopy for Materials Science; Springer Science & Business Media: Secaucus, NJ, USA, 2013; ISBN 978-4-431-66988-3. [Google Scholar]
- Joy, D.C.; Roming, A.D., Jr.; Goldstein, J.; Goldstein, J.I. Principles of Analytical Electron. Microscopy; Springer Science & Business Media: Secaucus, NJ, USA, 1986; ISBN 978-0-306-42387-1. [Google Scholar]
- Scott, M.C.; Chen, C.C.; Mecklenburg, M.; Zhu, C.; Xu, R.; Ercius, P.; Dahmen, U.; Regan, B.C.; Miao, J. Electron tomography at 2.4-ångström resolution. Nature 2012, 483, 444–447. [Google Scholar] [CrossRef] [PubMed]
- De, L.O.; Roglie, B.; Lecture, N. The wave nature of the electron. Nobel Lect. 1929, 12, 244–256. [Google Scholar]
- Ruska, E. The Development of the Electron Microscope and of Electron Microscopy (Nobel Lecture). Angew. Chem. Int. Ed. Engl. 1987, 26, 595–605. [Google Scholar] [CrossRef]
- Haider, M.; Rose, H.; Uhlemann, S.; Schwan, E.; Kabius, B.; Urban, K. A spherical-aberration-corrected 200 kV transmission electron microscope. Ultramicroscopy 1998, 75, 53–60. [Google Scholar] [CrossRef]
- Batson, P.E.; Dellby, N.; Krivanek, O.L. Sub-ångstrom resolution using aberration corrected electron optics. Nature 2002, 418, 617–620. [Google Scholar] [CrossRef]
- Yamashita, S.; Kikkawa, J.; Yanagisawa, K.; Nagai, T.; Ishizuka, K.; Kimoto, K. Atomic number dependence of Z contrast in scanning transmission electron microscopy. Sci. Rep. 2018, 8, 12325–12325. [Google Scholar] [CrossRef]
- Hawkes, P.W. The correction of electron lens aberrations. Ultramicroscopy 2015, 156, A1–A64. [Google Scholar] [CrossRef]
- Hart, J.L.; Lang, A.C.; Leff, A.C.; Longo, P.; Trevor, C.; Twesten, R.D.; Taheri, M.L. Direct detection electron energy-loss spectroscopy: A method to push the limits of resolution and sensitivity. Sci. Rep. 2017, 7, 8243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zou, X.; Hovmöller, S.; Oleynikov, P. Electron Crystallography: Electron Microscopy and Electron Diffraction; Oxford University Press: Oxford, UK, 2012; p. 344. ISBN 978-0-19-173121-1. [Google Scholar]
- Abelson, A.; Qian, C.; Salk, T.; Luan, Z.; Fu, K.; Zheng, J.G.; Wardini, J.L.; Law, M. Collective topo-epitaxy in the self-assembly of a 3D quantum dot superlattice. Nat. Mater. 2020, 19, 49–55. [Google Scholar] [CrossRef]
- Plapcianu, C.; Valsangiacom, C.; Schaffer, J.E.; Wieg, A.; Garay, J.; Stanciu, L. Spark plasma sintering studies of nanosize lanthanide-doped ceria obtained by sol-gel method. J. Optoelectron. Adv. Mater. 2011, 13, 1101. [Google Scholar]
- Fultz, B.; Howe, J.M. Transmission Electron. Microscopy and Diffractometry of Materials; Springer Science & Business Media: Secaucus, NJ, USA, 2012. [Google Scholar]
- Kotaka, Y. Direct visualization method of the atomic structure of light and heavy atoms with double-detector Cs-corrected scanning transmission electron microscopy. Appl. Phys. Lett. 2012, 101, 133107. [Google Scholar] [CrossRef]
- Krivanek, O.L.; Chisholm, M.F.; Nicolosi, V.; Pennycook, T.J.; Corbin, G.J.; Dellby, N.; Murfitt, M.F.; Own, C.S.; Szilagyi, Z.S.; Oxley, M.P.; et al. Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy. Nature 2010, 464, 571–574. [Google Scholar] [CrossRef] [Green Version]
- Findlay, S.D.; Shibata, N.; Sawada, H.; Okunishi, E.; Kondo, Y.; Ikuhara, Y. Dynamics of annular bright field imaging in scanning transmission electron microscopy. Ultramicroscopy 2010, 110, 903–923. [Google Scholar] [CrossRef] [PubMed]
- Findlay, S.D.; Saito, T.; Shibata, N.; Sato, Y.; Matsuda, J.; Asano, K.; Akiba, E.; Hirayama, T.; Ikuhara, Y. Direct imaging of hydrogen within a crystalline environment. Appl. Phys. Express 2010, 3, 116603–116603. [Google Scholar] [CrossRef]
- Hirsch, S.G.; Walck, S.D.; LaSalvia, J.C.; Swab, J.J. Transmission Electron Microscopy Characterization of Knoop Indentation Inelastic Deformation Regions in Three Commercial Silicon Carbides; US Army Research Laboratory: Adelphi, MD, USA, 2018. [Google Scholar]
- Giannuzzi, L.A.; Stevie, F.A. A review of focused ion beam milling techniques for TEM specimen preparation. Micron 1999, 30, 197–204. [Google Scholar] [CrossRef]
- Ayache, J.; Beaunier, L.; Boumendil, J.; Ehret, G.; Laub, D. Sample Preparation Handbook for Transmission Electron. Microscopy: Techniques; Springer Science & Business Media: Secaucus, NJ, USA, 2020; Volume 2. [Google Scholar]
- Rigort, A.; Plitzko, J.M. Cryo-focused-ion-beam applications in structural biology. Arch. Biochem. Biophys. 2015, 581, 122–130. [Google Scholar] [CrossRef] [PubMed]
- Zachman, M.J.; Asenath-Smith, E.; Estroff, L.A.; Kourkoutis, L.F. Site-specific preparation of intact solid-liquid interfaces by label-free in situ localization and Cryo-focused ion beam lift-out. Microsc. Microanal. 2016, 22, 1338–1349. [Google Scholar] [CrossRef] [Green Version]
- Barna, Á.; Pécz, B.; Menyhard, M. TEM sample preparation by ion milling/amorphization. Micron 1999, 30, 267–276. [Google Scholar] [CrossRef]
- Ünlü, N. Preparation of high quality Al TEM specimens via a double-jet electropolishing technique. Mater. Charact. 2008, 59, 547–553. [Google Scholar] [CrossRef]
- Pourbabak, S.; Orekhov, A.; Schryvers, D. Twin-jet electropolishing for damage-free transmission electron microscopy specimen preparation of metallic microwires. Microsc. Res. Tech. 2021, 84, 298–304. [Google Scholar] [CrossRef] [PubMed]
- Baena, V.; Schalek, R.L.; Lichtman, J.W.; Terasaki, M. Serial-section electron microscopy using automated tape-collecting ultramicrotome (ATUM). In Methods in Cell Biology; Academic Press Inc.: London, UK, 2019; Volume 152, pp. 41–67. ISBN 978-0-12-817018-2. [Google Scholar]
- Schrand, A.M.; Schlager, J.J.; Dai, L.; Hussain, S.M. Preparation of cells for assessing ultrastructural localization of nanoparticles with transmission electron microscopy. Nat. Protoc. 2010, 5, 744–757. [Google Scholar] [CrossRef] [PubMed]
- Sugar, J.D.; El Gabaly, F.; Chueh, W.C.; Fenton, K.R.; Tyliszczak, T.; Kotula, P.G.; Bartelt, N.C. High-resolution chemical analysis on cycled LiFePO4 battery electrodes using energy-filtered transmission electron microscopy. J. Power Sources 2014, 246, 512–521. [Google Scholar] [CrossRef]
- Fischione, P.E.; Williams, R.E.; Genç, A.; Fraser, H.L.; Dunin-Borkowski, R.E.; Luysberg, M.; Bonifacio, C.S.; Kovács, A. A small spot, inert gas, ion milling process as a complementary technique to focused ion beam specimen preparation. Microsc. Microanal. 2017, 23, 782–793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Mierlo, W.; Geiger, D.; Robins, A.; Stumpf, M.; Ray, M.L.; Fischione, P.; Kaiser, U. Practical aspects of the use of the X2 holder for HRTEM-quality TEM sample preparation by FIB. Ultramicroscopy 2014, 147, 149–155. [Google Scholar] [CrossRef]
- Wang, H.; Srot, V.; Fenk, B.; Laskin, G.; Mannhart, J.; van Aken, P.A. An optimized TEM specimen preparation method of quantum nanostructures. Micron 2021, 140, 102979–102979. [Google Scholar] [CrossRef]
- Liu, S.-S.; Toh, S.; Daio, T.; Koyama, M.; Matsumura, S. Microstructure Observation of Ni/YSZ Boundary by TEM and STEM. ECS Trans. 2013, 57, 1401–1405. [Google Scholar] [CrossRef]
- Srot, V.; Wang, Y.; Salzberger, U.; Fenk, B.; Kelsch, M.; Minola, M.; Salluzzo, M.; De Luca, G.M.; Keimer, B.; van Aken, P.A. Improved sample preparation of beam-sensitive ultra-thin cuprate films. Microsc. Microanal. 2019, 25, 686–687. [Google Scholar] [CrossRef] [Green Version]
- Aitkaliyeva, A.; Madden, J.W.; Miller, B.D.; Cole, J.I.; Gan, J. Comparison of preparation techniques for nuclear materials for transmission electron microscopy (TEM). J. Nucl. Mater. 2015, 459, 241–246. [Google Scholar] [CrossRef] [Green Version]
- Ennos, A.E. The origin of specimen contamination in the electron microscope. Br. J. Appl. Phys. 1953, 101–106. [Google Scholar] [CrossRef]
- Isabell, T.C.; Fischione, P.E.; O’Keefe, C.; Guruz, M.U.; Dravid, V.P. Plasma cleaning and its applications for electron microscopy. Microsc. Microanal. 1999, 5, 126–135. [Google Scholar] [CrossRef] [Green Version]
- Bennett, J.C.; Egerton, R.F. NiO Test Specimens for Analytical Electron Microscopy: Round-Robin Results. Microsc. Microanal. 1995, 1, 143–149. [Google Scholar] [CrossRef]
- Egerton, R.F. An introduction to EELS. In Electron Energy-Loss Spectroscopy in the Electron Microscope; Springer: Berlin/Heidelberg, Germany, 2011; pp. 1–28. [Google Scholar]
- Krivanek, O.L.; Ahn, C.C.; Keeney, R.B. Parallel detection electron spectrometer using quadrupole lenses. Ultramicroscopy 1987, 22, 103–115. [Google Scholar] [CrossRef]
- Menon, N.K.; Krivanek, O.L. Synthesis of Electron Energy Loss Spectra for the Quantification of Detection Limits. Microsc. Microanal. 2002, 8, 203–215. [Google Scholar] [CrossRef] [PubMed]
- Crozier, P.A. Quantitative elemental mapping of materials by energy-filtered imaging. Ultramicroscopy 1995, 58, 157–174. [Google Scholar] [CrossRef]
- Egerton, R.F.; Cheng, S.C. Measurement of local thickness by electron energy-loss spectroscopy. Ultramicroscopy 1987, 21, 231–244. [Google Scholar] [CrossRef]
- Malis, T.; Cheng, S.C.; Egerton, R.F. EELS log-ratio technique for specimen-thickness measurement in the TEM. J. Electron. Microsc. Tech. 1988, 8, 193–200. [Google Scholar] [CrossRef]
- Zhang, F.; Vanmeensel, K.; Batuk, M.; Hadermann, J.; Inokoshi, M.; van Meerbeek, B.; Naert, I.; Vleugels, J. Highly-translucent, strong and aging-resistant 3Y-TZP ceramics for dental restoration by grain boundary segregation. Acta Biomater. 2015, 16, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Rauch, E.F.; Véron, M. Twinning analyses in a magnesium alloy with tilting series scanning method using a TEM based orientation mapping system. Mater. Lett. 2013, 111, 192–196. [Google Scholar] [CrossRef]
- Overwijk, M.H.F.; Reefman, D. Maximum-entropy deconvolution applied to electron energy-loss spectroscopy. Micron 2000, 31, 325–331. [Google Scholar] [CrossRef]
- Egerton, R.F. Limits to the spatial, energy and momentum resolution of electron energy-loss spectroscopy. Ultramicroscopy 2007, 107, 575–586. [Google Scholar] [CrossRef]
- Nelayah, J.; Kociak, M.; Stéphan, O.; de Abajo, F.J.G.; Tencé, M.; Henrard, L.; Taverna, D.; Pastoriza-Santos, I.; Liz-Marzán, L.M.; Colliex, C. Mapping surface plasmons on a single metallic nanoparticle. Nat. Phys. 2007, 3, 348–353. [Google Scholar] [CrossRef]
- Kimoto, K.; Kothleitner, G.; Grogger, W.; Matsui, Y.; Hofer, F. Advantages of a monochromator for bandgap measurements using electron energy-loss spectroscopy. Micron 2005, 36, 185–189. [Google Scholar] [CrossRef]
- Eccles, J.W.L.; Bangert, U.; Bromfield, M.; Christian, P.; Harvey, A.J.; Thomas, P. UV-Vis plasmon studies of metal nanoparticles. J. Phys. Conf. Ser. 2010, 241, 012090. [Google Scholar] [CrossRef]
- Aguiar, J.A.; Reed, B.W.; Ramasse, Q.M.; Erni, R.; Browning, N.D. Quantifying the low-energy limit and spectral resolution in valence electron energy loss spectroscopy. Ultramicroscopy 2013, 124, 130–138. [Google Scholar] [CrossRef] [PubMed]
- Jeangros, Q.; Faes, A.; Wagner, J.B.; Hansen, T.W.; Aschauer, U.; Hessler-Wyser, A.; Dunin-Borkowski, R.E. In situ redox cycle of a nickel–YSZ fuel cell anode in an environmental transmission electron microscope. Acta Mater. 2010, 58, 4578–4589. [Google Scholar] [CrossRef]
- Rouviere, J.L.; Béché, A.; Martin, Y.; Denneulin, T.; Cooper, D. Improved strain precision with high spatial resolution using nanobeam precession electron diffraction. Appl. Phys. Lett. 2013, 103, 241913–241913. [Google Scholar] [CrossRef]
- Cizek, P.; Sankaran, A.; Rauch, E.F.; Barnett, M.R. Observation of (sub)grain clusters in the as-deposited and in situ annealed nanocrystalline nickel using automated crystal orientation mapping. Scr. Mater. 2012, 67, 685–688. [Google Scholar] [CrossRef]
- Krivanek, O.L.; Lovejoy, T.C.; Dellby, N.; Aoki, T.; Carpenter, R.W.; Rez, P.; Soignard, E.; Zhu, J.; Batson, P.E.; Lagos, M.J.; et al. Vibrational spectroscopy in the electron microscope. Nature 2014, 514, 209–212. [Google Scholar] [CrossRef] [PubMed]
- Bowman, W.J.; March, K.; Hernandez, C.A.; Crozier, P.A. Measuring bandgap states in individual non-stoichiometric oxide nanoparticles using monochromated STEM EELS: The Praseodymium–ceria case. Ultramicroscopy 2016, 167, 5–10. [Google Scholar] [CrossRef] [Green Version]
- Wei, J.; Ogawa, T.; Feng, B.; Yokoi, T.; Ishikawa, R.; Kuwabara, A.; Matsunaga, K.; Shibata, N.; Ikuhara, Y. Direct measurement of electronic band structures at oxide grain boundaries. Nano Lett. 2020, 20, 2530–2536. [Google Scholar] [CrossRef]
- Krivanek, O.L.; Paterson, J.H. Elnes of 3d transition-metal oxides. I. Variations across the periodic table. Ultramicroscopy 1990, 32, 313–318. [Google Scholar] [CrossRef]
- Manoubi, T.; Colliex, C.; Rez, P. Quantitative electron energy loss spectroscopy on M45 edges in rare earth oxides. J. Electron. Spectrosc. Relat. Phenom. 1990, 50, 1–18. [Google Scholar] [CrossRef]
- Colliex, C.; Cosslett, V.E.; Leapman, R.D.; Trebbia, P. Contribution of electron energy loss spectroscopy to the development of analytical electron microscopy. Ultramicroscopy 1976, 1, 301–315. [Google Scholar] [CrossRef]
- Vincent, R.; Midgley, P.A. Double conical beam-rocking system for measurement of integrated electron diffraction intensities. Ultramicroscopy 1994, 53, 271–282. [Google Scholar] [CrossRef]
- Frechero, M.A.; Rocci, M.; Sánchez-Santolino, G.; Kumar, A.; Salafranca, J.; Schmidt, R.; Díaz-Guillén, M.R.; Durá, O.J.; Rivera-Calzada, A.; Mishra, R.; et al. Paving the way to nanoionics: Atomic origin of barriers for ionic transport through interfaces. Sci. Rep. 2015, 5, 17229. [Google Scholar] [CrossRef] [Green Version]
- Stöger-Pollach, M.; Bukvišová, K.; Schwarz, S.; Kvapil, M.; Šamořil, T.; Horák, M. Fundamentals of cathodoluminescence in a STEM: The impact of sample geometry and electron beam energy on light emission of semiconductors. Ultramicroscopy 2019, 200, 111–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beck, G. Contribution to the Theory of the Cherenkov Effect. Phys. Rev. 1948, 74, 795–802. [Google Scholar] [CrossRef]
- Chen, J.; Sekiguchi, T.; Yang, D.; Yin, F.; Kido, K.; Tsurekawa, S. Electron-beam-induced current study of grain boundaries in multicrystalline silicon. J. Appl. Phys. 2004, 96, 5490–5495. [Google Scholar] [CrossRef]
- Chernyak, L.; Osinsky, A.; Temkin, H.; Yang, J.W.; Chen, Q.; Asif Khan, M. Electron beam induced current measurements of minority carrier diffusion length in gallium nitride. Appl. Phys. Lett. 1996, 69, 2531–2533. [Google Scholar] [CrossRef]
- Leach, C. Grain boundary structures in zinc oxide varistors. Acta Mater. 2005, 53, 237–245. [Google Scholar] [CrossRef]
- Leach, C. Crystal plane influence of the EBIC contrast in zinc oxide varistors. J. Eur. Ceram. Soc. 2001, 21, 2127–2130. [Google Scholar] [CrossRef]
- Bhattacharyya, A.; Reimer, J.D.; Ritz, K.N. Breakdown voltage characteristics of thin oxides and their correlation to defects in the oxide as observed by the EBIC technique. IEEE Electron. Device Lett. 1986, 7, 58–60. [Google Scholar] [CrossRef]
- Midgley, P.A.; Eggeman, A.S. Precession electron diffraction—A topical review. IUCrJ 2015, 2, 126–136. [Google Scholar] [CrossRef] [PubMed]
- Ophus, C. Four-Dimensional Scanning Transmission Electron Microscopy (4D-STEM): From Scanning Nanodiffraction to Ptychography and Beyond. Microsc. Microanal. 2019, 25, 563–582. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, M.; Williams, D. Development of Diffraction Imaging for Orientation Analysis of Grains in Scanning Transmission Electron Microscopy. Microsc. Microanal. 2007, 13, 962–963. [Google Scholar] [CrossRef]
- Bober, D.B.; Kumar, M.; Rupert, T.J. Nanocrystalline grain boundary engineering: Increasing Σ3 boundary fraction in pure Ni with thermomechanical treatments. Acta Mater. 2015, 86, 43–54. [Google Scholar] [CrossRef] [Green Version]
- Izadi, E.; Darbal, A.; Sarkar, R.; Rajagopalan, J. Grain rotations in ultrafine-grained aluminum films studied using in situ TEM straining with automated crystal orientation mapping. Mater. Des. 2017, 113, 186–194. [Google Scholar] [CrossRef] [Green Version]
- Idrissi, H.; Kobler, A.; Amin-Ahmadi, B.; Coulombier, M.; Galceran, M.; Raskin, J.P.; Godet, S.; Kübel, C.; Pardoen, T.; Schryvers, D. Plasticity mechanisms in ultrafine grained freestanding aluminum thin films revealed by in-situ transmission electron microscopy nanomechanical testing. Appl. Phys. Lett. 2014, 104, 101903. [Google Scholar] [CrossRef]
- Garner, A.; Gholinia, A.; Frankel, P.; Gass, M.; MacLaren, I.; Preuss, M. The microstructure and microtexture of zirconium oxide films studied by transmission electron backscatter diffraction and automated crystal orientation mapping with transmission electron microscopy. Acta Mater. 2014, 80, 159–171. [Google Scholar] [CrossRef]
- Guo, D.; Song, S.; Luo, R.; Goddard, W.A., III; Chen, M.; Reddy, K.M.; An, Q. Grain boundary sliding and amorphization are responsible for the reverse Hall-Petch relation in superhard nanocrystalline boron carbide. Phys. Rev. Lett. 2018, 121, 145504–145504. [Google Scholar] [CrossRef] [Green Version]
- Harks, P.P.R.M.L.; Mulder, F.M.; Notten, P.H.L. In situ methods for Li-ion battery research: A review of recent developments. J. Power Sources 2015, 288, 92–105. [Google Scholar] [CrossRef] [Green Version]
- Wu, F.; Yao, N. Advances in windowed gas cells for in-situ TEM studies. Nano Energy 2015, 13, 735–756. [Google Scholar] [CrossRef]
- Miller, B.K. Development and Application of Operando TEM to a Ruthenium Catalyst for CO Oxidation; Arizona State University: Phoenix, AR, USA, 2016. [Google Scholar]
- Jiang, N. Electron beam damage in oxides: A review. Rep. Prog. Phys. 2015, 79, 016501. [Google Scholar] [CrossRef] [PubMed]
- Egerton, R.F. Radiation damage to organic and inorganic specimens in the TEM. Micron 2019, 119, 72–87. [Google Scholar] [CrossRef]
- Jiang, N.; Spence, J.C.H. Electronic ionization induced atom migration in spinel MgAl2O4. J. Nucl. Mater. 2010, 403, 147–151. [Google Scholar] [CrossRef]
- Smith, R.; Bacorisen, D.; Uberuaga, B.P.; Sickafus, K.E.; Ball, J.A.; Grimes, R.W. Dynamical simulations of radiation damage in magnesium aluminate spinel, MgAl2O4. J. Phys. Condens. Matter 2005, 17, 875–891. [Google Scholar] [CrossRef]
- Ishimaru, M.; Afanasyev-Charkin, I.V.; Sickafus, K.E. Ion-beam-induced spinel-to-rocksalt structural phase transformation in MgAl2O4. Appl. Phys. Lett. 2000, 76, 2556–2558. [Google Scholar] [CrossRef]
- Bouchet, D.; Colliex, C. Experimental study of ELNES at grain boundaries in alumina: Intergranular radiation damage effects on Al-L23 and O-K edges. Ultramicroscopy 2003, 96, 139–152. [Google Scholar] [CrossRef]
- Nakamura, R.; Ishimaru, M.; Yasuda, H.; Nakajima, H. Atomic rearrangements in amorphous Al2O3 under electron-beam irradiation. J. Appl. Phys. 2013, 113, 064312. [Google Scholar] [CrossRef] [Green Version]
- Yao, L.; Majumdar, S.; Äkäslompolo, L.; Inkinen, S.; Qin, Q.H.; van Dijken, S. Electron-Beam-Induced Perovskite–Brownmillerite–Perovskite Structural Phase Transitions in Epitaxial La2/3Sr1/3MnO3 Films. Adv. Mater. 2014, 26, 2789–2793. [Google Scholar] [CrossRef]
- Nord, M.; Vullum, P.E.; Hallsteinsen, I.; Tybell, T.; Holmestad, R. Assessing electron beam sensitivity for SrTiO3 and La0.7Sr0.3MnO3 using electron energy loss spectroscopy. Ultramicroscopy 2016, 169, 98–106. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.; Wen, J.; Hu, L.; McCarthy, J.A.; Wang, S.; Poeppelmeier, K.R.; Marks, L.D. Electron-induced Ti-rich surface segregation on SrTiO3 nanoparticles. Micron 2015, 68, 152–157. [Google Scholar] [CrossRef] [Green Version]
- West, G.D.; Perkins, J.M.; Lewis, M.H. Characterisation of fine-grained oxide ceramics. J. Mater. Sci. 2004, 39, 6687–6704. [Google Scholar] [CrossRef]
- Winterstein, J.P.; Carter, C.B. Electron-beam damage and point defects near grain boundaries in cerium oxide. J. Eur. Ceram. Soc. 2014, 34, 3007–3018. [Google Scholar] [CrossRef]
- Yoshida, H.; Kuwabara, A.; Yamamoto, T.; Ikuhara, Y.; Sakuma, T. High temperature plastic flow and grain boundary chemistry in oxide ceramics. J. Mater. Sci. 2005, 40, 3129–3135. [Google Scholar] [CrossRef]
- Dillon, S.J.; Harmer, M.P. Multiple grain boundary transitions in ceramics: A case study of alumina. Acta Mater. 2007, 55, 5247–5254. [Google Scholar] [CrossRef]
- Höche, T.; Kenway, P.R.; Kleebe, H.-J.; Rühle, M.; Morris, P.A. High-Resolution Transmission Electron Microscopy Studies of a Near Σ11 Grain Boundary in α-Alumina. J. Am. Ceram. Soc. 1994, 77, 339–348. [Google Scholar] [CrossRef]
- Matsunaga, K.; Nishimura, H.; Hanyu, S.; Muto, H.; Yamamoto, T.; Ikuhara, Y. HRTEM study on grain boundary atomic structures related to the sliding behavior in alumina bicrystals. Appl. Surf. Sci. 2005, 241, 75–79. [Google Scholar] [CrossRef]
- Matsui, K.; Yoshida, H.; Ikuhara, Y. Nanocrystalline, Ultra-Degradation-Resistant Zirconia: Its Grain Boundary Nanostructure and Nanochemistry. Sci. Rep. 2014, 4, 4758. [Google Scholar] [CrossRef] [Green Version]
- Stemmer, S.; Vleugels, J.; Van Der Biest, O. Grain boundary segregation in high-purity, yttria-stabilized tetragonal zirconia polycrystals (Y-TZP). J. Eur. Ceram. Soc. 1998, 18, 1565–1570. [Google Scholar] [CrossRef]
- Sokol, M.; Ratzker, B.; Kalabukhov, S.; Dariel, M.P.; Galun, E.; Frage, N. Transparent polycrystalline magnesium aluminate spinel fabricated by spark plasma sintering. Adv. Mater. 2018, 30, 1706283. [Google Scholar] [CrossRef]
- Nuns, N.; Béclin, F.; Crampon, J. Grain-Boundary Characterization in a Nonstoichiometric Fine-Grained Magnesium Aluminate Spinel: Effects of Defect Segregation at the Space-Charge Layers. J. Am. Ceram. Soc. 2009, 92, 870–875. [Google Scholar] [CrossRef]
- Avila-Paredes, H.J.; Kim, S. The effect of segregated transition metal ions on the grain boundary resistivity of gadolinium doped ceria: Alteration of the space charge potential. Solid State Ion. 2006, 177, 3075–3080. [Google Scholar] [CrossRef]
- Bueno, P.R.; Leite, E.R.; Oliveira, M.M.; Orlandi, M.O.; Longo, E. Role of oxygen at the grain boundary of metal oxide varistors: A potential barrier formation mechanism. Appl. Phys. Lett. 2001, 79, 48–50. [Google Scholar] [CrossRef]
- Zhang, Z.; Sigle, W.; Rühle, M.; Jud, E.; Gauckler, L.J. Microstructure characterization of a cobalt-oxide-doped cerium-gadolinium-oxide by analytical and high-resolution TEM. Acta Mater. 2007, 55, 2907–2917. [Google Scholar] [CrossRef]
- Merkle, K.L.; Smith, D.J. Atomic Structure of Symmetric Tilt Grain Boundaries in NiO. Phys. Rev. Lett. 1987, 59, 2887–2890. [Google Scholar] [CrossRef] [PubMed]
- Sternlicht, H.; Bojarski, S.A.; Rohrer, G.S.; Kaplan, W.D. Quantitative differences in the Y grain boundary excess at boundaries delimiting large and small grains in Y doped Al2O3. J. Eur. Ceram. Soc. 2018, 38, 1829–1835. [Google Scholar] [CrossRef]
- Sternlicht, H.; Rheinheimer, W.; Mehlmann, A.; Rothschild, A.; Hoffmann, M.J.; Kaplan, W.D. The mechanism of grain growth at general grain boundaries in SrTiO3. Scr. Mater. 2020, 188, 206–211. [Google Scholar] [CrossRef]
- Jia, C.L.; Urban, K. Atomic-Resolution Measurement of Oxygen Concentration in Oxide Materials. Science 2004, 303, 2001–2004. [Google Scholar] [CrossRef]
- Feng, B.; Yokoi, T.; Kumamoto, A.; Yoshiya, M.; Ikuhara, Y.; Shibata, N. Atomically ordered solute segregation behaviour in an oxide grain boundary. Nat. Commun. 2016, 7, 11079. [Google Scholar] [CrossRef] [PubMed]
- Chiang, Y.; Wang, H.; Lee, J. HREM and STEM of intergranular films at zinc oxide varistor grain boundaries. J. Microsc. 1998, 191, 275–285. [Google Scholar] [CrossRef] [PubMed]
- Winnubst, A.J.A.; Kroot, P.J.M.; Burggraaf, A.J. AES/STEM grain boundary analysis of stabilized zirconia ceramics. J. Phys. Chem. Solids 1983, 44, 955–960. [Google Scholar] [CrossRef] [Green Version]
- Pyrz, W.D.; Blom, D.A.; Sadakane, M.; Kodato, K.; Ueda, W.; Vogt, T.; Buttrey, D.J. Atomic-level imaging of Mo-VO complex oxide phase intergrowth, grain boundaries, and defects using HAADF-STEM. Proc. Natl. Acad. Sci. USA 2010, 107, 6152–6157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schusteritsch, G.; Ishikawa, R.; Elmaslmane, A.R.; Inoue, K.; McKenna, K.P.; Ikuhara, Y.; Pickard, C.J. Anataselike Grain Boundary Structure in Rutile Titanium Dioxide. Nano Lett. 2021, 21, 2745–2751. [Google Scholar] [CrossRef]
- Ikuhara, Y. Grain boundary atomic structures and light-element visualization in ceramics: Combination of Cs-corrected scanning transmission electron microscopy and first-principles calculations. Electron. Microsc. 2011, 60, S173–S188. [Google Scholar] [CrossRef]
- Gale, J.D. GULP: A computer program for the symmetry-adapted simulation of solids. J. Chem. Soc. Faraday Trans. 1997, 93, 629–637. [Google Scholar] [CrossRef]
- Tong, W.; Yang, H.; Moeck, P.; Nandasiri, M.I.; Browning, N.D. General schema for [0 0 1] tilt grain boundaries in dense packing cubic crystals. Acta Mater. 2013, 61, 3392–3398. [Google Scholar] [CrossRef]
- Yuan, R.; Zhang, J.; He, L.; Zuo, J.-M. Training Artificial Neural Networks for Precision Orientation and Strain Mapping Using 4D Electron. Diffraction Datasets; Elsevier: Amesterdam, The Netherlands, 2021. [Google Scholar]
- Boland, T.M.; Rez, P.; Crozier, P.A.; Singh, A.K. Impact of Aliovalent Alkaline-Earth metal solutes on Ceria Grain Boundaries: A density functional theory study. Acta Mater. 2021, 205, 116481. [Google Scholar] [CrossRef]
- Ishihara, S.; Tochigi, E.; Ishikawa, R.; Shibata, N.; Ikuhara, Y. Atomic structures of Ti-doped α-Al2O3 Σ13 grain boundary with a small amount of Si impurity. J. Am. Ceram. Soc. 2020, 103, 6659–6665. [Google Scholar] [CrossRef]
- Saito, M.; Wang, Z.; Ikuhara, Y. Selective impurity segregation at a near-Σ5 grain boundary in MgO. J. Mater. Sci. 2014, 49, 3956–3961. [Google Scholar] [CrossRef]
- Yang, H.; Kotula, P.G.; Sato, Y.; Chi, M.; Ikuhara, Y.; Browning, N.D. Segregation of Mn2+ dopants as interstitials in SrTiO3 grain boundaries. Mater. Res. Lett. 2014, 2, 16–22. [Google Scholar] [CrossRef]
- Song, Z.; Xie, Z.H. A literature review of in situ transmission electron microscopy technique in corrosion studies. Micron 2018, 112, 69–83. [Google Scholar] [CrossRef]
- Cho, J.; Phuah, X.L.; Li, J.; Shang, Z.; Wang, H.; Charalambous, H.; Tsakalakos, T.; Mukherjee, A.K.; Wang, H.; Zhang, X. Temperature effect on mechanical response of flash-sintered ZnO by in-situ compression tests. Acta Mater. 2020, 200, 699–709. [Google Scholar] [CrossRef]
- Kondo, S.; Shibata, N.; Mitsuma, T.; Tochigi, E.; Ikuhara, Y. Dynamic observations of dislocation behavior in SrTiO3 by in situ nanoindentation in a transmission electron microscope. Appl. Phys. Lett. 2012, 100, 181906. [Google Scholar] [CrossRef]
- Kondo, S.; Mitsuma, T.; Shibata, N.; Ikuhara, Y. Direct observation of individual dislocation interaction processes with grain boundaries. Sci. Adv. 2016, 2, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Grosso, R.L.; Muccillo, E.N.; Muche, D.N.; Jawaharram, G.S.; Barr, C.M.; Monterrosa, A.M.; Castro, R.H.; Hattar, K.; Dillon, S.J. In situ transmission electron microscopy for ultrahigh temperature mechanical testing of ZrO2. Nano Lett. 2020, 20, 1041–1046. [Google Scholar] [CrossRef]
- Vikrant, K.S.N.; Grosso, R.L.; Feng, L.; Muccillo, E.N.; Muche, D.N.; Jawaharram, G.S.; Barr, C.M.; Monterrosa, A.M.; Castro, R.H.; García, R.E.; et al. Ultrahigh temperature in situ transmission electron microscopy based bicrystal coble creep in zirconia I: Nanowire growth and interfacial diffusivity. Acta Mater. 2020, 199, 530–541. [Google Scholar] [CrossRef]
- Gao, P.; Wang, Z.; Fu, W.; Liao, Z.; Liu, K.; Wang, W.; Bai, X.; Wang, E. In situ TEM studies of oxygen vacancy migration for electrically induced resistance change effect in cerium oxides. Micron 2010, 41, 301–305. [Google Scholar] [CrossRef]
- Zhang, Z. Surface effects in the energy loss near edge structure of different cobalt oxides. Ultramicroscopy 2007, 107, 598–603. [Google Scholar] [CrossRef] [PubMed]
- Stemmer, S.; Sane, A.; Browning, N.D.; Mazanec, T.J. Characterization of oxygen-deficient SrCoO3-δ by electron energy-loss spectroscopy and Z-contrast imaging. Solid State Ion. 2000, 130, 71–80. [Google Scholar] [CrossRef]
- Klie, R.F.; Zheng, J.C.; Zhu, Y.; Varela, M.; Wu, J.; Leighton, C. Direct measurement of the low-temperature spin-state transition in LaCoO3. Phys. Rev. Lett. 2007, 99, 047203–047203. [Google Scholar] [CrossRef]
- Klie, R.F.; Buban, J.P.; Varela, M.; Franceschetti, A.; Jooss, C.; Zhu, Y.; Browning, N.D.; Pantelides, S.T.; Pennycook, S.J. Enhanced current transport at grain boundaries in high-T c superconductors. Nature 2005, 435, 475–478. [Google Scholar] [CrossRef] [PubMed]
- Browning, N.D.; Buban, J.P.; Nellist, P.D.; Norton, D.P.; Chisholm, M.F.; Pennycook, S.J. The atomic origins of reduced critical currents at [001] tilt grain boundaries in YBa2Cu3O7−δ thin films. Phys. C Supercond. Its Appl. 1998, 294, 183–193. [Google Scholar] [CrossRef]
- Zhao, Y.; Feltes, T.E.; Regalbuto, J.R.; Meyer, R.J.; Klie, R.F. In Situ Electron Energy Loss Spectroscopy Study of Metallic Co and Co Oxides; American Institute of Physics AIP: College Park, MD, USA, 2010; Volume 108, p. 063704. [Google Scholar]
- Song, X.; Daniels, G.; Feldmann, D.M.; Gurevich, A.; Larbalestier, D. Electromagnetic, atomic structure and chemistry changes induced by Ca-doping of low-angle YBa2Cu3O7−δ grain boundaries. Nat. Mater. 2005, 4, 470–475. [Google Scholar] [CrossRef] [PubMed]
- Bischoff, J.; Motta, A.T. EFTEM and EELS analysis of the oxide layer formed on HCM12A exposed to SCW. J. Nucl. Mater. 2012, 430, 171–180. [Google Scholar] [CrossRef]
- Jiang, N.; Spence, J.C.H. Interpretation of Oxygen K pre-edge peak in complex oxides. Ultramicroscopy 2006, 106, 215–219. [Google Scholar] [CrossRef]
- Wang, Z.L.; Yin, J.S.; Jiang, Y.D. EELS analysis of cation valence states and oxygen vacancies in magnetic oxides. Micron 2000, 31, 571–580. [Google Scholar] [CrossRef]
- Yuan, Y.; Amine, K.; Lu, J.; Shahbazian-Yassar, R. Understanding materials challenges for rechargeable ion batteries with in situ transmission electron microscopy. Nat. Commun. 2017, 8, 15806. [Google Scholar] [CrossRef]
- Sun, Y.Y.; Hou, P.Y.; Zhang, L.C. Mitigating the Microcracks of High-Ni Oxides by in Situ Formation of Binder between Anisotropic Grains for Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2020, 12, 13923–13930. [Google Scholar] [CrossRef]
- Park, K.J.; Hwang, J.Y.; Ryu, H.H.; Maglia, F.; Kim, S.J.; Lamp, P.; Yoon, C.S.; Sun, Y.K. Degradation mechanism of Ni-enriched NCA cathode for lithium batteries: Are microcracks really critical? ACS Energy Lett. 2019, 4, 1394–1400. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Zhan, X.; Hood, Z.D.; Li, W.; Leonard, D.N.; Manthiram, A.; Chi, M. Essential effect of the electrolyte on the mechanical and chemical degradation of LiNi0.8Co0.15Al0.05O2 cathodes upon long-term cycling. J. Mater. Chem. A 2021, 9, 2111–2119. [Google Scholar] [CrossRef]
- Jo, Y.R.; Koo, B.; Seo, M.J.; Kim, J.K.; Lee, S.; Kim, K.; Han, J.W.; Jung, W.; Kim, B.J. Growth kinetics of individual Co particles Ex-solved on SrTi0.75Co0.25O3-δ polycrystalline perovskite thin films. J. Am. Chem. Soc. 2019, 141, 6690–6697. [Google Scholar] [CrossRef] [PubMed]
- Zajac, W.; Molenda, J. Electrical conductivity of doubly doped ceria. Solid State Ion. 2008, 179, 154–158. [Google Scholar] [CrossRef]
- Guo, X.; Waser, R. Electrical properties of the grain boundaries of oxygen ion conductors: Acceptor-doped zirconia and ceria. Prog. Mater. Sci. 2006, 51, 151–210. [Google Scholar] [CrossRef]
- Steele, B.C.H.; Heinzel, A. Materials for fuel-cell technologies. Nature 2001, 414, 345–352. [Google Scholar] [CrossRef]
- Mogensen, M.; Sammes, N.M.; Tompsett, G.A. Physical, chemical and electrochemical properties of pure and doped ceria. Solid State Ion. 2000, 129, 63–94. [Google Scholar] [CrossRef]
- Avila-Paredes, H.J.; Choi, K.; Chen, C.T.; Kim, S. Dopant-concentration dependence of grain-boundary conductivity in ceria: A space-charge analysis. J. Mater. Chem. 2009, 19, 4837–4842. [Google Scholar] [CrossRef]
- Luo, J. Interfacial engineering of solid electrolytes. J. Mater. 2015, 1, 22–32. [Google Scholar] [CrossRef] [Green Version]
- Murugan, R.; Thangadurai, V.; Weppner, W. Fast Lithium Ion Conduction in Garnet-Type Li7La3Zr2O12. Angew. Chem. Int. Ed. 2007, 46, 7778–7781. [Google Scholar] [CrossRef]
- Li, Y.; Han, J.T.; Wang, C.A.; Xie, H.; Goodenough, J.B. Optimizing Li+ conductivity in a garnet framework. J. Mater. Chem. 2012, 22, 15357–15361. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, J.; Gao, J. Preparation and chemical compatibility of lithium aluminum germanium phosphate solid electrolyte. Solid State Ion. 2018, 318, 27–34. [Google Scholar] [CrossRef]
- Inaguma, Y.; Liquan, C.; Itoh, M.; Nakamura, T.; Uchida, T.; Ikuta, H.; Wakihara, M. High ionic conductivity in lithium lanthanum titanate. Solid State Commun. 1993, 86, 689–693. [Google Scholar] [CrossRef]
- Kimura, K.; Wagatsuma, K.; Tojo, T.; Inada, R.; Sakurai, Y. Effect of composition on lithium-ion conductivity for perovskite-type lithium-strontium-tantalum-zirconium-oxide solid electrolytes. Ceram. Int. 2016, 42, 5546–5552. [Google Scholar] [CrossRef]
- Cui, Y.; Mahmoud, M.M.; Rohde, M.; Ziebert, C.; Seifert, H.J. Thermal and ionic conductivity studies of lithium aluminum germanium phosphate solid-state electrolyte. Solid State Ion. 2016, 289, 125–132. [Google Scholar] [CrossRef]
- Sharafi, A. Microstructural and Interface Engineering of Garnet-Type Fast Ion-Conductor for Use in Solid-State Batteries. Ph.D. Thesis, Horace H. Rackham School of Graduate Studies, University of Michigan, Ann Arbor, MI, USA, 2007. Available online: https://deepblue.lib.umich.edu/handle/2027.42/140865 (accessed on 19 May 2021).
- Allen, J.L.; Wolfenstine, J.; Rangasamy, E.; Sakamoto, J. Effect of substitution (Ta, Al, Ga) on the conductivity of Li7La3Zr2O12. J. Power Sources 2012, 206, 315–319. [Google Scholar] [CrossRef]
- Hu, S.; Li, Y.F.; Yang, R.; Yang, Z.; Wang, L. Structure and ionic conductivity of Li7La3Zr2−xGexO12 garnet-like solid electrolyte for all solid state lithium ion batteries. Ceram. Int. 2018, 44, 6614–6618. [Google Scholar] [CrossRef]
- Thompson, T.; Yu, S.; Williams, L.; Schmidt, R.D.; Garcia-Mendez, R.; Wolfenstine, J.; Allen, J.L.; Kioupakis, E.; Siegel, D.J.; Sakamoto, J. Electrochemical window of the Li-ion solid electrolyte Li7La3Zr2O12. ACS Energy Lett. 2017, 2, 462–468. [Google Scholar] [CrossRef]
- Thangadurai, V.; Narayanan, S.; Pinzaru, D. Garnet-type solid-state fast Li ion conductors for Li batteries: Critical review. Chem. Soc. Rev. 2014, 43, 4714–4727. [Google Scholar] [CrossRef]
- Ahmad, M.M. Estimation of the concentration and mobility of mobile Li+ in the cubic garnet-type Li7La3Zr2O12. RSC Adv. 2015, 5, 25824–25829. [Google Scholar] [CrossRef]
- Pickett, W.E.; Feldman, J.L.; Deppe, J. Thermal transport across boundaries in diamond structure materials. Model. Simul. Mater. Sci. Eng. 1996, 4, 409–419. [Google Scholar] [CrossRef]
- Sood, A.; Cheaito, R.; Bai, T.; Kwon, H.; Wang, Y.; Li, C.; Yates, L.; Bougher, T.; Graham, S.; Asheghi, M.; et al. Direct visualization of thermal conductivity suppression due to enhanced phonon scattering near individual grain boundaries. Nano Lett. 2018, 18, 3466–3472. [Google Scholar] [CrossRef] [PubMed]
- Kinoshita, T.; Munekawa, S. Effect of grain boundary segregation on thermal conductivity of hot-pressed silicon carbide. Acta Mater. 1997, 45, 2001–2012. [Google Scholar] [CrossRef]
- Boyle, C.; Carvillo, P.; Chen, Y.; Barbero, E.J.; Mcintyre, D.; Song, X. Grain boundary segregation and thermoelectric performance enhancement of bismuth doped calcium cobaltite. J. Eur. Ceram. Soc. 2016, 36, 601–607. [Google Scholar] [CrossRef]
- Blundell, S.J.; Blundell, K.M. Concepts in Thermal Physics; Oxford University Press: Oxford, UK, 2010; p. 512. ISBN 978-0-19-171823-6. [Google Scholar]
- Song, X.; Paredes Navia, S.A.; Liang, L.; Boyle, C.; Romo-De-La-Cruz, C.O.; Jackson, B.; Hinerman, A.; Wilt, M.; Prucz, J.; Chen, Y. Grain boundary phase segregation for dramatic improvement of the thermoelectric performance of oxide ceramics. ACS Appl. Mater. Interfaces 2018, 10, 39018–39024. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; Su, T.; Zhang, P.; Lou, Z.; Qin, M.; Gao, T.; Xu, J.; Zhu, J.; Gao, F. Enhanced thermoelectric performance of Ca3Co4O9 ceramics through grain orientation and interface modulation. J. Mater. Chem. A 2020, 8, 19561–19572. [Google Scholar] [CrossRef]
- Yang, H.S.; Bai, G.R.; Thompson, L.J.; Eastman, J.A. Interfacial thermal resistance in nanocrystalline yttria-stabilized zirconia. Acta Mater. 2002, 50, 2309–2317. [Google Scholar] [CrossRef]
- Smith, D.S.; Fayette, S.; Grandjean, S.; Martin, C.; Telle, R.; Tonnessen, T. Thermal resistance of grain boundaries in alumina ceramics and refractories. J. Am. Ceram. Soc. 2003, 86, 105–111. [Google Scholar] [CrossRef]
- Watanabe, T. Grain boundary engineering: Historical perspective and future prospects. J. Mater. Sci. 2011, 46, 4095–4115. [Google Scholar] [CrossRef]
- Krause, A.R.; Cantwell, P.R.; Marvel, C.J.; Compson, C.; Rickman, J.M.; Harmer, M.P. Review of grain boundary complexion engineering: Know your boundaries. J. Am. Ceram. Soc. 2019, 102, 778–800. [Google Scholar] [CrossRef]
- Maehara, Y.; Langdon, T.G. Superplasticity in ceramics. J. Mater. Sci. 1990, 25, 2275–2286. [Google Scholar] [CrossRef]
- Ryou, H.; Drazin, J.W.; Wahl, K.J.; Qadri, S.B.; Gorzkowski, E.P.; Feigelson, B.N.; Wollmershauser, J.A. Below the hall–petch limit in nanocrystalline ceramics. ACS Nano 2018, 12, 3083–3094. [Google Scholar] [CrossRef] [PubMed]
- Ikuhara, Y.; Yoshida, H.; Sakuma, T. Impurity effects on grain boundary strength in structural ceramics. Mater. Sci. Eng. A 2001, 319–321, 24–30. [Google Scholar] [CrossRef]
- Matsunaga, K.; Nishimura, H.; Muto, H.; Yamamoto, T.; Ikuhara, Y. Direct measurements of grain boundary sliding in yttrium-doped alumina bicrystals. Appl. Phys. Lett. 2003, 82, 1179–1181. [Google Scholar] [CrossRef]
- Kondo, S.; Ishihara, A.; Tochigi, E.; Shibata, N.; Ikuhara, Y. Direct observation of atomic-scale fracture path within ceramic grain boundary core. Nat. Commun. 2019, 10, 2112. [Google Scholar] [CrossRef]
- Coleman, S.P.; Hernandez-Rivera, E.; Behler, K.D.; Synowczynski-Dunn, J.; Tschopp, M.A. Challenges of Engineering Grain Boundaries in Boron-Based Armor Ceramics. JOM 2016, 68, 1605–1615. [Google Scholar] [CrossRef]
- Watanabe, T.; Tsurekawa, S. Control of brittleness and development of desirable mechanical properties in polycrystalline systems by grain boundary engineering. Acta Mater. 1999, 47, 4171–4185. [Google Scholar] [CrossRef]
- Chen, M.W.; McCauley, J.W.; Dandekar, D.P.; Bourne, N.K. Dynamic plasticity and failure of high-purity alumina under shock loading. Nat. Mater. 2006, 5, 614–618. [Google Scholar] [CrossRef]
- Reddy, K.M.; Liu, P.; Hirata, A.; Fujita, T.; Chen, M.W. Atomic structure of amorphous shear bands in boron carbide. Nat. Commun. 2013, 4, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Ju, H.L.; Sohn, H. Role of grain boundaries in double exchange manganite oxides La1-xAxMnO3 (A = Ba, Ca). Solid State Commun. 1997, 102, 463–466. [Google Scholar] [CrossRef]
- Straumal, B.B.; Mazilkin, A.A.; Protasova, S.G.; Myatiev, A.A.; Straumal, P.B.; Schütz, G.; Van Aken, P.A.; Goering, E.; Baretzky, B. Magnetization study of nanograined pure and Mn-doped ZnO films: Formation of a ferromagnetic grain-boundary foam. Phys. Rev. B Condens. Matter Mater. Phys. 2009, 79, 205206–205206. [Google Scholar] [CrossRef] [Green Version]
- Sepehri-Amin, H.; Tamazawa, Y.; Kambayashi, M.; Saito, G.; Takahashi, Y.K.; Ogawa, D.; Ohkubo, T.; Hirosawa, S.; Doi, M.; Shima, T.; et al. Achievement of high coercivity in Sm (Fe0.8Co0.2) 12 anisotropic magnetic thin film by boron doping. Acta Mater. 2020, 194, 337–342. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, W.; Wang, T.; Jiang, L.; Wang, N.; Sun, D.; Zhao, X.; Wang, M.; Qi, Y. Nanoscale characterization of the doped SrZrO3 nanoparticles distribution and its influence on the microstructure of Bi2Sr2CaCu2O8+ δ film. J. Alloys Compd. 2021, 858, 157650. [Google Scholar] [CrossRef]
- Straumal, B.B.; Myatiev, A.A.; Straumal, P.B.; Mazilkin, A.A.; Protasova, S.G.; Goering, E.; Baretzky, B. Grain boundary layers in nanocrystalline ferromagnetic zinc oxide. JETP Lett. 2010, 92, 396–400. [Google Scholar] [CrossRef]
- Park, Y.J.; Kang, J.H.; Kim, A.H.; Kim, T.H.; Lim, T.Y.; Kim, D.H. Structural, electrical, and magnetic properties of BiFeO3-Y3Fe5O12 bulk ceramics and sputtered thin films. J. Magn. Magn. Mater. 2021, 535, 168058. [Google Scholar] [CrossRef]
- Li, S.; Pan, J.; Gao, F.; Zeng, D.; Qin, F.; He, C.; Dodbiba, G.; Wei, Y.; Fujita, T. Structure and magnetic properties of coprecipitated nickel-zinc ferrite-doped rare earth elements of Sc, Dy, and Gd. J. Mater. Sci. Mater. Electron. 2021, 1–16. [Google Scholar] [CrossRef]
- Chen, C.F.; Brennecka, G.L.; Synowicki, R.A.; Tegtmeier, E.L.; Brand, M.J.; Montalvo, J.D.; Ivy, J.; Cherepy, N.J.; Seeley, Z.; Payne, S.A. Transparent polycrystalline Gd2Hf2O7 ceramics. J. Am. Ceram. Soc. 2018, 101, 3797–3807. [Google Scholar] [CrossRef]
- Zhao, W.; Anghel, S.; Mancini, C.; Amans, D.; Boulon, G.; Epicier, T.; Shi, Y.; Feng, X.Q.; Pan, Y.B.; Chani, V.; et al. Ce3+ dopant segregation in Y3Al5O12 optical ceramics. Opt. Mater. 2011, 33, 684–687. [Google Scholar] [CrossRef]
- Palmero, P.; Bonelli, B.; Fantozzi, G.; Spina, G.; Bonnefont, G.; Montanaro, L.; Chevalier, J. Surface and mechanical properties of transparent polycrystalline YAG fabricated by SPS. Mater. Res. Bull. 2013, 48, 2589–2597. [Google Scholar] [CrossRef]
- Lyberis, A.; Patriarche, G.; Gredin, P.; Vivien, D.; Mortier, M. Origin of light scattering in ytterbium doped calcium fluoride transparent ceramic for high power lasers. J. Eur. Ceram. Soc. 2011, 31, 1619–1630. [Google Scholar] [CrossRef]
- Klimke, J.; Trunec, M.; Krell, A. Transparent tetragonal yttria-stabilized zirconia ceramics: Influence of scattering caused by birefringence. J. Am. Ceram. Soc. 2011, 94, 1850–1858. [Google Scholar] [CrossRef]
- Zhang, Y. Making yttria-stabilized tetragonal zirconia translucent. Dent. Mater. 2014, 30, 1195–1203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trunec, M.; Maca, K.; Chmelik, R. Polycrystalline alumina ceramics doped with nanoparticles for increased transparency. J. Eur. Ceram. Soc. 2015, 35, 1001–1009. [Google Scholar] [CrossRef]
- Merac, M.R.; Reimanis, I.E.; Smith, C.; Kleebe, H.-J.; Müller, M.M. Effect of Impurities and LiF Additive in Hot-Pressed Transparent Magnesium Aluminate Spinel. Int. J. Appl. Ceram. Technol. 2013, 10, E33–E48. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vahidi, H.; Syed, K.; Guo, H.; Wang, X.; Wardini, J.L.; Martinez, J.; Bowman, W.J. A Review of Grain Boundary and Heterointerface Characterization in Polycrystalline Oxides by (Scanning) Transmission Electron Microscopy. Crystals 2021, 11, 878. https://doi.org/10.3390/cryst11080878
Vahidi H, Syed K, Guo H, Wang X, Wardini JL, Martinez J, Bowman WJ. A Review of Grain Boundary and Heterointerface Characterization in Polycrystalline Oxides by (Scanning) Transmission Electron Microscopy. Crystals. 2021; 11(8):878. https://doi.org/10.3390/cryst11080878
Chicago/Turabian StyleVahidi, Hasti, Komal Syed, Huiming Guo, Xin Wang, Jenna Laurice Wardini, Jenny Martinez, and William John Bowman. 2021. "A Review of Grain Boundary and Heterointerface Characterization in Polycrystalline Oxides by (Scanning) Transmission Electron Microscopy" Crystals 11, no. 8: 878. https://doi.org/10.3390/cryst11080878
APA StyleVahidi, H., Syed, K., Guo, H., Wang, X., Wardini, J. L., Martinez, J., & Bowman, W. J. (2021). A Review of Grain Boundary and Heterointerface Characterization in Polycrystalline Oxides by (Scanning) Transmission Electron Microscopy. Crystals, 11(8), 878. https://doi.org/10.3390/cryst11080878