Bulk and Single Crystal Growth Progress of Iron-Based Superconductors (FBS): 1111 and 1144
Abstract
:1. Introduction
2. Family 1111
3. Family 1144
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Onnes, H.K. The Superconductivity of Mercury. Comm. Phys. Lab Uni. Leiden 1911, 120b, 124c. [Google Scholar]
- Tinkham, M. Introduction to Superconductivity, 2nd ed.; McGraw-Hill: New York, NY, USA, 1996; ISBN 0-486-43503-2. [Google Scholar]
- Hosono, H.; Yamamoto, A.; Hiramatsu, H.; Ma, Y. Recent advances in iron-based superconductors toward applications. Mater. Today 2018, 21, 278–302. [Google Scholar] [CrossRef]
- Yao, C.; Ma, Y. Recent breakthrough development in iron-based superconducting wires for practical applications. Supercond. Sci. Technol. 2019, 32, 023002. [Google Scholar] [CrossRef]
- Johnston, D.C. The puzzle of high temperature superconductivity in layered iron pnictides and chalcogenides. Adv. Phys. 2010, 59, 803. [Google Scholar] [CrossRef] [Green Version]
- Kamihara, Y.; Watanabe, T.; Hirano, M.; Hosono, H. Iron-Based Layered Superconductor La[O1-xFx]FeAs (x = 0.05−0.12) with Tc = 26 K. J. Am. Chem. Soc. 2008, 130, 3296. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.J.; Mele, P. Future Potential of New High Tc Iron-Based Superconductors. In Superconductivity; Springer: Cham, Switzerland, 2020; pp. 243–268. [Google Scholar] [CrossRef]
- Shimoyama, J. Potentials of iron-based superconductors for practical future materials. Supercond. Sci. Technol. 2014, 27, 044002. [Google Scholar] [CrossRef]
- Sefat, A.S.; Jin, R.; McGuire, M.A.; Sales, B.C.; Singh, D.J.; Mandrus, D. Superconductivity at 22 K in Co-Doped BaFe2As2 Crystals. Phys. Rev. Lett. 2008, 101, 117004. [Google Scholar] [CrossRef] [Green Version]
- Rotter, M.; Tegel, M.; Johrendt, D. Superconductivity at 38 K in the Iron Arsenide (Ba1−xKx)Fe2As2. Phys. Rev. Lett. 2008, 101, 107006. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.J.; Robert, B.; Wurmehl, S.; Hess, C.; Buechner, B. Granular behavior observed in the polycrystalline superconducting LiFeAs. Supercond. Sci. Technol. 2015, 28, 025006. [Google Scholar] [CrossRef]
- Iyo, A.; Kawashima, K.; Kinjo, T.; Nishio, T.; Ishida, S.; Fujihisa, H.; Gotoh, Y.; Kihou, K.; Eisaki, H.; Yoshida, Y. New-Structure-Type Fe-Based Superconductors: CaAFe4As4 (A = K, Rb, Cs) and SrAFe4As4 (A = Rb, Cs). J. Am. Chem. Soc. 2016, 138, 3410–3415. [Google Scholar] [CrossRef]
- Ogino, H.; Matsumura, Y.; Katsura, Y.; Ushiyama, K.; Horii, S.; Kishio, K.; Shimoyama, J. Superconductivity at 17 K in (Fe2P2)(Sr4Sc2O6): A new superconducting layered pnictide oxide with a thick perovskite oxide layer. Supercond. Sci. Technol. 2009, 22, 075008. [Google Scholar] [CrossRef]
- Zhu, X.; Han, F.; Mu, G.; Cheng, P.; Shen, B.; Zeng, B.; Wen, H.H. Transition of stoichiometric Sr2VO3FeAs to a superconducting state at 37.2 K. Phys. Rev. B 2009, 79, 220512. [Google Scholar] [CrossRef] [Green Version]
- Ogino, H.; Shimizu, Y.; Ushiyama, K.; Kawaguchi, N.; Kishio, K.; Shimoyama, J. Superconductivity above 40 K observed in a new iron arsenide oxide (Fe2As2)(Ca4(Mg,Ti)3Oy). Appl. Phys. Express 2010, 3, 063103. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.J.; Ogino, H.; Shimoyama, J.; Kishio, K. Weak-link behaviour observed in iron-based superconductors with thick perovskite-type blocking layers. Supercond. Sci. Technol. 2013, 26, 105020. [Google Scholar] [CrossRef]
- Singh, S.J.; Morawski, A. New Potential Family of Iron Based Superconductors towards practical application: CaKFe4As4. In High-Tc Superconducting Technology: Towards Sustainable Development Goals; Jenny Stanford Publishing: New York, NY, USA, 2021; pp. 283–314. [Google Scholar] [CrossRef]
- Singh, S.J.; Bristow, M.; Meier, W.R.; Taylor, P.; Blundell, S.J.; Canfield, P.C.; Coldea, A.I. Ultrahigh critical current densities, the vortex phase diagram, and the effect of granularity of the stoichiometric high-Tc superconductor CaKFe4As4. Phys. Rev. Mater. 2018, 2, 074802. [Google Scholar] [CrossRef]
- Buzea, C.; Yamashita, T. Review of the superconducting properties of MgB2. Supercond. Sci. Technol. 2001, 14, R115. [Google Scholar] [CrossRef] [Green Version]
- Iimura, S.; Muramoto, T.; Fujitsu, S.; Matsuishi, S.; Hosono, H. High pressure growth and electron transport properties of superconducting SmFeAsO1−xHx single crystals. J. Asian Ceram. Soc. 2017, 5, 357. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, R.; Millies, A.J. Nematicity as a Probe of Superconducting Pairing in Iron-Based Superconductors. Phys. Rev. Lett. 2013, 111, 127001. [Google Scholar] [CrossRef]
- Fernandes, R.M.; Chubukov, A.V.; Schmalian, J. What drives nematic order in iron-based superconductors? Nat. Phys. 2014, 10, 97. [Google Scholar] [CrossRef] [Green Version]
- Chu, J.H.; Analytis, J.G.; Greve, K.; McMahon, P.L.; Islam, Z.; Yamamoto, Y.; Fisher, I.R. In-Plane Resistivity Anisotropy in an Underdoped Iron Arsenide Superconductor. Science 2010, 329, 824. [Google Scholar] [CrossRef] [Green Version]
- Coldea, A. Electronic Nematic States Tuned by Isoelectronic Substitution in Bulk FeSe1−xSx. Front. Phys. 2021, 8, 594500. [Google Scholar] [CrossRef]
- Wang, A.F.; Xiang, Z.J.; Ying, J.J.; Yan, Y.J.; Cheng, P.; Ye, G.J.; Luo, X.G.; Chen, X.H. Pressure effects on the superconducting properties of single-crystalline Co doped NaFeAs. New J. Phys. 2012, 14, 113043. [Google Scholar] [CrossRef]
- Margadonna, S.; Takabayashi, Y.; Ohishi, Y.; Mizuguchi, Y.; Takano, Y.; Kagayama, T.; Nakagawa, T.; Takata, M.; Prassides, K. Pressure evolution of the low-temperature crystal structure and bonding of the superconductor FeSe. Phys. Rev. B 2009, 80, 064506. [Google Scholar] [CrossRef] [Green Version]
- Sang, L.N.; Li, Z.; Yang, G.S.; Yue, Z.J.; Liu, J.X.; Cai, C.B.; Wu, T.; Dou, S.X.; Ma, Y.W.; Wang, X.L. Pressure effects on iron-based superconductor families: Superconductivity flux pinning and vortex dynamics. Mater. Today Phys. 2021, 19, 100414. [Google Scholar] [CrossRef]
- Ge, J.F.; Liu, Z.L.; Liu, C.; Gao, C.L.; Qian, D.; Xue, Q.K.; Liu, Y.; Jia, J.F. Superconductivity above 100 K in single-layer FeSe films on doped SrTiO3. Nat. Mater. 2015, 14, 285. [Google Scholar] [CrossRef]
- Singh, S.J.; Shimoyama, J.; Yamamoto, A.; Ogino, H.; Kishio, K. Transition Temperature and Upper Critical Field in SmFeAsO1−xFx Synthesized at Low Heating Temperatures. IEEE Trans. Appl. Supercond. 2013, 23, 7300605. [Google Scholar] [CrossRef]
- Yamamoto, A.; Jiang, J.; Kametani, F.; Polyanskii, A.; Hellstrom, E.; Larbalestier, D.; Martinelli, A.; Palenzona, A.; Tropeano, M.; Putti, M. Evidence for electromagnetic granularity in polycrystalline Sm1111 iron-pnictides with enhanced phase purity. Supercond. Sci. Technol. 2011, 24, 045010. [Google Scholar] [CrossRef]
- Kametani, F.; Polyanskii, A.A.; Yamamoto, A.; Jiang, J.; Hellstrom, E.E.; Gurevich, A.; Larbalestier, D.C.; Ren, Z.A.; Yang, J.; Dong, X.L.; et al. Combined microstructural and magneto-optical study of current flow in polycrystalline forms of Nd and Sm Fe-oxypnictides. Supercond. Sci. Technol. 2008, 22, 015010. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.J.; Cassidy, S.J.; Bristow, M.; Blundell, S.J.; Clarke, S.J.; Coldea, A.I. Optimization of superconducting properties of the stoichiometric CaKFe4As4. Supercond. Sci. Technol. 2020, 33, 025003. [Google Scholar] [CrossRef]
- Iida, K.; Hanisch, J.; Yamamoto, A. Grain boundary characteristics of Fe-based superconductors. Supercond. Sci. Technol. 2020, 33, 043001. [Google Scholar] [CrossRef] [Green Version]
- Fujioka, M.; Denholme, S.J.; Tanaka, M.; Takeya, H.; Yamaguchi, T.; Takano, Y. The effect of exceptionally high fluorine doping on the anisotropy of single crystalline SmFeAsO1−xFx. Appl. Phys. Lett. 2014, 105, 102602. [Google Scholar] [CrossRef] [Green Version]
- Feldmann, D.M.; Holesinger, T.G.; Feenstra, R.; Larbalestier, D. A Review of the Influence of Grain Boundary Geometry on the Electromagnetic Properties of Polycrystalline YBa2Cu3O7−x Films. J. Am. Ceram. Soc. 2008, 91, 1869. [Google Scholar] [CrossRef]
- Imai, Y.; Nabeshima, F.; Maeda, A. Comparative Review on Thin Film Growth of Iron-Based Superconductors. Condens. Matter. 2017, 2, 25. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.J.; Shimoyama, J.; Yamamoto, A.; Ogino, H.; Kishio, K. Significant enhancement of the intergrain coupling in lightly F-doped SmFeAsO superconductors. Supercond. Sci. Technol. 2013, 26, 065006. [Google Scholar] [CrossRef]
- Ni, N.; Bud’ko, S.L.; Kreyssig, A.; Nandi, S.; Rustan, G.E.; Goldman, A.I.; Gupta, S.; Corbett, J.D.; Kracher, A.; Canfield, P.C. Anisotropic thermodynamic and transport properties of single-crystalline Ba1−xKxFe2As2 (x=0 and 0.45). Phys. Rev. B 2008, 78, 014507. [Google Scholar] [CrossRef] [Green Version]
- Kihou, K.; Saito, T.; Ishida, S.; Nakajima, M.; Tomioka, Y.; Fukazawa, H.; Kohori, Y.; Ito, T.; Uchida, S.; Iyo, A.; et al. Single Crystal Growth and Characterization of the Iron-Based Superconductor KFe2As2 Synthesized by KAs Flux Method. J. Phys. Soc. Jpn. 2010, 79, 124713. [Google Scholar] [CrossRef] [Green Version]
- Grinenko, V.; Drechsler, S.L.; Abdel-Hafiez, M.; Aswartham, S.; Wolter, A.U.B.; Wurmehl, S.; Hess, C.; Nenkov, K.; Fuchs, G.; Efremov, D.V.; et al. Disordered magnetism in superconducting KFe2As2 single crystals. Phys. Status Solidi B 2013, 250, 593. [Google Scholar] [CrossRef] [Green Version]
- Su, M.; Link, P.; Schneidewind, A.; Wolf, T.; Adelmann, P.; Xiao, Y.; Meven, M.; Mittal, R.; Rotter, M.; Johrendt, D.; et al. Antiferromagnetic ordering and structural phase transition in Ba2Fe2As2 with Sn incorporated from the growth flux. Phys. Rev. B. 2008, 79, 064504. [Google Scholar] [CrossRef] [Green Version]
- Harnagea, L.; Singh, S.; Friemel, G.; Leps, N.; Bombor, D.; Abdel-Hafiez, M.; Wolter, A.U.B.; Hess, C.; Klingeler, R.; Behr, G.; et al. Phase diagram of the iron arsenide superconductors Ca(Fe1−xCox)2As2 (0 ≤ x ≤ 0.2). Phys. Rev. B 2011, 83, 094523. [Google Scholar] [CrossRef] [Green Version]
- Sasmal, K.; Lv, B.; Lorenz, B.; Guloy, A.M.; Chen, F.; Xue, Y.Y.; Chu, C.W. Superconducting Fe-Based Compounds (A1−xSrx)Fe2As2 with A=K and Cs with Transition Temperatures up to 37 K. Phys. Rev. Lett. 2008, 101, 107007. [Google Scholar] [CrossRef] [Green Version]
- Ni, N.; Nandi, S.; Kreyssig, A.; Goldman, A.I.; Mun, E.D.; Bud’ko, S.L.; Canfield, P.C. First-order structural phase transition in CaFe2As2. Phys. Rev. B. 2008, 78, 014523. [Google Scholar] [CrossRef] [Green Version]
- Ni, N.; Tillman, M.E.; Yan, J.-Q.; Kracher, A.; Hannahs, S.T.; Bud’ko, S.L.; Canfield, P.C. Effects of Co substitution on thermodynamic and transport properties and anisotropic Hc2 in Ba(Fe1−xCox)2As2 single crystals. Phys. Rev. B 2008, 78, 214515. [Google Scholar] [CrossRef] [Green Version]
- Ni, N.; Thaler, A.; Kracher, A.; Yan, J.Q.; Bud’ko, S.L.; Canfield, P.C. Phase diagrams of Ba(Fe1−xMx)2As2 single crystals (M=Rh and Pd). Phys. Rev. B 2009, 80, 024511. [Google Scholar] [CrossRef]
- Bud’ko, S.L.; Ni, N.; Canfield, P.C. Jump in specific heat at the superconducting transition temperature in Ba(Fe1−xCox)2As2 and Ba(Fe1−xNix)2As2 single crystals. Phys Rev. B 2009, 79, 220516. [Google Scholar] [CrossRef] [Green Version]
- Hu, R.; Ran, S.; Straszheim, W.E.; Bud’ko, S.L.; Canfield, P.C. Single crystal growth and superconductivity of Ca(Fe1−xCox)2As2. Philos. Mag. 2012, 92, 3113. [Google Scholar] [CrossRef] [Green Version]
- Aswartham, S.; Nacke, C.; Friemel, G.; Leps, N.; Wurmehl, S.; Wizent, N.; Hess, C.; Klingeler, R.; Behr, G.; Singh, S.; et al. Single crystal growth and physical properties of superconducting ferro-pnictides Ba(Fe, Co)2As2 grown using self-flux and Bridgman techniques. J. Cryst. Growth 2011, 314, 341. [Google Scholar] [CrossRef]
- Karpinski, J.; Zhigadlo, N.D.; Katrych, S.; Bukowski, Z.; Moll, P.; Weyeneth, S.; Keller, H.; Puzniak, R.; Tortello, M.; Daghero, D.; et al. Single crystals of LnFeAsO1-xFx (Ln = La, Pr, Nd, Sm, Gd) and Ba1-xRbxFe2As2. Physica C 2009, 469, 370. [Google Scholar] [CrossRef] [Green Version]
- Bonura, M.; Giannini, E.; Viennois, R.; Senatore, C. Temperature and time scaling of the peak-effect vortex configuration in FeTe0.7Se0.3. Phys. Rev. B 2012, 85, 134532. [Google Scholar] [CrossRef] [Green Version]
- Pramanik, A.K.; Harnagea, L.; Nacke, C.; Wolter, A.U.B.; Wurmehl, S.; Kataev, V.; Büchner, B. Fishtail effect and vortex dynamics in LiFeAs single crystals. Phys. Rev. B 2011, 83, 094502. [Google Scholar] [CrossRef] [Green Version]
- Shen, B.; Cheng, P.; Wang, Z.; Fang, L.; Ren, C.; Shan, L.; Wen, H.H. Flux dynamics and vortex phase diagram in Ba(Fe,Co)2As2 single crystals revealed by magnetization and its relaxation. Phys. Rev. B 2010, 81, 014503. [Google Scholar] [CrossRef] [Green Version]
- Prozorov, R.; Tillman, M.E.; Mun, E.D.; Canfield, P.C. Intrinsic magnetic properties of the superconductor NdFeAsO0.9F0.1 from local and global measurements. New J. Phys. 2009, 11, 035004. [Google Scholar] [CrossRef] [Green Version]
- Cheng, W.; Lin, H.; Shen, B.; Wen, H.H. Comparative study of vortex dynamics in CaKFe4As4 and Ba0.6K0.4Fe2As2 single crystals. Sci. Bull. 2019, 64, 81. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.L.; Han, Q.; Wang, B.; Xie, R.; Tang, Q.; Li, Y.; Yu, B. Vortex Pinning and the Mechanism in CaKFe4As4 Revealed by Dynamical Magnetization Relaxation. J. Supercond. Nov. Magn. 2020, 33, 1979. [Google Scholar] [CrossRef]
- Fujioka, M.; Denholme, S.J.; Ozaki, T.; Okazaki, H.; Deguchi, K.; Demura, S.; Hara, H.; Watanabe, T.; Takeya, H.; Yamaguchi, T.; et al. Phase diagram and superconductivity at 58.1 K in α-FeAs-free SmFeAsO1−xFx. Supercond. Sci. Technol. 2013, 26, 085023. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.-C.; Yu, J.; Ruan, B.B.; Pan, B.J.; Mu, Q.G.; Liu, T.; Zhao, K.; Chen, G.F.; Ren, Z.A. Revisiting the Electron-Doped SmFeAsO: Enhanced Superconductivity up to 58.6 K by Th and F Codoping. Chin. Phys. Lett. 2017, 34, 077401. [Google Scholar] [CrossRef] [Green Version]
- Mu, G.; Fang, L.; Yang, H.; Zhu, X.; Cheng, P.; Wen, H.H. Doping Dependence of Superconductivity and Lattice Constants in Hole Doped La1-xSrxFeAsO. J. Phys. Soc. Jpn. 2008, 77, 15. [Google Scholar] [CrossRef] [Green Version]
- Ju, J.; Huynh, K.; Tang, J.; Li, Z.; Watahiki, M.; Sato, K.; Terasaki, H.; Ohtani, E.; Takizawa, H.; Tanigaki, K. Superconducting properties of SmFeAsO1x prepared under high-pressure condition. J. Phys. Chem. Solids 2010, 71, 491. [Google Scholar] [CrossRef]
- Prakash, J.; Singh, S.J.; Samal, S.L.; Patnaik, S.; Ganguli, A.K. Potassium fluoride doped LaOFeAs multi-band superconductor: Evidence of extremely high upper critical field. Europhys. Lett. 2008, 84, 57003. [Google Scholar] [CrossRef]
- Prakash, J.; Singh, S.J.; Patnaik, S.; Ganguli, A.K. Upper critical field, superconducting energy gaps and the Seebeck coefficient in La0.8Th0.2FeAsO. J. Phys. Condens. Matter 2009, 21, 175705. [Google Scholar] [CrossRef] [PubMed]
- Prakash, J.; Singh, S.J.; Das, D.; Patnaik, S.; Ganguli, A.K. New oxypnictide superconductors: PrOFe1−xCoxAs. J. Solid State Chem. 2010, 183, 338. [Google Scholar] [CrossRef]
- Prakash, J.; Singh, S.J.; Patnaik, S.; Ganguli, A.K. Superconductivity at 11.3 K induced by cobalt doping in CeFeAsO. Solid State Commun. 2009, 149, 181. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.J.; Shimoyama, J.; Yamamoto, A.; Ogino, H.; Kishio, K. Effects of Mn and Ni doping on the superconductivity of SmFeAs (O, F). Phys. C Supercond. 2013, 494, 57. [Google Scholar] [CrossRef]
- Singh, S.J.; Prakash, J.; Pal, A.; Patnaik, S.; Awana, V.P.S.; Ganguli, A.K. Study of Ni and Zn doped CeOFeAs: Effect on the structural transition and specific heat capacity. Phys. C Supercond. 2013, 490, 49. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.J.; Shimoyama, J.; Yamamoto, A.; Ogino, H.; Kishio, K. Effects of phosphorous doping on the superconducting properties of SmFeAs (O, F). Phys. C Supercond. Its Appl. 2014, 504, 19. [Google Scholar] [CrossRef] [Green Version]
- Miyazawa, K.; Kihou, K.; Ishikado, M.; Shirage, P.M.; Lee, C.H.; Takeshita, N.; Eisaki, H.; Kito, H.; Iyo, A. Synthesis of LnFeAsO1−y superconductors (Ln= La and Nd) using the high-pressure technique. New J. Phys. 2009, 11, 045002. [Google Scholar] [CrossRef]
- Singh, S.J.; Prakash, J.; Patnaik, S.; Ganguli, A.K. Yttrium doped La1−xYxO0.9F0.1FeAs superconductors: Hall and thermopower studies. Phys. C Supercond. 2010, 470, 511. [Google Scholar] [CrossRef]
- Tropeano, M.; Fanciulli, C.; Canepa, F.; Cimberle, M.R.; Ferdeghini, C.; Lamura, G.; Martinelli, A.; Putti, M.; Vignolo, M.; Palenzona, A. Effect of chemical pressure on spin density wave and superconductivity in undoped and 15% F-doped La1−yYyFeAsO compounds. Phys. Rev. B 2009, 79, 174523. [Google Scholar] [CrossRef] [Green Version]
- Shirage, P.M.; Miyazawa, K.; Kito, H.; Eisaki, H.; Iyo, A. Superconductivity at 43 K at ambient pressure in the iron-based layered compound La1−xYxFeAsOy. Phys. Rev. B 2008, 78, 172503. [Google Scholar] [CrossRef]
- Singh, S.J.; Prakash, J.; Patnaik, S.; Gangli, A.K. Enhancement of the superconducting transition temperature and upper critical field of LaO0.8F0.2FeAs with antimony doping. Supercond. Sci. Technol. 2009, 22, 045017. [Google Scholar] [CrossRef]
- Athena Sefat, S.; Huq, A.; McGuire, M.A.; Jin, R.; Sales, B.C.; Mandrus, D. Superconductivity in LaFe1−xCoxAsO. Phys. Rev. B 2008, 78, 104505. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Jiang, S.; Tao, Q.; Ren, Z.; Li, Y.; Li, L.; Feng, C.; Dai, J.; Cao, G.; Xu, Z. Superconductivity in LaFeAs1−xPxO: Effect of chemical pressures and bond covalency. Europhys. Lett. 2009, 86, 47002. [Google Scholar] [CrossRef] [Green Version]
- Sato, M.; Kobayashi, Y.; Lee, S.C.; Takahashi, H.; Satomi, E.; Miura, Y. Studies of Impurity-Doping Effects and NMR Measurements of La1111 and/or Nd 1111. J. Phys. Soc. Jpn. 2010, 79, 014710. [Google Scholar] [CrossRef] [Green Version]
- Miyazawa, K.; Ishida, S.; Kihou, K.; Shirage, P.M.; Nakajima, M.; Lee, C.H.; Kito, H.; Tomioka, Y.; Ito, T.; Eisaki, H.; et al. Possible hydrogen doping and enhancement of Tc in a LaFeAsO based superconductor. Appl. Phys. Lett. 2010, 96, 072514. [Google Scholar] [CrossRef] [Green Version]
- Prakash, J.; Singh, S.J.; Patnaik, S.; Ganguli, A.K. Superconductivity in CeO1−xFxFeAs with upper critical field of 94 T. Phys. C Supercond. 2009, 469, 82. [Google Scholar] [CrossRef] [Green Version]
- Prakash, J.; Singh, S.J.; Banerjee, A.; Patnaik, S.; Ganguli, A.K. Enhancement in transition temperature and upper critical field of CeO0.8F0.2FeAs by yttrium doping. Appl. Phys. Lett. 2009, 95, 262507. [Google Scholar] [CrossRef] [Green Version]
- Luo, Y.; Li, Y.; Jiang, S.; Dai, J.; Cao, G.; Xu, Z. Phase diagram of CeFeAs1−xPxO obtained from electrical resistivity, magnetization, and specific heat measurements. Phys. Rev. B 2010, 81, 134422. [Google Scholar] [CrossRef] [Green Version]
- Jesche, A.; Forster, T.; Spehling, J.; Nicklas, M.; Souza, M.; Gumeniuk, R.; Luetkens, H.; Goltz, T.; Krellner, C.; Lang, M.; et al. Ferromagnetism and superconductivity in CeFeAs1−xPxO. Phys. Rev. B 2012, 86, 020501. [Google Scholar] [CrossRef] [Green Version]
- Luo, Y.; Han, H.; Jiang, S.; Lin, X.; Li, Y.; Dai, J.; Cao, G.; Xu, Z. Interplay of superconductivity and Ce 4 f magnetism in CeFeAs1−xPxO0.95F0.05. Phys. Rev. B 2011, 83, 054501. [Google Scholar] [CrossRef]
- Singh, S.J.; Prakash, J.; Patnaik, S.; Ganguli, A.K. Effects of simultaneous carrier doping in the charge reservoir and conducting layers of superconducting CeO0.9F0.1Fe1−xCoxAs. Phys. C Supercond. 2010, 470, 1928. [Google Scholar] [CrossRef]
- Prakash, J.; Singh, S.J.; Thakur, G.; Patnaik, S.; Ganguli, A.K. The effect of antimony doping on the transport and magnetic properties of Ce(O/F)FeAs. Supercond. Sci. Technol. 2011, 24, 125008. [Google Scholar] [CrossRef]
- Bhoi, D.; Mandal, P.; Choudhury, P. Normal-state transport properties of PrFeAsO1−xFy superconductor. Phys. C Supercond. 2008, 468, 2275. [Google Scholar] [CrossRef]
- Lin, X.; Guo, H.; Shen, C.; Tao, Q.; Cao, G.; Xu, Z. Superconductivity in Sr and Co co-doped PrFeAsO. J. Phys. Chem. Solids 2011, 72, 434. [Google Scholar] [CrossRef]
- Kito, H.; Eisaki, H.; Iyo, A. Superconductivity at 54 K in F-Free NdFeAsO1-y. J. Phys. Soc. Jpn. 2008, 77, 063707. [Google Scholar] [CrossRef]
- Kursumovic, A.; Durrell, J.H.; Chen, S.K.; MacManus-Driscoll, J.L. Ambient/low pressure synthesis and fast densification to achieve 55 K Tc superconductivity in NdFeAsO0.75F0.25. Supercond. Sci. Technol. 2009, 23, 025022. [Google Scholar] [CrossRef]
- Lamura, G.; Shiroka, T.; Bonfà, P.; Sanna, S.; Renzi, R.D.; Putti, M.; Zhigadlo, N.D.; Katrych, S.; Khasanov, R.; Karpinski, J. Slow magnetic fluctuations and superconductivity in fluorine-doped NdFeAsO. Phys. Rev. B 2015, 91, 024513. [Google Scholar] [CrossRef] [Green Version]
- Aswathy, P.M.; Anooja, J.B.; Varghese, N.; Syamaprasad, U.U. Enhanced transport and magnetic properties in gadolinium doped NdFeAsO0.7F0.3 superconductors. AIP Conf. Proc. 2015, 1665, 130047. [Google Scholar]
- Bérardan, D.; Zhao, L.; Pinsard-Gaudart, L.; Dragoe, N. Electronic phase diagram of NdFe1−xRhxAsO. Phys. Rev. B 2010, 81, 094506. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.C.; Satomi, E.; Kobayashi, Y.; Sato, M. Effects of Ru Doping on the Transport Behavior and Superconducting Transition Temperature of NdFeAsO0.89F0.11. J. Phys. Soc. Jpn. 2010, 79, 023702. [Google Scholar]
- Tehrani, F.S.; Daadmehr, V. Superconductivity Versus Structural Parameters in Calcium-Doped Nd1-xCaxFeAsO0.8F0.2 Superconductors. J. Supercond. Nov. Magn. 2020, 33, 337. [Google Scholar] [CrossRef]
- Marcinkova, A.; Grist, D.A.M.; Margiolaki, I.; Hansen, T.C.; Margadonna, S.; Bos, J.W. Superconductivity in NdFe1-xCoxAsO. Phys. Rev. B 2010, 81, 064511. [Google Scholar] [CrossRef] [Green Version]
- Qi, Y.; Gao, Z.; Wang, L.; Wang, D.; Zhang, X.; Ma, Y. Superconductivity in Co-doped SmFeAsO. Supercond. Sci. Technol. 2008, 21, 115016. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Zheng, M.; Fang, A.; Yang, J.; Huang, F.; Xie, X.; Jiang, M. Enhanced superconductivity of SmFeAsO co-doped by Scandium andFluorine to increase chemical inner pressure. J. Solid State Chem. 2012, 194, 59. [Google Scholar] [CrossRef]
- Lai, K.T.; Kwong, F.L.; Ng, D.H.L. Superconductivity in fluorine and yttrium co-doped SmFeAsO. J. Appl. Phys. 2012, 111, 093912. [Google Scholar] [CrossRef]
- Chen, Y.L.; Cheng, C.H.; Cui, Y.J.; Zhang, H.; Zhang, Y.; Yang, Y.; Zhao, Y. Ir Doping-Induced Superconductivity in the SmFeAsO System. J. Am. Chem. Soc. 2009, 131, 10338–10339. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Li, L.; Chi, S.; Zhu, Z.; Ren, Z.; Li, Y.; Wang, Y.; Lin, X.; Luo, Y.; Jiang, S.; et al. Thorium-doping–induced superconductivity up to 56 K in Gd1−xThxFeAsO. Europhys. Lett. 2008, 83, 67006. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Li, Z.C.; Lu, W.; Yi, W.; Shen, X.L.; Ren, Z.A.; Che, G.C.; Dong, X.L.; Sun, L.L.; Zhou, F.; et al. Superconductivity at 53.5 K in GdFeAsO1−δ. Supercond. Sci. Technol. 2008, 21, 082001. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Sidorov, V.A.; Petrova, A.E.; Penkov, A.A.; Pinyagin, A.N.; Zhao, Z.; Sun, L. Superconducting Properties of GdFeAsO0.85 at High Pressure. J. Supercond. Mag. 2016, 29, 1105. [Google Scholar] [CrossRef]
- Cheng, P.; Fang, L.; Yang, H.; Zhu, X.Y.; Mu, G.; Luo, H.Q.; Wang, Z.S.; Wen, H.H. Superconductivity at 36 K in gadolinium-arsenide oxides GdO1−xFxFeAs. Sci. China Ser. G Phys. Mech. Astron. 2008, 51, 719. [Google Scholar] [CrossRef] [Green Version]
- Cui, Y.; Chen, Y.L.; Cheng, C.H.; Yang, Y.; Jiang, J.; Wang, Y.Z.; Zhang, Y.; Zhao, Y. Superconductivity and magnetism in Ir-doped GdFeAsO. Phys. C Supercond. Its Appl. 2010, 470, 1077. [Google Scholar] [CrossRef]
- Wu, G.; Xie, Y.L.; Chen, H.; Zhong, M.; Liu, R.H.; Shi, B.C.; Li, Q.J.; Wang, X.F.; Wu, T.; Yan, Y.J. Superconductivity at 56 K in Samarium-doped SrFeAsF. J. Phys.: Condens. Matter. 2009, 21, 142203. [Google Scholar] [CrossRef] [Green Version]
- Matsuishi, S.; Inoue, Y.; Nomura, T.; Yanagi, H.; Hirano, M.; Hosono, H. Superconductivity Induced by Co-Doping in Quaternary Fluoroarsenide CaFeAsF. J. Am. Chem. Soc. 2008, 130, 14428–14429. [Google Scholar] [CrossRef] [PubMed]
- Malavasi, L.; Artioli, G.A.; Ritter, C.; Mozzati, M.C.; Maroni, B.; Pahari, B.; Caneschi, A. Phase Diagram of NdFeAsO1−xFx: Essential Role of Chemical Composition. J. Am. Chem. Soc. 2010, 132, 2417. [Google Scholar] [CrossRef]
- Singh, S.J.; Shimoyama, J.; Ogino, H.; Yamamoto, A.; Kishio, K. Enhancement of intergranular current density of Sm-based oxypnictide superconductors with Sn addition. Supercond. Sci. Technol. 2014, 27, 085010. [Google Scholar] [CrossRef]
- Otabe, E.S.; Kiuchi, M.; Kawai, S.; Morita, Y.; Ge, J.; Ni, B.; Gao, Z.; Wang, L.; Qi, Y.; Zhang, X.; et al. Global and local critical current density in superconducting SmFeAsO1−xFx measured by two methods. Phys. C Supercond. 2009, 469, 1940. [Google Scholar] [CrossRef] [Green Version]
- Hayashi, Y.; Yamamoto, A.; Ogino, H.; Shimoyama, J.; Kishio, K. Influences of material processing on the microstructure and inter-granular current properties of polycrystalline bulk Ba(Fe,Co)2As2. Physica C Supercond. Its Appl. 2014, 504, 28. [Google Scholar] [CrossRef] [Green Version]
- Yoshida, N.; Kiuchi, M.; Otabe, E.S.; Matsushita, T.; Ge, J.; Ni, B.; Wang, L.; Qi, Y.; Zhang, X.; Gao, Z.; et al. Critical current density properties in polycrystalline Sr0.6K0.4Fe2As2 superconductors. Phys. C Supercond. Its Appl. 2010, 470, 1216. [Google Scholar] [CrossRef]
- Palenzona, A.; Sala, A.; Bernini, C.; Braccini, V.; Cimberle, M.R.; Ferdeghini, C.; Lamura, G.; Martinelli, A.; Pallecchi, I.; Romano, G.; et al. A new approach for improving global critical current density in Fe(Se0.5Te0.5) polycrystalline materials. Supercond. Sci. Technol. 2012, 25, 115018. [Google Scholar] [CrossRef] [Green Version]
- Quebe, P.; Terbüchte, L.J.; Jeitschko, W. Quaternary rare earth transition metal arsenide oxides RTAsO (T = Fe, Ru, Co) with ZrCuSiAs type structure. J. Allyos Cmpds. 2000, 302, 70. [Google Scholar] [CrossRef]
- Martin, C.; Tillman, M.E.; Kim, H.; Tanatar, M.A.; Kim, S.K.; Kreyssig, A.; Gordon, R.T.; Vannette, M.D.; Nandi, S.; Kogan, V.G.; et al. Nonexponential London Penetration Depth of FeAs-Based Superconducting ReFeAsO0.9F0.1 (R = La, Nd) Single Crystals. Phys. Rev. Lett. 2009, 102, 247002. [Google Scholar] [CrossRef] [Green Version]
- Fang, L.; Cheng, P.; Jia, Y.; Zhu, X.; Luo, H.; Mu, G.; Gu, C.; Wen, H.H. Growthof NdFeAs(O,F) single crystals at ambient pressure and their properties. J. Cryst. Growth 2009, 311, 358. [Google Scholar] [CrossRef]
- Jesche, A.; Krellner, C.; Souza, M.; Lang, M.; Geibel, C. Rare earth magnetism in CeFeAsO: A single crystal study. New J. Phys. 2009, 11, 103050. [Google Scholar] [CrossRef]
- Nitsche, F.; Jesche, A.; Hieckmann, E.; Doert, T.H.; Ruck, M. Structural trends from a consistent set of single-crystal data of RFeAsO (R = La, Ce, Pr, Nd, Sm, Gd, and Tb). Phys. Rev. B 2010, 82, 134514. [Google Scholar] [CrossRef] [Green Version]
- Rutzinger, D.; Bartsch, C.; Doerr, M.; Rosner, H.; Neu, V.; Doert, T.; Ruck, M. Lattice distortions in layered type arsenides LnTAs2 (Ln = La–Nd, Sm, Gd, Tb; T = Ag, Au): Crystal structures, electronic and magnetic properties. J. Solid State Chem. 2010, 183, 510. [Google Scholar] [CrossRef]
- Hanna, A.R.N.; Abdel-Hafiez, M. Single-Crystal Growth and Small Anisotropy of the Lower Critical Field in Oxypnictides: NdFeAsO1-xFx. Crystals 2020, 10, 362. [Google Scholar] [CrossRef]
- Zhigadlo, N.D.; Weyeneth, S.; Katrych, S.; Moll, P.J.W.; Rogacki, K.; Bosma, S.; Puzniak, R.; Karpinski, J.; Batlogg, B. High-pressure flux growth, structural, and superconducting properties of LnFeAsO. Phys. Rev. B 2012, 86, 214509. [Google Scholar] [CrossRef] [Green Version]
- Ishida, S.; Song, D.; Ogino, H.; Iyo, A.; Eisaki, H.; Nakajima, M.; Shimoyama, J.; Eisterer, M. Doping-dependent critical current properties in K, Co, and P-doped BaFe2As2 single crystals. Phys. Rev. B 2017, 95, 014517. [Google Scholar] [CrossRef] [Green Version]
- Demirdis, S.; Fasano, Y.; Kasahara, S.; Terashima, T.; Shibauchi, T.; Matsuda, Y.; Konczykowski, M.; Pastoriza, H.; Beek, C.J. Disorder, critical currents, and vortex pinning energies in isovalently substituted BaFe2(As1-xPx)2. Phys. Rev. B 2013, 87, 094506. [Google Scholar] [CrossRef] [Green Version]
- Song, D.; Ishida, S.; Iyo, A.; Nakajima, M.; Shimoyama, J.; Eisterer, M.; Eisaki, H. Distinct doping dependence of critical temperature and critical current density in Ba1−xKxFe2As2 superconductor. Sci. Rep. 2016, 6, 26671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prozorov, R.; Tanatar, M.A.; Ni, N.; Kreyssig, A.; Nandi, S.; Bud’ko, S.L.; Goldman, A.I.; Canfield, P.C. Intrinsic pinning on structural domains in underdoped single crystals of Ba(Fe,Co)2As2. Phys. Rev. B 2009, 80, 174517. [Google Scholar] [CrossRef] [Green Version]
- Yan, J.Q.; Nandi, S.; Zarestky, J.L.; Tian, W.; Kreyssig, A.; Jensen, B.; Kracher, A.; Dennis, K.W.; McQueeney, R.J.; Goldman, A.I.; et al. Flux growth at ambient pressure of millimeter-sized single crystals of LaFeAsO, LaFeAsO1−xFx, and LaFe1−xCoxAsO. Appl. Phys. Lett. 2009, 95, 222504. [Google Scholar] [CrossRef] [Green Version]
- Yan, J.-Q.; Jensen, B.; Dennis, K.W.; McCallum, R.W.; Lograsso, T.A. Flux requirements for the growth of RFeAsO (R = rare earth) superconductors. Appl. Phys. Lett. 2011, 98, 072504. [Google Scholar] [CrossRef] [Green Version]
- Ishikado, M.; Shamoto, S.; Kito, H.; Iyo, A.; Eisaki, H.; Ito, T.; Tomioka, Y. Growth of single crystal PrFeAsO1-y and its characterization. Physica C 2009, 469, 901. [Google Scholar] [CrossRef]
- Yan, J.Q.; Xing, Q.; Jensen, B.; Xu, H.; Dennis, K.W.; McCallum, R.W.; Lograsso, T.A. Contamination from magnetic starting materials in flux-grown single crystals of RFeAsO superconductors. Phys. Rev. B 2011, 84, 012501. [Google Scholar] [CrossRef] [Green Version]
- Kappenberger, R.; Aswartham, S.; Scaravaggi, F.; Blum, C.; Sturza, M.I.; Wolter, A.U.B.; Wurmehl, S.; Büchner, B. Solid state single crystal growth of three-dimensional faceted LaFeAsO crystals. J. Cryst. Growth 2018, 483, 9. [Google Scholar] [CrossRef]
- Ma, Y.; Hu, K.; Ji, Q.; Gao, B.; Zhang, H.; Mu, G.; Huang, F.; Xie, X. Growth and characterization of CaFe1-xCoxAsF single crystals by CaAs flux method. J. Cryst. Growth 2016, 451, 161–164. [Google Scholar] [CrossRef] [Green Version]
- Holder, M.G.; Jesche, A.; Lombardo, P.; Hayn, R.; Vyalikh, D.V.; Kummer, K.; Danzenbächer, S.; Krellner, C.; Geibel, C.; Rienks, E.D.L.; et al. How chemical pressure affects the fundamental properties of rare-earth pnictides: An ARPES view. Phys. Rev. B 2012, 86, 020506. [Google Scholar] [CrossRef] [Green Version]
- Meier, W.R.; Kong, T.; Bud’ko, S.L.; Canfield, P.C. Optimization of the crystal growth of the superconductor CaKFe4As4 from solution in the FeAs-CaFe2As2-KFe2As2 system. Phys. Rev. Mater. 2017, 1, 013401. [Google Scholar] [CrossRef]
- Meier, R.W.; Ding, Q.P.; Kreyssig, A.; Bud’ko, S.L.; Sapkota, A.; Kothapalli, K.; Borisov, V.; Valentí, R.; Batista, C.D.; Orth, P.P.; et al. Hedgehog spin-vortex crystal stabilized in a hole-doped iron-based superconductor. NPJ Quantum Mater. 2018, 3, 5. [Google Scholar] [CrossRef]
- Stillwell, R.L.; Wang, X.; Wang, L.; Campbell, D.J.; Paglione, J.; Weir, S.T.; Vohra, Y.K.; Jeffries, J.R. Observation of two collapsed phases in CaRbFe4As4. Phys. Rev. B 2019, 100, 045152. [Google Scholar] [CrossRef] [Green Version]
- Vlasenko, V.; Pervakov, K.; Gavrilkin, S. Vortex pinning and magnetic phase diagram of EuRbFe4As4 iron-based superconductor. Supercond. Sci. Technol. 2020, 33, 084009. [Google Scholar] [CrossRef]
- Collomb, D.; Bending, S.J.; Koshelev, A.E.; Smylie, M.P.; Farrar, L.; Bao, J.K.; Chung, D.Y.; Kanatzidis, M.G.; Kwok, W.K.; Welp, U. Observing the Suppression of Superconductivity in RbEuFe4As4 by Correlated Magnetic Fluctuations. Phys. Rev. Lett. 2021, 126, 157001. [Google Scholar] [CrossRef] [PubMed]
- Bao, J.K.; Willa, K.; Smylie, M.P.; Chen, H.; Welp, U.; Chung, D.Y.; Kanatzidis, M.G. Single Crystal Growth and Study of the Ferromagnetic Superconductor RbEuFe4As4. Cryst. Growth Des. 2018, 18, 3517. [Google Scholar] [CrossRef]
- Yan, J.-Q. Flux growth utilizing the reaction between flux and crucible. J. Cryst. Growth 2015, 416, 62. [Google Scholar] [CrossRef] [Green Version]
- Meier, W.R.; Kong, T.; Kaluarachchi, U.S.; Taufour, V.; Jo, N.H.; Drachuck, G.; Böhmer, A.E.; Saunders, S.M.; Sapkota, A.; Kreyssig, A.; et al. Anisotropic thermodynamic and transport properties of single-crystalline CaKFe4As4. Phys. Rev. B 2016, 94, 064501. [Google Scholar] [CrossRef] [Green Version]
- Eisterer, M. Magnetic properties and critical currents of MgB2. Supercond. Sci. Technol. 2007, 20, R47–R73. [Google Scholar] [CrossRef]
- Cheng, Z.; Liu, S.; Dong, C.; Huang, H.; Li, L.; Zhu, Y.; Awaji, S.; Ma, Y. Effects of core density and impurities on the critical current density of CaKFe4As4 superconducting tapes. Supercond. Sci. Technol. 2019, 32, 105014. [Google Scholar] [CrossRef]
- Masi, A.; Armenio, A.A.; Celentano, G.; Barbera, A.L.; Rufoloni, A.; Silva, E.; Vannozzi, A.; Varsano, F. The role of chemical composition in the synthesis of Ca/K-1144 iron based superconductors. J. Alloys Compd. 2021, 869, 159202. [Google Scholar] [CrossRef]
- Ishida, S.; Naik, S.P.; Tsuchiya, Y.; Mawatari, Y.; Yoshida, Y.; Iyo, A.; Eisaki, H.; Kamiya, Y.; Kawashima, K.; Ogino, H. Synthesis of CaKFe4As4 bulk samples with high critical current density using a spark plasma sintering technique. Supercond. Sci. Technol. 2020, 33, 094005. [Google Scholar] [CrossRef]
- Naik, S.; Ishida, S.; Kamiya, Y.; Tsuchiya, Y.; Kawashima, K.; Eisaki, H.; Iyo, A.; Ogino, H. Sn addition effects on CaKFe4As4 superconductors. Supercond. Sci. Technol. 2020, 33, 104004. [Google Scholar] [CrossRef]
- Wang, C.; He, T.; Han, Q.; Fan, C.; Tang, Q.; Chen, D.; Lei, Q.; Sun, S.; Li, Y.; Yu, B. Novel sample-thickness-dependent flux pinning behaviors of KFe2As2 intercalations in CaKFe4As4 single crystals. Supercond. Sci. Technol. 2021, 34, 055001. [Google Scholar] [CrossRef]
Sample | Synthesis Method and Conditions | Superconducting Properties |
---|---|---|
LaFeAs(O,F) | CSP-AP, Tsyn = 1180 °C, 48 h | Tmaxc = 28.5 K, Hc2(0) = 105 T [61] |
(La,K)FeAs(O,F) | CSP-AP, Tsyn = 1180 °C, 48 h | Tmaxc = 26.5 K, Hc2(0) = 122 T [61] |
LaFeAsO1-y | HPST, Tsyn = 1100–1200 °C, 2 h | Tmaxc = 28 K [68] |
(La,Sr)FeAs | CSP-AP, Tsyn = 1150 °C, 40 h | Tmaxc = 26 K [59] |
(La,Y)FeAs(O,F) | CSP-AP, Tsyn = 1250 °C, 25 h | Tmaxc = 40.2 K, Hc2(0) = 60.5 T [69,70] |
(La,Y)FeAsO0.6 | HPST, Tsyn = 1150 °C, 2 h | Tmaxc = 43.1 K [71] |
LaFe(As,Sb)(O,F) | CSP-AP, Tsyn = 1150 °C, 48 h | Tmaxc = 30.1 K, Hc2(0) = 73 T [72] |
La(Fe,Co)AsO | CSP-AP, Tsyn = 1220 °C, 12 h | Tmaxc = ~14.3 K [73] |
(La,Th)FeAsO | CSP-AP, Tsyn = 1180 °C, 48 h | Tmaxc = 30.3 K, Hc2(0) = 47 T [62] |
LaFe(As,P)O | CSP-AP, Tsyn = 1100 °C, 40 h | Tmaxc = 10 K, Hc2(0) = 27 T [74] |
LaFe0.95Co0.05AsO0.89F0.11 | CSP-AP, Tsyn = 1150 °C, 48 h | Tmaxc = ~15 K [75] |
LaFe0.99Co0.01AsO0.89F0.11 | CSP-AP, Tsyn = 1150 °C, 48 h | Tmaxc = ~10 K [75] |
LaFeAsO0.6H0.6 | HPST, Tsyn = 1100 °C, 2 h | Tmaxc = ~38.3 K [76] |
CeFeAs(O,F) | CSP-AP, Tsyn = 1180 °C, 48 h | Tmaxc = 42.5 K, Hc2(0) = 94 T [77] |
(Ce,Y)FeAs(O,F) | CSP-AP, Tsyn = 1100 °C, 30 h | Tmaxc = 48.6 K, Hc2(0) = 90 T [78] |
CeFe(As,P)O | CSP-AP, Tsyn = 1175 °C, 50 h | Tmaxc ~4 K [79,80] |
CeFe(As,P)O0.95F0.05 | CSP-AP, Tsyn = 1175 °C, 50 h | Tmaxc = 21.3 K [81] |
Ce(Fe,Co)As(O,F) | CSP-AP, Tsyn = 1150 °C, 48 h | Tmaxc = 23.4 K, Hc2(0) = 25.3 T [82] |
Ce(Fe,Co)AsO | CSP-AP, Tsyn = 1180 °C, 48 h | Tmaxc = 11.31 K, Hc2(0) = 45.2 T [64] |
Ce(Fe,Ni)AsO | CSP-AP, Tsyn = 1150 °C, 48 h | No Tc [66] |
Ce(Fe,Zn)AsO | CSP-AP, Tsyn = 1150 °C, 48 h | No Tc [66] |
CeFe(As,Sb)(O,F) | CSP-AP, Tsyn = 1180 °C, 48 h | Tmaxc = 43.17 K, Hc2(0) = 137 T [83] |
CeFeAsO0.6H0.6 | HPST, Tsyn = 1100 °C, 2 h | Tmaxc = ~47.9 K [76] |
PrFeAs(O,F) | CSP-AP, Tsyn = 1150 °C, 24 h | Tmaxc = 50 K [84] |
Pr(Fe,Co)AsO | CSP-AP, Tsyn = 1100 °C, 48 h | Tmaxc = 16 K, Hc2(0) = 50.2 T [63] |
(Pr,Sr)(Fe,Co)AsO | CSP-AP, Tsyn = 1160 °C, 40 h | Tmaxc= 16 K [85] |
PrFeAsO0.6H0.6 | HPST, Tsyn = 1100 °C, 2 h | Tmaxc = ~51.9 K [76] |
NdFeAsO1-y | HPST, Tsyn = 1100–1200 °C, 2 h | Tmaxc = 54 K [68,86] |
NdFeAs(O,F) | CSP-AP, Tsyn = 1350 °C, 15 h | Tmaxc = 55 K [87,88] |
(Nd,Gd)FeAs(O,F) | CSP-AP, Tsyn = 1350 °C, 15 h | Tmaxc = 55.1 K, Jc(5K) = 3.4 × 103 A/cm2 [89] |
Nd(Fe,Rh)AsO | CSP-AP, Tsyn = 1150 °C, 48 h | Tmaxc = 18 K, Hc2(0) = 100 T [90] |
NdFe0.85Ru0.15AsO0.89F0.11 | CSP-AP, Tsyn = 1150 °C, 48 h | Tmaxc = 34 K [91] |
NdFe0.9Co0.1AsO0.89F0.11 | CSP-AP, Tsyn = 1150 °C, 48 h | Tmaxc = ~18 K [75] |
NdFe0.98Mn0.02AsO0.89F0.11 | CSP-AP, Tsyn = 1150 °C, 48 h | Tmaxc = ~27 K [75] |
Nd0.99Ca0.01FeAsO0.8F0.2 | CSP-AP, Tsyn = 1150 °C, 20 h | Tmaxc = ~48 K [92] |
Nd(Fe,Co)AsO | CSP-AP, Tsyn = 1150 °C, 48 h | Tmaxc = ~16.5 K, Hc2(0) = 26 T [93] |
SmFeAs(O,F) | CSP-AP, Tsyn = 900 °C, 45 h | Tmaxc = 57.8 K, Hc2(0) = 315 T [29] |
SmFeAs(O,F) | CSP-AP, Tsyn = 980 °C, 40 h | Tmaxc = 58.1 K [57] |
(Sm,Th)FeAs(O,F) | CSP-AP, Tsyn = 1150 °C, 30 h | Tmaxc = 58.6 K [58] |
Sm(Fe,Co)AsO | CSP-AP, Tsyn = 1180 °C, 45 h | Tmaxc = 15.2 K [94] |
(Sm,Sc)FeAs(O,F) | CSP-AP, Tsyn = 950 °C, 2 h | Tmaxc = 53.5 K, Hc2(0) = 298 T [95] |
(Sm,Th)FeAsO | CSP-AP, Tsyn = 1150 °C, 30 h | Tmaxc = 45 K [58] |
Sm0.9Y0.1FeAsO0.8F0.2 | CSP-AP, Tsyn = 1300 °C, 40 h | Tmaxc = 43 K [96] |
Sm(Fe,Ir)AsO | CSP-AP, Tsyn = 1150 °C, 48 h | Tmaxc = 16 K [97] |
SmFe0.97Mn0.03As(O,F) | CSP-AP, Tsyn = 900 °C, 45 h | Tmaxc = 30 K, Hc2(0) = 205 T [65] |
SmFe0.94Mn0.06AsO0.88F0.12 | CSP-AP, Tsyn = 900 °C, 45 h | Tmaxc = 16.5 K, Hc2(0) = 43 T [65] |
SmFe0.94Ni0.06AsO0.88F0.12 | CSP-AP, Tsyn = 900 °C, 45 h | Tmaxc = 18 K, Hc2(0) = 47 T [65] |
SmFe0.94Ni0.03AsO0.88F0.12 | CSP-AP, Tsyn = 900 °C, 45 h | Tmaxc = 33 K, Hc2(0) = 200 T [65] |
SmFeAs0.95P0.05O0.88F0.12 | CSP-AP, Tsyn = 900 °C, 45 h | Tmaxc = 40 K, Hc2(0) = 292 T [67] |
SmFeAs0.8P0.2O0.88F0.12 | CSP-AP, Tsyn = 900 °C, 45 h | Tmaxc = 20 K, Hc2(0) = 31 T [67] |
SmFeAsO1-x | HPST, Tsyn = 1300 °C, 2 h | Tmaxc = 57 K, Hc2(0) = 60 T [60] |
(Gd,Th)FeAsO | HPST, Tsyn = 1300 °C, 2 h | Tmaxc = 56 K [98] |
GdFeAsO1-x | HPST, Tsyn = 1350 °C, 2 h | Tmaxc = 56 K [99,100] |
GdFeAs(O,F) | HPST, Tsyn = 1350 °C, 2 h | Tmaxc = 51.2 K, Hc2(0) = 20 T [99] |
GdFeAs(O,F) | CSP-AP, Tsyn = 1150 °C, 48 h | Tmaxc = 36.6 K [101] |
Gd(Fe,Ir)FeAsO | CSP-AP, Tsyn = 1200 °C, 72 h | Tmaxc = 18.9 K, Hc2(0) = 24 T [102] |
Sr1-xSmxFeAsF | CSP-AP, Tsyn = 1000 °C, 10 h | Tmaxc = 56 K [103] |
CaFe1-xCoxAsF | CSP-AP, Tsyn = 1000 °C, 10 h | Tmaxc = 22 K [104] |
CaKFe4As4 | CSP-AP, Tsyn = 860–920 °C, 2–6 h | Tmaxc = 33.1 K [12] |
CaRbFe4As4 | CSP-AP, Tsyn = 860–920 °C, 2–6 h | Tmaxc = 35 K [12] |
CaCsFe4As4 | CSP-AP, Tsyn = 860–920 °C, 2–6 h | Tmaxc = 31.6 K [12] |
SrRbFe4As4 | CSP-AP, Tsyn = 860–920 °C, 2–6 h | Tmaxc = 35.1 K [12] |
SrCsFe4As4 | CSP-AP, Tsyn = 860–920 °C, 2–6 h | Tmaxc = 36.8 K [12] |
CaKFe4As4 | CSP-AP, Tsyn = 955 °C, 6 h | Tmaxc = 34.2 K, Hc2(0) = 138 T [32] |
Sample | Synthesis Method and Conditions | Superconducting Properties |
---|---|---|
SmFeAs(O,F) | FM-HP, Flux: NCl/KCl, Tsyn = 1350–1450 °C, 4–85 h | Tmaxc = 53 K, Hc2(0) = ~100 T, Jc(15 K,7 T) = 2 × 105 A/cm2 [50] |
REFeAsO | FM-AP, Flux: NaCl/KCl, Tsyn = 800 °C, 2 weeks | No Tc [111] |
NdFeAsO0.9F0.1 | SSCG-HP, No Flux, Tsyn = 1350–1400 °C, 8 h | Tmaxc = 45 K [54,112] |
LaFeAsO0.9F0.1 | SSCG-HP, No Flux, Tsyn = 1350–1400 °C, 8 h | Tmaxc = 14 K [112] |
NdFeAsO0.7F0.3 | FM-AP, Flux: NCl, Tsyn = 1050 °C, 2 weeks | Tmaxc = 49 K, Hc2(0) = 49 T [113] |
CeFeAsO | FM-AP, Flux: Sn, Tsyn = 1500 °C, 1 h | No Tc [114] |
CeFeAs0.7P0.3O | FM-AP, Flux: Sn, Tsyn = 1500 °C, 1 h | No Tc [114,129] |
SmFeAs(O,F) | FM-AP, Flux: CsCl, Tsyn = 950 °C, 5 h | Tmaxc = 57.5 K, Hc2(0) = ~330 T [34] |
PrFeAsO1-y | FM-HP, No Flux/Flux:As/FeAs/PrFeAs(O,F), Tsyn = 1300–1400 °C, 2 h | Tmaxc = 44 K [125] |
REFeAsO | FM-AP, Flux: NaI/KI, Tsyn = 1050 °C, 6–7 days | No Tc [115] |
LaFeAsO0.91F0.09 | FM-AP, Flux: NaAs, Tsyn = 1150 °C, 24 h | Tc = 11 K [123] |
LaFe0.98Co0.02AsO | FM-AP, Flux: NaAs, Tsyn = 1150 °C, 24 h | Tc = ~8 K [123] |
(La/Nd)FeAsO | FM-AP, Flux: NaAs, Tsyn = 1100 °C, 12 h | No Tc [126] |
LaFeAsO | SSCG-AP, Tsyn = 1080 °C, 200 h | No Tc [127] |
CaFe0.882Co0.118AsF | FM-AP, Flux: CaAs, Tsyn = 1230 °C, 20 h | Tc = 22 K [126] |
Sm(Fe,Co)AsO | FM-HP, Flux: NaAs/KAs, Tsyn = 1350–1450 °C, 4–85 h | Tc = 16.4 K, Hc2(0) = 100 T, Jc(2K,0T) = 1 × 105 A/cm2 [118] |
PrFeAs(O,F) | FM-HP, Flux: NaAs/KAs, Tsyn = 1350–1450 °C, 4–85 h | Tc = 30 K, Jc(5K,0T) = 1 × 105 A/cm2 [118] |
PrFeAsO0.80-xFx | FM-HP, Flux: NaCl/KCl, Tsyn = 1350–1450 °C, 4–85 h | Tc = 38.3 K [50] |
NdFeAsO0.89-xFx | FM-HP, Flux: NaCl/KCl, Tsyn = 1350–1450 °C, 4–85 h | Tc = 46.3 K [50] |
GdFeAsO0.76-xFx | FM-HP, Flux: NaCl/KCl, Tsyn = 1350–1450 °C, 4–85 h | Tc = 22.7 K [50] |
NdFeAs(O,F) | FM-HP, Flux: NaAs/KAs, Tsyn = 1350–1450 °C, 4–85 h | Tc = 38.5 K [118] |
SmFeAs(O,H) | FM-HP, Flux: Na3As/3NaH+As/Na3As+3NaH+As, Tsyn = 1200 °C, 4–85 h | Tc = 43.0 K [20] |
CaKFe4As4 | FM-AP, Flux: FeAs, Tsyn = 1180 °C, 5 h | Tc = 35.0 K, Hc2(0) = ~100 T, Jc(2K,0T) = ~107–108 A/cm2 [18,130] |
CaK(Fe1-xNix)4As4 | FM-AP, Flux: FeAs, Tsyn = 1180 °C, 5 h | Tc = 9–30 K [131] |
CaK(Fe1-xCox)4As4 | FM-AP, Flux: FeAs, Tsyn = 1180 °C, 5 h | Tc = 2–29 K [131] |
CaRbFe4As4 | FM-AP, Flux: FeAs, Tsyn = 1180 °C, 2 h | Tc = 35 K [132] |
EuRbFe4As4 | FM-AP, Flux: FeAs, Tsyn = 1250 °C, 24 h | Tc = 35 K, Hc2(0) = ~135 T [133] |
EuRbFe4As4 | FM-AP, Flux: RbAs, Tsyn = 920 °C, 12 h | Tc = 37 K [134,135] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, S.J.; Sturza, M.I. Bulk and Single Crystal Growth Progress of Iron-Based Superconductors (FBS): 1111 and 1144. Crystals 2022, 12, 20. https://doi.org/10.3390/cryst12010020
Singh SJ, Sturza MI. Bulk and Single Crystal Growth Progress of Iron-Based Superconductors (FBS): 1111 and 1144. Crystals. 2022; 12(1):20. https://doi.org/10.3390/cryst12010020
Chicago/Turabian StyleSingh, Shiv J., and Mihai I. Sturza. 2022. "Bulk and Single Crystal Growth Progress of Iron-Based Superconductors (FBS): 1111 and 1144" Crystals 12, no. 1: 20. https://doi.org/10.3390/cryst12010020
APA StyleSingh, S. J., & Sturza, M. I. (2022). Bulk and Single Crystal Growth Progress of Iron-Based Superconductors (FBS): 1111 and 1144. Crystals, 12(1), 20. https://doi.org/10.3390/cryst12010020