The Influence of Internal Stress on the Nanocrystal Formation of Amorphous Fe73.8Si13B9.1Cu1Nb3.1 Microwires and Ribbons
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yoshizawa, Y.; Oguma, S.; Yamauchi, K. New Fe-based soft magnetic alloys composed of ultrafine grain structure. J. Appl. Phys. 1988, 64, 6044–6066. [Google Scholar] [CrossRef]
- Chiriac, H.; Lupu, N.; Stoian, G.; Ababei, G.; Corodeanu, S.; Óvári, T.-A. Ultrathin Nanocrystalline Magnetic Wires. Crystals 2017, 7, 48. [Google Scholar] [CrossRef] [Green Version]
- Herzer, G. Nanocrystalline soft magnetic materials. Phys. Scr. 1993, 1993, T49A. [Google Scholar] [CrossRef]
- Carara, M.; Baibich, M.N.; Sommer, R.L. Stress level in Finemet materials studied by impedanciometry. J. Appl. Phys. 2002, 91, 8441–8443. [Google Scholar] [CrossRef]
- Zhukov, A.; Ipatov, M.; Talaat, A.; Blanco, J.M.; Hernando, B.; Gonzalez-Legarreta, L.; Suñol, J.J.; Zhukova, V. Correlation of Crystalline Structure with Magnetic and Transport Properties of Glass-Coated Microwires. Crystals 2017, 7, 41. [Google Scholar] [CrossRef]
- Chiriac, H.; Ovari, T.A.; Pop, G. Internal stress distribution in glass-covered amorphous magnetic wires. Phys. Rev. B 1995, 52, 10104–10113. [Google Scholar] [CrossRef]
- Baranov, S.A.; Larin, V.S.; Torcunov, A.V. Technology, Preparation and Properties of the Cast Glass-Coated Magnetic Microwires. Crystals 2017, 7, 136. [Google Scholar] [CrossRef]
- Aksenov, O.I.; Fuks, A.A.; Aronin, A.S. The effect of stress distribution in the bulk of a microwire on the magnetization processes. J. Alloys Compd. 2020, 836, 155472. [Google Scholar] [CrossRef]
- Morchenko, A.T.; Panina, L.V.; Larin, V.S.; Churyukanova, M.N.; Salem, M.M.; Hashim, H.; Trukhanov, A.V.; Korovushkin, V.V.; Kostishyn, V.G. Structural and magnetic transformations in amorphous ferromagnetic microwires during thermomagnetic treatment under conditions of directional crystallization. J. Alloys Compd. 2017, 698, 685–691. [Google Scholar] [CrossRef]
- Evstigneeva, S.; Morchenko, A.; Trukhanov, A.; Panina, L.; Larin, V.; Volodina, N.; Yudanov, N.; Nematov, M.; Hashim, H.; Ahmad, H. Structural and magnetic anisotropy of directionally-crystallized ferromagnetic microwires. EPJ Web Conf. 2018, 185, 04022. [Google Scholar] [CrossRef]
- Panina, L.; Dzhumazoda, A.; Nematov, M.; Alam, J.; Trukhanov, A.; Yudanov, N.; Morchenko, A.; Rodionova, V.; Zhukov, A. Soft Magnetic Amorphous Microwires for Stress and Temperature Sensory Applications. Sensors 2019, 19, 5089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.-D.; Zhang, W.-W.; Li, G.-T.; Li, S.-S.; Ding, H.-S.; Zhang, T.; Song, Y.-J. Magnetic field annealing of FeCo-based amorphous alloys to enhance thermal stability and Curie temperature. Rare Met. 2018, 1–7. [Google Scholar] [CrossRef]
- Serrano, I.G.; Hernando, A.; Marín, P. Low temperature magnetic behavior of glass-covered magnetic microwires with gradient nanocrystalline microstructure. J. Appl. Phys. 2014, 115, 033903. [Google Scholar] [CrossRef] [Green Version]
- Parsons, R.; Ono, K.; Li, Z.; Kishimoto, H.; Shoji, T.; Kato, A.; Hill, M.R.; Suzuki, K. Prediction of density in amorphous and nanocrystalline soft magnetic alloys: A data mining approach. J. Alloys Compd. 2021, 859, 157845. [Google Scholar] [CrossRef]
- The Materials Project. Available online: https://materialsproject.org/materials/mp-2199/ (accessed on 19 September 2022).
- Yan, Z.; Song, K.; Hu, Y.; Dai, F.; Chu, Z.; Eckert, J. Localized crystallization in shear bands of a metallic glass. Sci. Rep. 2016, 6, 19358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yavari, A.R.; Georgarakis, K.; Antonowicz, J.; Stoica, M.; Nishiyama, N.; Vaughan, G.; Chen, M.; Pons, M. Crystallization during bending of a Pd-based metallic glass detected by X-ray microscopy. Phys. Rev. Lett. 2012, 109, 085501. [Google Scholar] [CrossRef] [PubMed]
- Gheiratmand, T.; Hosseini, H.R.M.; Davami, P.; Ababei, G.; Song, M. Mechanism of mechanically induced nanocrystallization of amorphous FINEMET ribbons during milling. Met. Mater. Trans. A 2015, 46, 2718–2725. [Google Scholar] [CrossRef]
- Aronin, A.S.; Abrosimova, G.E. Reverse martensite transformation in iron nanocrystals under severe plastic deformation. Mater. Lett. 2012, 83, 183–185. [Google Scholar] [CrossRef]
- Vasil’ev, L.S.; Lomaev, I.L. On possible mechanisms of nanostructure evolution upon severe plastic deformation of metals and alloys. Phys. Met. Metallogr. 2006, 101, 386–392. [Google Scholar] [CrossRef]
- Ye, F.; Lu, K. Pressure effect on crystallization kinetics of an Al–La–Ni amorphous alloy. Acta Mater. 1999, 47, 2449–2454. [Google Scholar] [CrossRef]
- Lee, S.-W.; Huh, M.-Y.; Fleury, E.; Lee, J.-C. Crystallization-induced plasticity of Cu–Zr containing bulk amorphous alloys. Acta Mater. 2006, 54, 349–355. [Google Scholar] [CrossRef]
- Noh, T.H.; Lee, M.B.; Kim, H.J.; Kang, I.K. Relationship between crystallization process and magnetic properties of Fe-(Cu-Nb)-Si-B amorphous alloys. J. Appl. Phys. 1990, 67, 5568–5570. [Google Scholar] [CrossRef]
- Clavaguera, N.; Pradell, T.; Jie, Z.; Clavaguera-Mora, M.T. Thermodynamic and kinetic factors controlling the formation of nanocrystalline FeCuNbSiB materials. Nanostruct. Mater. 1995, 6, 453–456. [Google Scholar] [CrossRef]
- Luborsky, F.; Walter, J. Stress relaxation in amorphous alloys. Mater. Sci. Eng. 1978, 35, 255–261. [Google Scholar] [CrossRef]
- Guinier, A. Тheоrie et Technique de la Radiocristallographie; Dumond: Paris, France, 1956. [Google Scholar]
- Cruz, M.E.; Li, J.; Gorni, G.; Durán, A.; Mather, G.C.; Balda, R.; Fernández, J.; Castro, Y. Crystallization Process and Site-Selective Excitation of Nd3+ in LaF3/NaLaF4 Sol–Gel-Synthesized Transparent Glass-Ceramics. Crystals 2021, 11, 464. [Google Scholar] [CrossRef]
- Abrosimova, G.E.; Aronin, A.S.; Kholstinina, N.N. On the determination of volume fraction of the crystalline phase in amorphous-crystalline alloys. Phys. Solid State 2010, 52, 445–451. [Google Scholar] [CrossRef]
- Vásquez, M.; Marín, P.; Davies, H.A.; Olofinjana, A. Magnetic hardening of FeSiBCuNb ribbons and wires during the first stage of crystallization to a nanophase structure. Appl. Phys. Lett. 1994, 64, 3184–3186. [Google Scholar] [CrossRef]
- Cahn, R.W.; Haasen, P. Physical Metallurgy, 3rd ed.; North-Holland Physics Publishing: Amsterdam, The Netherlands, 1983. [Google Scholar]
- Duong, A.H.; Malkinski, L.; Grossinger, R. Magnetomechanical properties in FINEMET type alloy. In Proceedings of the VACETS Technical International Conference, San Jose, CA, USA, 17–19 July 1997; p. 40. [Google Scholar]
- Kikuchi, M.; Fukamichi, K.; Masumoto, T. Young’s modulus and delay time characteristics of ferromagnetic Fe-Si-B amorphous alloys. Sci. Rep. Res. Inst. Tohoku Univ. 1976, 26, 232–239. [Google Scholar]
- Yang, G.N.; Sun, B.A.; Chen, S.Q.; Gu, J.L.; Shao, Y.; Wang, H.; Yao, K.F. Understanding the effects of Poisson’s ratio on the shear band behavior and plasticity of metallic glasses. J. Mater. Sci. 2017, 52, 6789–6799. [Google Scholar] [CrossRef]
- Bansal, N.P.; Doremus, R.H. Handbook of Glass Properties; Academic Press: Cambridge, MA, USA, 1986. [Google Scholar]
- Gheiratmand, T.; Hosseini, H.R.M. Finemet nanocrystalline soft magnetic alloy: Investigation of glass forming ability, crystallization mechanism, production techniques, magnetic softness and the effect of replacing the main constituents by other elements. J. Magn. Magn. Mater. 2016, 408, 177–192. [Google Scholar] [CrossRef]
- Thompson, C.; Spaepen, F. On the approximation of the free energy change on crystallization. Acta Metall. 1979, 27, 1855–1859. [Google Scholar] [CrossRef]
- Antoszewska, M.; Wasiak, M.; Gwizdałła, T.; Sovak, P.; Moneta, M. Thermal induced structural and magnetic transformations in Fe73.5−xCex=0,3,5,7Si13.5B9Nb3Cu1 amorphous alloy. J. Therm. Anal. Calorim. 2014, 115, 1381–1386. [Google Scholar] [CrossRef] [Green Version]
- Clavaguera-Mora, M.T.; Clavaguera, N.; Crespo, D.; Pradell, T. Crystallisation kinetics and microstructure development in metallic systems. Prog. Mater. Sci. 2002, 47, 559–619. [Google Scholar] [CrossRef]
- Nishiyama, N.; Inoue, A. Supercooling investigation and critical cooling rate for glass formation in Pd–Cu–Ni–P alloy. Acta Mater. 1999, 47, 1487–1495. [Google Scholar] [CrossRef]
- Uhlmann, D.R. A kinetic treatment of glass formation. J. Non Cryst. Solids 1972, 7, 337–348. [Google Scholar] [CrossRef]
- Christian, J.W. The Theory of Phase Transformations in Metals and Alloys; Pergamon Press: Oxford, UK, 1965. [Google Scholar]
- Pershina, E.; Matveev, D.; Abrosimova, G.; Aronin, A. Formation of nanocrystals in an amorphous Al90Y10 alloy. Mat. Char. 2017, 133, 87–93. [Google Scholar] [CrossRef]
- Jiang, J.Z.; Zhuang, Y.X.; Rasmussen, H.; Nishiyama, N.; Inoue, A.; Lathe, C. Crystallization of Pd40Cu30Ni10P20 bulk glass under pressure. Eur. Lett. 2001, 54, 182. [Google Scholar] [CrossRef]
- Jiang, J.Z.; Saksl, K.; Nishiyama, N.; Inoue, A. Crystallization in Pd40Ni40P20 glass. J. Appl. Phys. 2002, 92, 3651–3656. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zhao, W.; Li, G.; Li, Y.; Liu, R. Structural evolution of Lanthanide-based metallic glasses under high-pressure annealing. J. Alloys Compd. 2013, 551, 185–188. [Google Scholar] [CrossRef]
- Falqui, A.; Loche, D.; Casu, A. In Situ TEM Crystallization of Amorphous Iron Particles. Crystals 2020, 10, 41. [Google Scholar] [CrossRef] [Green Version]
- Knobel, M.; Sánchez, M.L.; Gómez-Polo, C.; Marin, P.; Vazquez, M.; Hernando, A. Giant magneto-impedance effect in nanostructured magnetic wires. J. Appl. Phys. 1996, 79, 1646–1654. [Google Scholar] [CrossRef]
- Talaat, A.; Zhukova, V.; Ipatov, M.; Blanco, J.M.; Gonzalez-Legarreta, L.; Hernando, B.; del Val, J.J.; González, J.; Zhukov, A. Optimization of the giant magnetoimpedance effect of Finemet-type microwires through the nanocrystallization. J. Appl. Phys. 2014, 115, 17A313. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
1.2 | |
2.23·10−11 m/s | |
ΔGch | 0.14 GJ/m3 |
Eε(σ = 0) | 15.3 MJ/m3 |
D | 3.6·10−20 m2/s |
NV | 8.66·1028 m−3 |
a0 | 2.5 Å |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fuks, A.; Abrosimova, G.; Aksenov, O.; Churyukanova, M.; Aronin, A. The Influence of Internal Stress on the Nanocrystal Formation of Amorphous Fe73.8Si13B9.1Cu1Nb3.1 Microwires and Ribbons. Crystals 2022, 12, 1494. https://doi.org/10.3390/cryst12101494
Fuks A, Abrosimova G, Aksenov O, Churyukanova M, Aronin A. The Influence of Internal Stress on the Nanocrystal Formation of Amorphous Fe73.8Si13B9.1Cu1Nb3.1 Microwires and Ribbons. Crystals. 2022; 12(10):1494. https://doi.org/10.3390/cryst12101494
Chicago/Turabian StyleFuks, Artem, Galina Abrosimova, Oleg Aksenov, Margarita Churyukanova, and Alexandr Aronin. 2022. "The Influence of Internal Stress on the Nanocrystal Formation of Amorphous Fe73.8Si13B9.1Cu1Nb3.1 Microwires and Ribbons" Crystals 12, no. 10: 1494. https://doi.org/10.3390/cryst12101494
APA StyleFuks, A., Abrosimova, G., Aksenov, O., Churyukanova, M., & Aronin, A. (2022). The Influence of Internal Stress on the Nanocrystal Formation of Amorphous Fe73.8Si13B9.1Cu1Nb3.1 Microwires and Ribbons. Crystals, 12(10), 1494. https://doi.org/10.3390/cryst12101494