Elastodynamics Field of Non-Uniformly Moving Dislocation: From 3D to 2D
Abstract
:1. Introduction
2. Eastodynamics Solution of Non-Uniformly Moving Dislocation
3. Degradation of Elastodynamics Green Tensor
4. Different Spatial–Temporal Decoupling Strategies at 2D and 3D
4.1. Spatial–Temporal Decoupling Strategy at 2D
4.2. Spatial–Temporal Decoupling Strategy at 3D
4.3. Consistency
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Gray, G.T., III. High-strain-rate deformation: Mechanical behavior and deformation substructures induced. Annu. Rev. Mater. Res. 2012, 42, 285–303. [Google Scholar] [CrossRef]
- Yaghoobi, M.; Voyiadjis, G.Z.; Sundararaghavan, V. Crystal Plasticity Simulation of Magnesium and Its Alloys: A Review of Recent Advances. Crystals 2021, 11, 435. [Google Scholar] [CrossRef]
- Ma, M.; Ding, H.; Huang, Y.; Tian, C.W.; Langdon, T.G. Microstructural and Hardness Evolution in a Duplex Stainless Steel Processed by High-Pressure Torsion. Crystals 2020, 10, 1138. [Google Scholar] [CrossRef]
- Javanbakht, M. High pressure phase evolution under hydrostatic pressure in a single imperfect crystal due to nanovoids. Materialia 2021, 20, 101199. [Google Scholar] [CrossRef]
- Roy, A.M. Barrierless melt nucleation at solid-solid interface in energetic nitramine octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine. Materialia 2021, 15, 101000. [Google Scholar] [CrossRef]
- Meyers, M.A. Dynamic Behavior of Materials; John Wiley & Sons: Hoboken, NJ, USA, 1994. [Google Scholar]
- Bisht, A.; Neogi, A.; Mitra, N.; Jagadeesh, G.; Suwas, S. Investigation of the elastically shock-compressed region and elastic–plastic shock transition in single-crystalline copper to understand the dislocation nucleation mechanism under shock compression. Shock Waves 2019, 29, 913–927. [Google Scholar] [CrossRef]
- Sichani, M.M.; Spearot, D.E. A molecular dynamics study of dislocation density generation and plastic relaxation during shock of single crystal Cu. J. Appl. Phys. 2016, 120, 045902. [Google Scholar] [CrossRef]
- Tanguy, D.; Mareschal, M.; Lomdahl, P.S.; Germann, T.C.; Holian, B.L.; Ravelo, R. Dislocation nucleation induced by a shock wave in a perfect crystal: Molecular dynamics simulations and elastic calculations. Phys. Rev. B 2003, 68, 165–168. [Google Scholar] [CrossRef]
- Zepeda-Ruiz, L.A.; Stukowski, A.; Oppelstrup, T.; Bulatov, V.V. Probing the limits of metal plasticity with molecular dynamics simulations. Nature 2017, 550, 492–495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eshelby, J. Uniformly Moving Dislocations. Proc. Phys. Soc. 1949, 62, 307. [Google Scholar] [CrossRef]
- Frank, F.C. On the Equations of Motion of Crystal Dislocations. Proc. Phys. Soc. Sect. A 1949, 62, 131–134. [Google Scholar] [CrossRef]
- Markenscoff, X.; Clifton, R. The nonuniformly moving edge dislocation. J. Mech. Phys. Solids 1981, 29, 253–262. [Google Scholar] [CrossRef]
- Nosenko, V.; Zhdanov, S.; Morfill, G. Supersonic dislocations observed in a plasma crystal. Phys. Rev. Lett. 2007, 99, 25002. [Google Scholar] [CrossRef] [Green Version]
- Cui, Y.; Po, G.; Pellegrini, Y.P.; Lazar, M.; Ghoniem, N. Computational 3-dimensional dislocation elastodynamics. J. Mech. Phys. Solids 2019, 126, 20–51. [Google Scholar] [CrossRef]
- Gurrutxaga-Lerma, B.; Balint, D.S.; Dini, D.; Eakins, D.E.; Sutton, A.P. A dynamic discrete dislocation plasticity method for the simulation of plastic relaxation under shock loading. R. Soc. Math. Phys. Eng. Sci. 2013, 469, 20130141. [Google Scholar] [CrossRef]
- Gurrutxaga-Lerma, B.; Balint, D.S.; Dini, D.; Sutton, A.P. Elastodynamic image forces on dislocations. R. Soc. Math. Phys. Eng. Sci. 2015, 471, 20150433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blaschke, D.N. A general solution for accelerating screw dislocations in arbitrary slip systems with reflection symmetry. J. Mech. Phys. Solids 2021, 152, 104448. [Google Scholar] [CrossRef]
- Cui, Y.; Wang, T.; Luo, S.; Li, Z.; Li, Z. A discrete–continuous model of three-dimensional dislocation elastodynamics. Int. J. Plast. 2022, 152, 103221. [Google Scholar] [CrossRef]
- Pellegrini, Y.P.; Lazar, M. On the gradient of the Green tensor in two-dimensional elastodynamic problems, and related integrals: Distributional approach and regularization, with application to nonuniformly moving sources. Wave Motion 2015, 57, 44–63. [Google Scholar] [CrossRef] [Green Version]
- Bringa, E.M.; Rosolankova, K.; Rudd, R.E.; Remington, B.A.; Wark, J.S.; Duchaineau, M.; Kalantar, D.H.; Hawreliak, J.; Belak, J. Shock deformation of face-centred-cubic metals on subnanosecond timescales. Nat. Mater. 2006, 5, 805–809. [Google Scholar] [CrossRef]
- Chu, H.J.; Wang, J.; Beyerlein, I.J. Anomalous reactions of a supersonic coplanar dislocation dipole: Bypass or twinning? Scr. Mater. 2012, 67, 69–72. [Google Scholar] [CrossRef]
- Gumbsch, P.; Gao, H. Dislocations faster than the speed of sound. Science 1999, 283, 965–968. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.J.; Li, J.; Shan, Z.W.; Ma, E. Strongly correlated breeding of high-speed dislocations. Acta Mater. 2016, 119, 229–241. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Kim, H.; Kang, K.; Kim, S.Y. Relativistic effect inducing drag on fast-moving dislocation in discrete system. Int. J. Plast. 2019, 126, 102629. [Google Scholar] [CrossRef]
- Cottrell, A.H. Theory of dislocations. Prog. Met. Phys. 1968, 1, 77–96. [Google Scholar] [CrossRef]
- Jin, Z.; Gao, H.; Gumbsch, P. Energy radiation and limiting speeds of fast moving edge dislocations in tungsten. Phys. Rev. B 2008, 77, 094303. [Google Scholar] [CrossRef] [Green Version]
- Tsuzuki, H.; Branicio, P.S.; Rino, J.P. Molecular dynamics simulation of fast dislocations in copper. Acta Mater. 2009, 57, 1843–1855. [Google Scholar] [CrossRef]
- Zhang, X.; Acharya, A.; Walkington, N.J.; Bielak, J. A single theory for some quasi-static, supersonic, atomic, and tectonic scale applications of dislocations. J. Mech. Phys. Solids 2015, 84, 145–195. [Google Scholar] [CrossRef] [Green Version]
- Lazar, M. The gauge theory of dislocations: A uniformly moving screw dislocation. R. Soc. Lond. A Math. Phys. Eng. Sci. 2009, 465, 2505–2520. [Google Scholar] [CrossRef]
- Lazar, M.; Pellegrini, Y.P. Distributional and regularized radiation fields of non-uniformly moving straight dislocations, and elastodynamic Tamm problem. J. Mech. Phys. Solids 2016, 96, 632–659. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Levitas, V.I.; Xiong, L.; Zhang, X. Stationary Dislocation Motion at Stresses Significantly below the Peierls Stress: Example of Shuffle Screw and 60 Dislocations in Silicon. Acta Mater. 2021, 206, 116623. [Google Scholar] [CrossRef]
- Li, Q.J.; Li, J.; Shan, Z.W.; Ma, E. Surface Rebound of Relativistic Dislocations Directly and Efficiently Initiates Deformation Twinning. Phys. Rev. Lett. 2018, 117, 165501. [Google Scholar] [CrossRef] [Green Version]
- Markenscoff, X. Evolution equation of moving defects: Dislocations and inclusions. Int. J. Fract. 2010, 166, 35–40. [Google Scholar] [CrossRef] [Green Version]
- Lazar, M. The fundamentals of non-singular dislocations in the theory of gradient elasticity: Dislocation loops and straight dislocations. Int. J. Solids Struct. 2013, 50, 352–362. [Google Scholar] [CrossRef] [Green Version]
- Lazar, M.; Kirchner, H.O.K. Generalised plane strain embedded in three-dimensional anisotropic elasticity. Philos. Mag. 2021, 101, 2584–2598. [Google Scholar] [CrossRef]
- Mura, T. Continuous distribution of moving dislocations. Philos. Mag. 1963, 8, 843–857. [Google Scholar] [CrossRef]
- Callias, C.; Markenscoff, X.; Ni, L.Q. A singular asymptotic expansion for the field near a moving dislocation loop. Q. Appl. Math. 1990, 48, 113–132. [Google Scholar] [CrossRef] [Green Version]
- Lazar, M. On the non-uniform motion of dislocations: The retarded elastic fields, the retarded dislocation tensor potentials and the Liénard—Wiechert tensor potentials. Philos. Mag. 2013, 93, 749–776. [Google Scholar] [CrossRef] [Green Version]
- Eringen, A.C.; Suhubi, E.S.; Bland, D.R. Elastodynamics, vols. 1 and 2. Phys. Today 1977, 30, 65. [Google Scholar] [CrossRef]
- Achenbach, J.D. Reciprocity in Elastodynamics; Cambridge University Press: Cambridge, MA, USA, 2003. [Google Scholar]
- Jackson, J.D. Classical Electrodynamics; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, S.; Cui, Y. Elastodynamics Field of Non-Uniformly Moving Dislocation: From 3D to 2D. Crystals 2022, 12, 363. https://doi.org/10.3390/cryst12030363
Luo S, Cui Y. Elastodynamics Field of Non-Uniformly Moving Dislocation: From 3D to 2D. Crystals. 2022; 12(3):363. https://doi.org/10.3390/cryst12030363
Chicago/Turabian StyleLuo, Shichao, and Yinan Cui. 2022. "Elastodynamics Field of Non-Uniformly Moving Dislocation: From 3D to 2D" Crystals 12, no. 3: 363. https://doi.org/10.3390/cryst12030363
APA StyleLuo, S., & Cui, Y. (2022). Elastodynamics Field of Non-Uniformly Moving Dislocation: From 3D to 2D. Crystals, 12(3), 363. https://doi.org/10.3390/cryst12030363