Microstructure and Its Effect on the Intergranular Corrosion Properties of 2024-T3 Aluminum Alloy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Tests Methods
3. Results and Discussion
3.1. Microstructure Observation
3.2. Intergranular Corrosion
3.3. Electrochemical Behavior
4. Conclusions
- (1)
- There are nano-scale θ (Al2Cu) and S (Al2CuMg) particles along grain boundaries after quenching. The nano-cluster is the main strengthening phase in the 2024 alloy after natural aging for 96 h. The intergranular corrosion susceptibility is greatly affected by the presence of θ (Al2Cu) and S (Al2CuMg) phases along the grain boundary. Specifically, Cu-rich precipitates and intermetallics are known to act as local cathodes, which facilitate oxygen reduction reactions and ultimately drive anodic dissolution of the surrounding matrix.
- (2)
- The intergranular corrosion resistance of the alloy decreases with the increasing content of Cu and Mg elements. The results also show that the corrosion resistance of 2024 alloy with lower Mg content is significantly improved as compared with the 2024 alloy with a more common composition (Cu to Mg mass ratio of 2.9).
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Staszczyk, A.; Sawicki, J.; Adamczyk-Cieslak, B. A study of second-phase precipitates and dispersoid particles in 2024 aluminum alloy after different aging treatments. Materials 2019, 12, 4168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, Y.C.; Xia, Y.C.; Jiang, Y.Q.; Zhou, H.M.; Li, L.T. Precipitation hardening of 2024-T3 aluminum alloy during creep aging. Mater. Sci. Eng. A 2013, 565, 420–429. [Google Scholar] [CrossRef]
- Merati, A. A study of nucleation and fatigue behavior of an aerospace aluminum alloy 2024-T3. Int. J. Fatigue 2005, 27, 33–44. [Google Scholar] [CrossRef]
- Huda, Z.; Taib, N.I.; Zaharinie, T. Characterization of 2024-T3: An aerospace aluminum alloy. Mater. Chem. Phys. 2009, 113, 515–517. [Google Scholar] [CrossRef]
- Yu, X.X.; Sun, J.; Li, Z.T.; Dai, H.; Fang, H.J.; Zhao, J.F.; Yin, D.F. Solidification behavior and elimination of undissolved Al2CuMg phase during homogenization in Ce-modified Al–Zn–Mg–Cu alloy. Rare Met. 2020, 39, 1279–1287. [Google Scholar]
- Sebastian, D.; Yao, C.W.; Lian, I. Multiscale corrosion analysis of superhydrophobic coating on 2024 aluminum alloy in a 3.5 wt% NaCl solution. MRS Commun. 2020, 10, 305–311. [Google Scholar] [CrossRef]
- Blanc, C.; Gastaud, S.; Mankowski, G. Mechanistic studies of the corrosion of 2024 aluminum alloy in nitrate solutions. J. Electrochem. Soc. 2003, 150, B396. [Google Scholar] [CrossRef]
- Knight, S.P.; Salagaras, M.; Wythe, A.M.; de Carlo, F.; Davenport, A.J.; Trueman, A.R. In situ X-ray tomography of intergranular corrosion of 2024 and 7050 aluminium alloys. Corros. Sci. 2010, 52, 3855–3860. [Google Scholar] [CrossRef]
- Bonzom, R.; Oltra, R. Intergranular corrosion propagation rate of 2024 alloy investigated via the “one-dimensional artificial pit” technique. Corros. Sci. 2016, 111, 850–855. [Google Scholar] [CrossRef]
- Zhang, W.L.; Frankel, G.S. Localized Corrosion Growth Kinetics in AA2024 Alloys. J. Electrochem. Soc. 2002, 149, 510–519. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.X.; Zhou, X.R.; Hashimoto, T.; Liu, B. Localized corrosion in AA2024-T351 aluminium alloy: Transition from intergranular corrosion to crystallographic pitting. Mater. Charact. 2017, 130, 230–236. [Google Scholar] [CrossRef]
- DeRose, J.A.; Suter, T.; Bałkowiec, A.; Michalski, J.; Kurzydlowski, K.J.; Schmutz, P. Localised corrosion initiation and microstructural characterisation of an Al 2024 alloy with a higher Cu to Mg ratio. Corros. Sci. 2012, 55, 313–325. [Google Scholar] [CrossRef]
- Alexopoulos, N.D.; Papanikos, P. Experimental and theoretical studies of corrosion-induced mechanical properties degradation of aircraft 2024 aluminum alloy. Mater. Sci. Eng. A 2008, 498, 248–257. [Google Scholar] [CrossRef]
- Ghosh, K.S.; Hilal, M.; Sagnik, B. Corrosion behavior of 2024 Al-Cu-Mg alloy of various tempers. Trans. Nonferrous Met. Soc. China 2013, 23, 3215–3227. [Google Scholar] [CrossRef]
- Kolics, A.; Besing, A.S.; Wieckowski, A. Interaction of chromate ions with surface intermetallics on aluminum alloy 2024-T3 in NaCl solutions. J. Electrochem. Soc. 2001, 148, B322. [Google Scholar] [CrossRef]
- Kermanidis, A.T.; Petroyiannis, P.V.; Pantelakis, S.G. Fatigue and damage tolerance behaviour of corroded 2024 T351 aircraft aluminum alloy. Theor. Appl. Fract. Mech. 2005, 43, 121–132. [Google Scholar] [CrossRef]
- Petschke, D.; Lotter, F.; Staab, T.E.M. Revisiting the crystal structure of the equilibrium S (Al2CuMg) phase in Al–Cu–Mg alloys using X-ray absorption spectroscopy (XAFS). Materialia 2019, 6, 100341. [Google Scholar] [CrossRef] [Green Version]
- Ren, J.; Zuo, Y. Study of electrochemical behavior and morphology of pitting on anodized 2024 aluminum alloy. Surf. Coat. Technol. 2004, 182, 237–241. [Google Scholar] [CrossRef]
Materials | Wt% | Cu/Mg | |||||
---|---|---|---|---|---|---|---|
Si | Fe | Cu | Mn | Mg | Zn | ||
1# | 0.040 | 0.23 | 4.78 | 0.67 | 1.17 | 0.012 | 1.53 |
2# | 0.034 | 0.22 | 4.07 | 0.67 | 1.04 | 0.011 | 1.47 |
3# | 0.041 | 0.23 | 4.96 | 0.45 | 1.39 | 0.012 | 1.34 |
4# | 0.034 | 0.21 | 4.46 | 0.44 | 1.19 | 0.011 | 1.41 |
5# | 0.044 | 0.22 | 4.8 | 0.62 | 1.57 | 0.014 | 1.15 |
6# | 0.035 | 0.18 | 4.14 | 0.62 | 1.42 | 0.011 | 1.09 |
7# | 0.043 | 0.23 | 5.53 | 0.48 | 1.82 | 0.013 | 1.14 |
8# | 0.035 | 0.19 | 4.56 | 0.47 | 1.55 | 0.011 | 1.10 |
Materials | The Maximum Depth/μm | Average Depth/μm | ||
---|---|---|---|---|
14 s | 30 s | 50 s | ||
1# | 126 | 183 | 218 | 176 |
2# | 126 | 132 | 146 | 135 |
3# | 140 | 181 | 306 | 209 |
4# | 154 | 170 | 270 | 198 |
5# | 180 | 178 | 374 | 244 |
6# | 199 | 187 | 316 | 234 |
7# | 156 | 195 | 343 | 231 |
8# | 138 | 225 | 328 | 230 |
Cu/Mg | Cd/(S·sp·cm−2) | Rp/(Ω·cm2) | Corrosion Current (μA) |
---|---|---|---|
1.10 | 6.49 × 10−6 | 2554 | 3.13 |
1.47 | 9.15 × 10−6 | 3180 | 2.87 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, X.; Zhou, Z.; Liu, C.; Cao, L. Microstructure and Its Effect on the Intergranular Corrosion Properties of 2024-T3 Aluminum Alloy. Crystals 2022, 12, 395. https://doi.org/10.3390/cryst12030395
Xiao X, Zhou Z, Liu C, Cao L. Microstructure and Its Effect on the Intergranular Corrosion Properties of 2024-T3 Aluminum Alloy. Crystals. 2022; 12(3):395. https://doi.org/10.3390/cryst12030395
Chicago/Turabian StyleXiao, Xiang, Zeyu Zhou, Cheng Liu, and Lingfei Cao. 2022. "Microstructure and Its Effect on the Intergranular Corrosion Properties of 2024-T3 Aluminum Alloy" Crystals 12, no. 3: 395. https://doi.org/10.3390/cryst12030395
APA StyleXiao, X., Zhou, Z., Liu, C., & Cao, L. (2022). Microstructure and Its Effect on the Intergranular Corrosion Properties of 2024-T3 Aluminum Alloy. Crystals, 12(3), 395. https://doi.org/10.3390/cryst12030395