Experimental Study of the Thermophysical Properties of the Red Earth Composite Stabilized with Cement Containing Waste Glass Powder
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. Methods
3. Results and Discussions
3.1. X-ray Diffraction and Scanning Electron Microscopy (SEM)
3.2. Thermo-Physical Properties
3.2.1. Relationship between Density and Thermal Conductivity
3.2.2. Effect of Glass Powder Content on Thermal Conductivity and Specific Heat Capacity
3.2.3. Effect of Glass Powder Content on Thermal Diffusivity and Thermal Effusivity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nguyen, H.P.; Mueller, A.; Nguyen, V.T.; Nguyen, C.T. Development and characterization of lightweight aggregate recycled from construction and demolition waste mixed with other industrial by-products. Constr. Build. Mater. 2021, 313, 125472. [Google Scholar] [CrossRef]
- Kongkajun, N.; Laitila, E.A.; Ineure, P.; Prakaypan, W.; Cherdhirunkorn, B.; Chakartnarodom, P. Soil-cement bricks produced from local clay brick waste and soft sludge from fiber cement production. Case Stud. Constr. Mater. 2020, 13, e00448. [Google Scholar] [CrossRef]
- Colombo, B.; Gaiardelli, P.; Dotti, S.; Caretto, F.; Coletta, G. Recycling of Waste Fiber-Reinforced Plastic Composites: A Patent-Based Analysis. Recycling 2021, 6, 72. [Google Scholar] [CrossRef]
- Antonio, L.; Fern, E.; Salas-morera, L.; Suescum-morales, D. Effect of the Composition of Mixed Recycled Aggregates on Physical—Mechanical Properties. Crystals 2021, 11, 1518. [Google Scholar] [CrossRef]
- Rida, L.; Bazzar, K.; Alaoui, A.H. High-Volume Fly Ash Mortar Solution for Sustainable Development. Adv. Intell. Syst. Comput. 2020, 1104 AISC, 386–395. [Google Scholar] [CrossRef]
- Boussaid, S.; El Bakkouri, A.; Ezbakhe, H.; Ajzoul, T.; El Bouardi, A. Comportement thermique de la terre stabilisée au ciment. Rev. Française Génie Civ. 2001, 5, 505–516. [Google Scholar] [CrossRef]
- Hany, E.; Fouad, N.; Abdel-wahab, M.; Sadek, E. Investigating the mechanical and thermal properties of compressed earth bricks made by eco-friendly stabilization materials as partial or full replacement of cement. Constr. Build. Mater. 2021, 281, 122535. [Google Scholar] [CrossRef]
- Saidi, M.; Cherif, A.S.; Zeghmati, B.; Sediki, E. Stabilization effects on the thermal conductivity and sorption behavior of earth bricks. Constr. Build. Mater. 2018, 167, 566–577. [Google Scholar] [CrossRef]
- Mansour, M.B.; Jelidi, A.; Cherif, A.S.; Jabrallah, S. Optimizing thermal and mechanical performance of compressed earth blocks (CEB). Constr. Build. Mater. 2016, 104, 44–51. [Google Scholar] [CrossRef]
- Nasry, O.; Samaouali, A.; Belarouf, S.; Moufakkir, A.; Sghiouri El Idrissi, H.; Soulami, H.; El Rhaffari, Y.; Hraita, M.; Fertahi, S.E.D.; Hafidi-Alaoui, A. Thermophysical properties of cement mortar containing waste glass powder. Crystals 2021, 11, 488. [Google Scholar] [CrossRef]
- Du, H.; Tan, K.H. Properties of high volume glass powder concrete. Cem. Concr. Compos. 2017, 75, 22–29. [Google Scholar] [CrossRef]
- Mohammadyan-Yasouj, S.E.; Ghaderi, A. Experimental investigation of waste glass powder, basalt fibre, and carbon nanotube on the mechanical properties of concrete. Constr. Build. Mater. 2020, 252, 119115. [Google Scholar] [CrossRef]
- Du, Y.; Yang, W.; Ge, Y.; Wang, S.; Liu, P. Thermal conductivity of cement paste containing waste glass powder, metakaolin and limestone filler as supplementary cementitious material. J. Clean. Prod. 2021, 287, 125018. [Google Scholar] [CrossRef]
- Cengizler, H.; Koç, M.; Şan, O. Production of ceramic glass foam of low thermal conductivity by a simple method entirely from fly ash. Ceram. Int. 2021, 47, 28460–28470. [Google Scholar] [CrossRef]
- Østergaard, M.B.; Cai, B.; Petersen, R.R.; König, J.; Lee, P.D.; Yue, Y. Impact of pore structure on the thermal conductivity of glass foams. Mater. Lett. 2019, 250, 72–74. [Google Scholar] [CrossRef]
- Bignozzi, M.C.; Saccani, A.; Barbieri, L.; Lancellotti, I. Glass waste as supplementary cementing materials: The effects of glass chemical composition. Cem. Concr. Compos. 2015, 55, 45–52. [Google Scholar] [CrossRef]
- Hou, X.; Struble, L.J.; Kirkpatrick, R.J. Formation of ASR gel and the roles of C-S-H and portlandite. Cem. Concr. Res. 2004, 34, 1683–1696. [Google Scholar] [CrossRef]
- Zhang, L.; Gustavsen, A.; Jelle, B.P.; Yang, L.; Gao, T.; Wang, Y. Thermal conductivity of cement stabilized earth blocks. Constr. Build. Mater. 2017, 151, 504–511. [Google Scholar] [CrossRef]
- Ouedraogo, K.A.J.; Aubert, J.E.; Tribout, C.; Escadeillas, G. Is stabilization of earth bricks using low cement or lime contents relevant? Constr. Build. Mater. 2020, 236, 117578. [Google Scholar] [CrossRef]
- Boffoue, M.O.; Kouadio, K.C.; Kouakou, C.H. Influence de la teneur en ciment sur les propriétés thermomécaniques des blocs d’argile comprimée et stabilisée. Afr. Sci. Rev. Int. Des Sci. Technol. 2015, 11, 35–43. [Google Scholar] [CrossRef]
- Shubbar, A.A.; Sadique, M.; Kot, P.; Atherton, W. Future of clay-based construction materials—A review. Constr. Build. Mater. 2019, 210, 172–187. [Google Scholar] [CrossRef]
- Meukam, P. Caractérisation de Matériaux Locaux en Vue de L’isolation Thermique de Batiments. Ph.D. Thesis, Université de Yaoundé I, Yaoundé, Cameroon, December 2004. [Google Scholar]
- Ez-Zaki, H.; El Gharbi, B.; Diouri, A. Development of eco-friendly mortars incorporating glass and shell powders. Constr. Build. Mater. 2018, 159, 198–204. [Google Scholar] [CrossRef]
- Jiang, Y.; Ling, T.C.; Mo, K.H.; Shi, C. A critical review of waste glass powder—Multiple roles of utilization in cement-based materials and construction products. J. Environ. Manag. 2019, 242, 440–449. [Google Scholar] [CrossRef] [PubMed]
- Tang, A.M.; Cui, Y.J.; Le, T.T. A study on the thermal conductivity of compacted bentonites. Appl. Clay Sci. 2008, 41, 181–189. [Google Scholar] [CrossRef] [Green Version]
- Tiskatine, R.; Bougdour, N.; Oaddi, R.; Gourdo, L.; Rahib, Y.; Bouzit, S.; Bazgaou, A.; Bouirden, L.; Ihlal, A.; Aharoune, A. Thermo-physical analysis of low-cost ecological composites for building construction. J. Build. Eng. 2018, 20, 762–775. [Google Scholar] [CrossRef]
- Nguyen, L.H. Béton de Structure à Propriétés D’isolation Thermique Améliorées: Approche Expérimentale et Modélisation Numérique. Ph.D. Thesis, University of Cergy Pontoise, Cergy, France, October 2013. [Google Scholar]
Element (at.%) | Glass Powder | Cement | Red Earth |
---|---|---|---|
O | 42.77 | 44.49 | 48.62 |
Na | 10.75 | 0.23 | 3.28 |
Mg | 0.21 | 0.57 | 0.48 |
C | - | 12.10 | 8.13 |
Al | 0.8 | 1.92 | 11.15 |
Si | 38.45 | 6.48 | 18.93 |
Ca | 6.83 | 31.32 | 0.56 |
K | 0.13 | 1.04 | 1.19 |
Ti | - | 0.13 | 0.62 |
Fe | 0.07 | 1.72 | 7.04 |
Total | 100 | 100 | 100 |
Code | Red Earth (g) | Water/Binder Ratio | Cement (g) | Glass Powder (g) | |
---|---|---|---|---|---|
0% cement | Control sample (red earth brick (RSB)) | 1000 | 0.3 | 0 | 0 |
RSB + 10%GP | 900 | 0.3 | 0 | 100 | |
RSB + 20% GP | 800 | 0.3 | 0 | 200 | |
RSB + 30%GP | 700 | 0.3 | 0 | 300 | |
6% cement | RSB 6 | 940 | 0.3 | 60 | 0 |
RSB 6 + 10% GP | 840 | 0.3 | 60 | 100 | |
RSB 6 + 20% GP | 740 | 0.3 | 60 | 200 | |
RSB 6 + 30% GP | 640 | 0.3 | 60 | 300 | |
12% cement | RSB 12 | 900 | 0.3 | 120 | 0 |
RSB 12 + 10% GP | 780 | 0.3 | 120 | 100 | |
RSB 12 + 20% GP | 680 | 0.3 | 120 | 200 | |
RSB 12 + 30% GP | 580 | 0.3 | 120 | 300 |
Element | a | b | c | d | e | f | g | h | i |
---|---|---|---|---|---|---|---|---|---|
C | 4.35 | 5.29 | 7.26 | 4.19 | 4.40 | 5.83 | 7.47 | 7.58 | 8.68 |
O | 52.83 | 53.18 | 54.94 | 50.21 | 52.58 | 51.85 | 52.28 | 52.80 | 52.28 |
Na | 3.58 | 0.38 | 0.42 | 0.87 | 0.80 | 0.41 | 3.68 | 3.61 | 6.46 |
Mg | 0.64 | 0.42 | 0.23 | 0.59 | 0.54 | 0.49 | 0.54 | 0.30 | 0.41 |
Al | 4.91 | 8.23 | 4.82 | 9.01 | 9.22 | 9.10 | 4.36 | 4.20 | 2.32 |
Si | 22.64 | 17.22 | 10.72 | 23.23 | 18.77 | 15.31 | 24.71 | 24.00 | 21.18 |
K | 0.47 | 0.85 | 1.07 | 0.93 | 0.99 | 1.09 | 0.50 | 0.69 | 0.42 |
Ca | 4.81 | 7.66 | 17.14 | 2.18 | 4.61 | 8.44 | 3.23 | 4.05 | 6.57 |
Ti | 0.39 | 0.41 | 0.32 | 0.45 | 0.59 | 0.49 | - | - | 0.35 |
Fe | 5.38 | 6.36 | 3.26 | 8.34 | 7.50 | 6.98 | 3.09 | 2.77 | 1.32 |
Total | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nasry, O.; Samaouali, A.; El Idrissi, H.S.; Bouhaddour, N.; Alaoui, A.H. Experimental Study of the Thermophysical Properties of the Red Earth Composite Stabilized with Cement Containing Waste Glass Powder. Crystals 2022, 12, 396. https://doi.org/10.3390/cryst12030396
Nasry O, Samaouali A, El Idrissi HS, Bouhaddour N, Alaoui AH. Experimental Study of the Thermophysical Properties of the Red Earth Composite Stabilized with Cement Containing Waste Glass Powder. Crystals. 2022; 12(3):396. https://doi.org/10.3390/cryst12030396
Chicago/Turabian StyleNasry, Oumaima, Abderrahim Samaouali, Hanane Sghiouri El Idrissi, Nora Bouhaddour, and Adil Hafidi Alaoui. 2022. "Experimental Study of the Thermophysical Properties of the Red Earth Composite Stabilized with Cement Containing Waste Glass Powder" Crystals 12, no. 3: 396. https://doi.org/10.3390/cryst12030396
APA StyleNasry, O., Samaouali, A., El Idrissi, H. S., Bouhaddour, N., & Alaoui, A. H. (2022). Experimental Study of the Thermophysical Properties of the Red Earth Composite Stabilized with Cement Containing Waste Glass Powder. Crystals, 12(3), 396. https://doi.org/10.3390/cryst12030396