First High-Resolution Crystal Structures of DNA:2′-O-Methyl-RNA Heteroduplexes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Synthesis and Crystallization of Oligonucleotides
2.2. X-ray Data Collection and Processing
2.3. Solution, Refinement and Analysis of the Structures
3. Results and Discussion
3.1. The Refined Models and Crystal Packing
3.2. Structural Features of DNA:2′-O-Me-RNA Duplexes
3.3. Hydration of the Duplexes
3.4. Zn2+ Ions Coordination
3.5. SO42− Ions Binding
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Motorin, Y.; Helm, M. RNA nucleotide methylation. Wiley Interdiscip. Rev. RNA 2011, 2, 611–631. [Google Scholar] [CrossRef] [PubMed]
- Motorin, Y.; Marchand, V. Detection and analysis of RNA ribose 2′-O-methylations: Challenges and solutions. Genes 2018, 9, 642. [Google Scholar] [CrossRef] [Green Version]
- Roundtree, I.A.; Evans, M.E.; Pan, T.; He, C. Dynamic RNA modifications in gene expression regulation. Cell 2017, 169, 1187–1200. [Google Scholar] [CrossRef] [Green Version]
- Incarnato, D.; Anselmi, F.; Morandi, E.; Neri, F.; Maldotti, M.; Rapelli, S.; Parlato, C.; Basile, G.; Oliviero, S. High-throughput single-base resolution mapping of RNA 2΄-O-methylated residues. Nucleic Acids Res. 2017, 45, 1433–1441. [Google Scholar] [CrossRef] [Green Version]
- Kratschmer, C.; Levy, M. Effect of chemical modifications on aptamer stability in serum. Nucleic Acids Ther. 2017, 27, 335–344. [Google Scholar] [CrossRef]
- Liang, H.; Jiao, Z.; Rong, W.; Qu, S.; Liao, Z.; Sun, X.; Wei, Y.; Zhao, Q.; Wang, J.; Liu, Y.; et al. 3′-Terminal 2′-O-methylation of lung cancer miR-21-5p enhances its stability and association with Argonaute 2. Nucleic Acids Res. 2020, 48, 7027–7040. [Google Scholar] [CrossRef]
- Hsu, P.J.; Fei, Q.; Dai, Q.; Shi, H.; Dominissini, D.; Ma, L.; He, C. Single base resolution mapping of 2′-O-methylation sites in human mRNA and in 3′ terminal ends of small RNAs. Methods 2019, 156, 85–90. [Google Scholar] [CrossRef]
- Egli, M.; Manoharan, M. Re-engineering RNA molecules into therapeutic agents. Acc. Chem. Res. 2019, 52, 1036–1047. [Google Scholar] [CrossRef]
- Moumné, L.; Marie, A.-C.; Crouvezier, N. Oligonucleotide therapeutics: From discovery and development to patentability. Pharmaceutics 2022, 14, 260. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Zhong, L.; Weng, Y.; Peng, L.; Huang, Y.; Zhao, Y.; Liang, X.J. Therapeutic siRNA: State of the art. Signal Transduct. Target. Ther. 2020, 5, 101. [Google Scholar] [CrossRef] [PubMed]
- Sandbrink, J.B.; Shattock, R.J. RNA Vaccines: A suitable platform for tackling emerging pandemics? Front. Immunol. 2020, 11, 608460. [Google Scholar] [CrossRef] [PubMed]
- Wright, J.T. COVID-19 vaccination: Science, politics and public health. J. Am. Dent. Assoc. 2021, 152, 181–183. [Google Scholar] [CrossRef] [PubMed]
- Freier, S.M.; Altmann, K.H. The ups and downs of nucleic acid duplex stability: Structure-stability studies on chemically-modified DNA:RNA duplexes. Nucleic Acids Res. 1997, 25, 4429–4443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azevedo, A.S.; Sousa, I.M.; Fernandes, R.M.; Azevedo, N.F.; Almeida, C. Optimizing locked nucleic acid/2′-O-methyl-RNA fluorescence in situ hybridization (LNA/2′OMe-FISH) procedure for bacterial detection. PLoS ONE 2019, 14, e0217689. [Google Scholar] [CrossRef]
- Cummins, L.L.; Owens, S.R.; Risen, L.M.; Lesnik, E.A.; Freier, S.M.; McGee, D.; Guinosso, C.J.; Cook, P.D. Characterization of fully 2′-modified oligoribonucleotide hetero- and homoduplex hybridization and nuclease sensitivity. Nucleic Acids Res. 1995, 23, 2019–2024. [Google Scholar] [CrossRef] [Green Version]
- Salazar, M.; Fedoroff, O.Y.; Miller, J.M.; Ribeiro, N.S.; Reid, B.R. The DNA strand in DNA:RNA hybrid duplexes is neither B-form nor A-form in solution. Biochemistry 1993, 32, 4207–4215. [Google Scholar] [CrossRef]
- Tsao, Y.P.; Wang, L.Y.; Hsu, S.T.; Jain, M.L.; Chou, S.H.; Huang, C.; Cheng, J.W. The solution structure of [d(CGC)r(amamam)d(TTTGCG)]2. J. Biomol. NMR 2001, 21, 209–220. [Google Scholar] [CrossRef]
- Szabat, M.; Pędziński, T.; Czapik, T.; Kierzek, E.; Kierzek, R. Structural aspects of the antiparallel and parallel duplexes formed by DNA, 2′-O-methyl RNA and RNA oligonucleotides. PLoS ONE 2015, 10, e0143354. [Google Scholar] [CrossRef]
- Gao, J.; Li, Y.; Li, W.; Zeng, C.; Xi, F.; Huang, J.; Cui, L. 2′-O-methyl molecular beacon: A promising molecular tool that permits elimination of sticky-end pairing and improvement of detection sensitivity. RSC Adv. 2020, 10, 41618–41624. [Google Scholar] [CrossRef]
- Dolot, R.; Sobczak, M.; Mikołajczyk, B.; Nawrot, B. Synthesis, crystallization and preliminary crystallographic analysis of a 52-nucleotide DNA/2′-OMe-RNA oligomer mimicking 10-23 DNAzyme in the complex with a substrate. Nucleosides Nucleotides Nucleic Acids 2017, 36, 292–301. [Google Scholar] [CrossRef]
- Gerlach, M.; Mueller, U.; Weiss, M.S. The MX beamlines BL14.1-3 at BESSY II. J. Large-Scale Res. Facil. 2016, 2, A47. [Google Scholar] [CrossRef] [Green Version]
- Kabsch, W. XDS. Acta Crystallogr. D Biol. Crystallogr. 2010, 66, 125–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sparta, K.M.; Krug, M.; Heinemann, U.; Mueller, U.; Weiss, M.S. XDSAPP2.0. J. Appl. Cryst. 2016, 49, 1085–1092. [Google Scholar] [CrossRef]
- Kim, M.K.; Lee, S.; An, Y.J.; Jeong, C.S.; Ji, C.J.; Lee, J.W.; Cha, S.S. In-house zinc SAD phasing at Cu Kα edge. Mol. Cells 2013, 36, 74–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hou, C.; Tsodikov, O.V. Utilizing guanine-coordinated Zn2+ ions to determine DNA crystal structures by single-wavelength anomalous diffraction. Acta Crystallogr. D Biol. Crystallogr. 2019, 75, 32–40. [Google Scholar] [CrossRef]
- Schneider, T.R.; Sheldrick, G.M. Substructure solution with SHELXD. Acta Crystallogr. D Biol. Crystallogr. 2002, 58, 1772–1779. [Google Scholar] [CrossRef] [Green Version]
- Sheldrick, G.M. Macromolecular phasing with SHELXE. Z. Kristallogr. 2002, 217, 644–650. [Google Scholar] [CrossRef]
- Emsley, P.; Cowtan, K. Coot: Model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 2004, 60, 2126–2132. [Google Scholar] [CrossRef] [Green Version]
- Liebschner, D.; Afonine, P.V.; Baker, M.L.; Buknóczi, G.; Chen, V.B.; Croll, T.I.; Hintze, B.; Hung, L.-W.; Jain, S.; McCoy, A.J.; et al. Macromolecular structure determination using X-rays, neutrons and electrons: Recent developments in Phenix. Acta Crystallogr. D Biol. Crystallogr. 2019, 75, 861–877. [Google Scholar] [CrossRef] [Green Version]
- Kowiel, M.; Brzeziński, D.; Jaskólski, M. Conformation-dependant restrains for polynucleotides: I. clustering of the geometry of the phosphodiester group. Nucleic Acids Res. 2016, 44, 8479–8489. [Google Scholar] [CrossRef] [Green Version]
- Gilski, M.; Zhao, J.; Kowiel, M.; Brzeziński, D.; Turner, D.H.; Jaskólski, M. Accurate geometrical restrains for Watson-Crick base pairs. Acta Crystallogr. B Struct. Sci. Cryst. Eng. Mater. 2019, 75, 235–245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kowiel, M.; Brzeziński, D.; Gilski, M.; Jaskólski, M. Conformation-dependent restraints for polynucleotides: The sugar moiety. Nucleic Acids Res. 2020, 48, 962–973. [Google Scholar] [CrossRef] [PubMed]
- Vagin, A.; Teplyakov, A. MOLREP: An automated program for molecular replacement. J. Appl. Crystallogr. 1997, 30, 1022–1025. [Google Scholar] [CrossRef]
- Li, S.; Olson, W.K.; Lu, X.-J. Web 3DNA 2.0 for the analysis, visualization, and modeling of 3D nucleic acid structures. Nucleic Acids Res. 2019, 47, W26–W34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olson, W.K.; Bansal, M.; Burley, S.K.; Dickerson, R.E.; Gerstein, M.; Harvey, S.C.; Heinemann, U.; Lu, X.J.; Neidle, S.; Shakked, Z.; et al. A standard reference frame for the description of nucleic acid base-pair geometry. J. Mol. Biol. 2001, 313, 229–237. [Google Scholar] [CrossRef] [Green Version]
- The PyMOL. Molecular Graphics System, Version 2.0; Schrödinger, LLC: New York, NY, USA, 2018. [Google Scholar]
- Leontis, N.B.; Stombaugh, J.; Westhof, E. The non-Watson-Crick base pairs and their associated isostericity matrices. Nucleic Acids Res. 2002, 30, 3497–3531. [Google Scholar] [CrossRef]
- Leontis, N.B.; Westhof, E. Analysis of RNA motifs. Curr. Opin. Struct. Biol. 2003, 13, 300–308. [Google Scholar] [CrossRef]
- Xiong, Y.; Sundaralingam, M. Crystal structure of a DNA·RNA hybrid duplex with a polypurine RNA r(gaagaagag) and complementary polypyrimidine DNA d(CTCTTCTTC). Nucleic Acids Res. 2000, 28, 2171–2176. [Google Scholar] [CrossRef] [Green Version]
- Shindelin, H.; Zhang, M.; Bald, R.; Furste, J.P.; Erdmann, V.A.; Heinemann, U. Crystal structure of and RNA dodecamer containing the Escherichia coli Shine-Dalgarno sequence. J. Mol. Biol. 1995, 249, 595–603. [Google Scholar] [CrossRef]
- Adamiak, D.A.; Rypniewski, W.R.; Milecki, J.; Adamiak, R.W. The 1.19 Å X-ray structure of 2′-O-Me(CGCGCG)2 duplex shows dehydrated RNA with 2-methyl-2,4-pentanediol in the minor groove. Nucleic Acids Res. 2001, 29, 4144–4153. [Google Scholar] [CrossRef]
- Saenger, W. Principles of Nucleic Acids Structure; Springer Publishers: New York, NY, USA, 1984. [Google Scholar]
- Altona, C.; Sundaralingam, M. Conformational analysis of the sugar ring in nucleosides and nucleotides. New description using the concept of pseudorotation. J. Am. Chem. Soc. 1972, 94, 8205–8212. [Google Scholar] [CrossRef] [PubMed]
- Chandrasekaran, R.; Arnott, S. The structures of DNA and RNA helices in oriented fibers. In Landolt-Börnstein Numerical Data and Functional Relationships in Science and Technology, Group VII/1b, Nucleic Acids; Saenger, W., Ed.; Springer: Berlin, Germany, 1989; pp. 31–170. [Google Scholar]
- Arnott, S. Polynucleotide secondary structures: An historical perspective. In Oxford Handbook of Nucleic Acid Structure; Neidle, S., Ed.; Oxford University Press: Oxford, UK, 1999; pp. 1–38. [Google Scholar]
- Adamiak, D.A.; Milecki, J.; Popenda, M.; Adamiak, W.A.; Dauter, Z.; Rypniewski, W.R. Crystal structure of 2′-O-Me(CGCGCG)2, and RNA duplex at 1.30 Å resolution. Hydration pattern of 2′-O-methylated RNA. Nucleic Acids Res. 1997, 25, 4599–4607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rypniewski, W.; Adamiak, D.A.; Milecki, J.; Adamiak, R.W. Noncanonical G(syn)-G(anti) base pairs stabilized by sulphate anions in two X-ray structures of the (GUGGUCUGAUGAGGCC) RNA duplex. RNA 2008, 14, 1845–1851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masquida, B.; Sauter, C.; Westhof, E. A sulfate pocket formed by three GoU pairs in the 0.97 Å resolution X-ray structure of a nonameric RNA. RNA 1999, 5, 1384–1395. [Google Scholar] [CrossRef] [Green Version]
Structure | Overhanging Duplex with Zn2+ | Blunt-Ended Duplex |
---|---|---|
Protein Data Bank (PDB) entry | 7ow0 | 7oxs |
Space group | P43212 | P3221 |
Crystallization conditions | 1.8 M Li2SO4, 50 mM sodium cacodylate pH 6.5, 5 mM spermine, 50 mM ZnCl2 | 2.0 M Li2SO4, 50 mM sodium cacodylate pH 6.5, 10 mM spermine, 15 mM MgCl2 |
X-ray source | Beamline BL14.2@BESSY | Beamline BL14.2@BESSY |
Wavelength (Å) | 1.28308 | 0.91840 |
Detector | Dectris Pilatus3 S 2M | Dectris Pilatus3 S 2M |
Detector distance (mm) | 140.973 | 208.105 |
Oscillation width (°) | 0.1 | 0.1 |
Temperature (K) | 100 | 100 |
No. of frames | 1800 | 3600 |
Unit-cell parameters | ||
a (Å) | 31.85 | 56.13 |
b (Å) | 31.85 | 56.13 |
c (Å) | 91.66 | 76.26 |
α (°) | 90.00 | 90.00 |
β (°) | 90.00 | 90.00 |
γ (°) | 90.00 | 120.00 |
Total no. of reflections | 78,154 (6655) | 215,536 (34,421) |
Unique reflections | 12,966 (1979) | 20,931 (3348) |
Completeness (%) | 98.8 (94.6) | 99.6 (97.9) |
Resolution (Å) | 30.09–1.55 (1.64–1.55) | 48.61–1.91 (2.02–1.91) |
Rmergea | 0.049 (0.586) | 0.031 (1.010) |
Rmeasb | 0.053 (0.696) | 0.033 (1.063) |
Multiplicity | 6.03 (3.36) | 10.30 (10.28) |
Mosaicity | 0.212 | 0.154 |
Wilson B factor | 29.03 | 57.82 |
Mean I/σ(I) | 18.92 (1.96) | 31.56 (2.01) |
CC(1/2) | 0.998 (0.771) | 1.000 (0.757) |
Structure | Overhanging Duplex with Zn2+ | Blunt-Ended Duplex |
---|---|---|
PDB code | 7ow0 | 7oxs |
Space group | P43212 | P3221 |
No. reflections used in refinement | 12,953 | 20,911 |
No. reflections used to Rfree | 1298 | 1852 |
Rcryst (Rfree) a | 0.221/0.251 | 0.184/0.195 |
No. non-H atoms | ||
Nucleic acid | 380 | 760 |
Solvent | 92 | 77 |
Zn2+ | 3 | - |
SO42− | - | 10 |
R.m.s.d.s from ideal values | ||
Bond lengths (Å) | 0.003 | 0.008 |
Bond angles (°) | 0.624 | 1.109 |
Overhanging DNA:2′-OMe-RNA (7ow0) # | Blunt-Ended DNA:2′-OMe-RNA (7oxs: MOL1) | Blunt-Ended DNA:2′-OMe-RNA (7oxs: MOL2) | DNA:RNA (479d) [39] | RNA:RNA (1sdr) [40] | 2′-OMe-RNA:2′-OMe-RNA (1i7j) [41] | A-RNA (Fiber) [44,45] | A-DNA (Fiber) [44,45] | |
---|---|---|---|---|---|---|---|---|
Residues/turn | 10.9 | 11.5 | 10.8 | 11.3 | 10.8 | 9.9 | 11.0 | 11.0 |
Helical twist Ωh (°) | 32.9 | 31.4 | 33.3 | 32.0 | 33.4 | 36.3 | 32.7 | 32.6 |
Helical rise h (Å) | 2.6 | 2.9 | 2.7 | 3.0 | 2.7 | 2.3 | 2.8 | 2.5 |
Inclination η (°) | 17.3 | 10.5 | 17.3 | 11.9 | 16.8 | 23.7 | 15.5 | 22.7 |
X displacement (Å) | −4.8 | −4.2 | −3.9 | −3.8 | −4.4 | −4.4 | −4.1 | −4.5 |
Propeller (Å) | −11.5 | −8.8 | −10.6 | −9.9 | −11.2 | −15.4 | −2.1 | −10.5 |
Shift (Å) | 0 | −0.1 | −0.2 | −0.1 | 0 | −0.1 | 0.0 | 0 |
Slide (Å) | −1.8 | −1.7 | −1.4 | −1.4 | −1.7 | −1.6 | −1.5 | −1.4 |
Rise (Å) | 3.3 | 3.2 | 3.2 | 3.4 | 3.3 | 3.2 | 3.3 | 3.3 |
Tilt (°) | −0.2 | −0.5 | −0.2 | 0.4 | 0.9 | −0.1 | −0.4 | 0 |
Roll (°) | 9.5 | 5.6 | 9.3 | 6.8 | 9.3 | 14.2 | 8.6 | 12.4 |
Twist (°) | 31.3 | 30.8 | 31.5 | 31.1 | 31.8 | 32.9 | 31.6 | 30.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dolot, R.; Maciaszek, A.; Mikołajczyk, B.; Nawrot, B. First High-Resolution Crystal Structures of DNA:2′-O-Methyl-RNA Heteroduplexes. Crystals 2022, 12, 760. https://doi.org/10.3390/cryst12060760
Dolot R, Maciaszek A, Mikołajczyk B, Nawrot B. First High-Resolution Crystal Structures of DNA:2′-O-Methyl-RNA Heteroduplexes. Crystals. 2022; 12(6):760. https://doi.org/10.3390/cryst12060760
Chicago/Turabian StyleDolot, Rafał, Anna Maciaszek, Barbara Mikołajczyk, and Barbara Nawrot. 2022. "First High-Resolution Crystal Structures of DNA:2′-O-Methyl-RNA Heteroduplexes" Crystals 12, no. 6: 760. https://doi.org/10.3390/cryst12060760
APA StyleDolot, R., Maciaszek, A., Mikołajczyk, B., & Nawrot, B. (2022). First High-Resolution Crystal Structures of DNA:2′-O-Methyl-RNA Heteroduplexes. Crystals, 12(6), 760. https://doi.org/10.3390/cryst12060760