The Anti-Reflection Coating Design for the Very-Long-Wave Infrared Si-Based Blocked Impurity Band Detectors
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Haegel, N.M.; Jacobs, J.E.; White, A.M. Modeling of steady-state field distributions in blocked impurity band detectors. Appl. Phys. Lett. 2000, 77, 4389–4391. [Google Scholar] [CrossRef]
- Stetson, S.; Reynolds, D.; Stapelbroek, M.; Stermer, R. Design and Performance of Blocked-Impurity-Band Detector Focal Plane Arrays. Proc. SPIE Int. Soc. Opt. Eng. 1985, 686, 48–65. [Google Scholar] [CrossRef]
- Szmulowicz, F.; Madarsz, F.L. Blocked Impurity Band Detectors—An Analytical Model—Figures of Merit. J. Appl. Phys. 1987, 62, 2533–2540. [Google Scholar] [CrossRef]
- Saini, A.K.; Singh, A.; Meena, V.S.; Kumar Gaur, S.; Pal, R. Design and development of double-layer anti-reflection coating for HgCdTe based mid-wave infrared detector. Mater. Sci. Semicond. Process. 2022, 147, 106749. [Google Scholar] [CrossRef]
- Tschanz, S.J.; Garcia, J.C.; Haegel, N.M. Modeling the alternate bias configuration and low temperature C-V profiling in blocked impurity band detectors. In Infrared Spaceborne Remote Sensing 2005, Proceedings of the Optics and Photonics 2005, San Diego, CA, USA, 31 July–4 August 2005; SPIE: San Diego, CA, USA, 2005; pp. 172–183. [Google Scholar]
- Rauter, P.; Fromherz, T.; Winnerl, S.; Zier, M.; Kolitsch, A.; Helm, M.; Bauer, G. Terahertz Si:B blocked-impurity-band detectors defined by nonepitaxial methods. Appl. Phys. Lett. 2008, 93, 261104. [Google Scholar] [CrossRef]
- Garcia, J.C.; Haegel, N.M.; Zagorski, E.A. Alternate operating mode for long wavelength blocked impurity band detectors. Appl. Phys. Lett. 2005, 87, 043502. [Google Scholar] [CrossRef]
- Wang, X.; Wang, B.; Chen, X.; Chen, Y.; Hou, L.; Xie, W.; Pan, M. Roles of blocking layer and anode bias in processes of impurity-band transition and transport for GaAs-based blocked-impurity-band detectors. Infrared Phys. Technol. 2016, 79, 165–170. [Google Scholar] [CrossRef]
- Haegel, N.M. BIB detector development for the far infrared: From Ge to GaAs. In Proceedings of the Integrated Optoelectronics Devices, San Jose, CA, USA, 25–31 January 2003; Volume 4999. [Google Scholar]
- Wright, E.L.; Eisenhardt, P.R.M.; Mainzer, A.K.; Ressler, M.E.; Cutri, R.M.; Jarrett, T.; Kirkpatrick, J.D.; Padgett, D.; McMillan, R.S.; Skrutskie, M.; et al. The Wide-Field Infrared Survey Explorer (Wise): Mission Description and Initial On-Orbit Performance. Astron. J. 2010, 140, 1868. [Google Scholar] [CrossRef]
- Werner, M.W.; Roellig, T.L.; Low, F.J.; Rieke, G.H.; Rieke, M.; Hoffmann, W.F.; Young, E.; Houck, J.R.; Brandl, B.; Fazio, G.G.; et al. The Spitzer Space Telescope Mission. Astrophys. J. Suppl. Ser. 2004, 154, 1. [Google Scholar] [CrossRef] [Green Version]
- Palik, E.D. Handbook of Optical Constants of Solids II; Academic Press Handbook Series; Palik, E.D., Ed.; Academic Press: New York, NY, USA, 1991; Volume 2. [Google Scholar]
- Min, H.; Jianxin, C.; Yi, Z.; Zhicheng, X.; Li, H. Light-harvesting for high quantum efficiency in InAs-based InAs/GaAsSb type-II superlattices long wavelength infrared photodetectors. Appl. Phys. Lett. 2019, 114, 141102. [Google Scholar]
- Bhatt, M.; Nautiyal, B.B.; Bandyopadhyay, P.K. High efficiency antireflection coating in MWIR region (3.6–4.9μm) simultaneously effective for Germanium and Silicon optics. Infrared Phys. Technol. 2010, 53, 33–36. [Google Scholar] [CrossRef]
- Kumar, A.R.; Zhang, Z.M.; Boychev, V.A.; Tanner, D.B.; Vale, L.R.; Rudman, D.A. Far-Infrared Transmittance and Reflectance of YBa2Cu3O7-δ Films on Si Substrates. J. Heat Transf. 1999, 121, 844–851. [Google Scholar] [CrossRef]
- Bushunov, A.A.; Tarabrin, M.K.; Lazarev, V.A. Review of Surface Modification Technologies for Mid-Infrared Antireflection Microstructures Fabrication. Laser Photonics Rev. 2021, 15, 2000202. [Google Scholar] [CrossRef]
- Guo, S.; Yang, L.; Dai, B.; Geng, F.; Ralchenko, V.; Han, J.; Zhu, J. Past Achievements and Future Challenges in the Development of Infrared Antireflective and Protective Coatings. Phys. Status Solidi A 2020, 217, 2000149. [Google Scholar] [CrossRef]
- Carrasco, R.A.; George, J.; Maestas, D.; Alsaad, Z.M.; Garnham, D.; Morath, C.P.; Duran, J.M.; Ariyawansa, G.; Webster, P.T. Proton irradiation effects on InGaAs/InAsSb mid-wave barrier infrared detectors. J. Appl. Phys. 2021, 130, 114501. [Google Scholar] [CrossRef]
- He, T.; Yang, X.; Tang, Y.; Wang, R.; Liu, Y. High photon detection efficiency InGaAs/InP single photon avalanche diode at 250 K. J. Semicond. 2022, 43, 102301. [Google Scholar] [CrossRef]
- D’Souza, A.I.; Robinson, E.; Wijewarnasuriya, P.S.; Stapelbroek, M.G. Spectral Response Model of Backside-Illuminated HgCdTe Detectors. J. Electron. Mater. 2011, 40, 1657–1662. [Google Scholar] [CrossRef]
- De Vita, C.; Asa, M.; Urquia, M.A.; Castagna, M.E.; Somaschini, C.; Morichetti, F.; Melloni, A. ZnS antireflection coating for Silicon for MIR–LWIR applications. In Proceedings of the 2021 IEEE 17th International Conference on Group IV Photonics (GFP), Malaga, Spain, 7–10 December 2021; pp. 1–2. [Google Scholar]
- Fei, L.; Hongfei, J.; Jinlong, Z.; Bin, Y.; Huasong, L.; Yiqin, J.; Zhanshan, W.; Xinbin, C. High performance ZnS antireflection sub-wavelength structures with HfO2 protective film for infrared optical windows. Opt. Express 2021, 29, 31058–31067. [Google Scholar]
- Yu, T.; Qin, Y.; Liu, D. The coatings for a solar-rejected window of the infrared horizon sensor. Infrared Phys. Technol. 2020, 105, 103214. [Google Scholar] [CrossRef]
- Nguyen, J.; Yu, J.S.; Evans, A.; Slivken, S.; Razeghi, M. Optical coatings by ion-beam sputtering deposition for long-wave infrared quantum cascade lasers. Appl. Phys. Lett. 2006, 89, 111113. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, Z.; Zhou, Y.; Chen, Y.; Tao, J.; Liu, W.; Dai, X.; Wang, B.; Wu, Y.; Wang, X. The Anti-Reflection Coating Design for the Very-Long-Wave Infrared Si-Based Blocked Impurity Band Detectors. Crystals 2023, 13, 60. https://doi.org/10.3390/cryst13010060
Dong Z, Zhou Y, Chen Y, Tao J, Liu W, Dai X, Wang B, Wu Y, Wang X. The Anti-Reflection Coating Design for the Very-Long-Wave Infrared Si-Based Blocked Impurity Band Detectors. Crystals. 2023; 13(1):60. https://doi.org/10.3390/cryst13010060
Chicago/Turabian StyleDong, Zuoru, Yangzhou Zhou, Yulu Chen, Jiajia Tao, Wenhui Liu, Xiaowan Dai, Bingbing Wang, Yifei Wu, and Xiaodong Wang. 2023. "The Anti-Reflection Coating Design for the Very-Long-Wave Infrared Si-Based Blocked Impurity Band Detectors" Crystals 13, no. 1: 60. https://doi.org/10.3390/cryst13010060
APA StyleDong, Z., Zhou, Y., Chen, Y., Tao, J., Liu, W., Dai, X., Wang, B., Wu, Y., & Wang, X. (2023). The Anti-Reflection Coating Design for the Very-Long-Wave Infrared Si-Based Blocked Impurity Band Detectors. Crystals, 13(1), 60. https://doi.org/10.3390/cryst13010060