Active and Programmable Metasurfaces with Semiconductor Materials and Devices
Abstract
:1. Introduction
2. Metasurfaces with Diodes
2.1. Varactor Diodes
2.2. PIN Diodes
2.3. Schottky Diodes
3. Transistor Based Metasurfaces
4. Active Metasurfaces with Two−Dimensional Materials
5. Phase Change Materials Metasurfaces
5.1. Vanadium Dioxide
5.2. Chalcogenides
6. Conclusions and Prospects
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schurig, D.; Mock, J.J.; Justice, B.J.; Cummer, S.A.; Pendry, J.B.; Starr, A.F.; Smith, D.R. Metamaterial electromagnetic cloak at microwave frequencies. Science 2006, 314, 977–980. [Google Scholar] [CrossRef]
- Fan, J.X.; Zhang, L.; Wei, S.S.; Zhang, Z.; Choi, S.K.; Song, B.; Shi, Y.S. A review of additive manufacturing of metamaterials and developing trends. Mater. Today 2021, 50, 303–328. [Google Scholar] [CrossRef]
- Kadic, M.; Milton, G.W.; van Hecke, M.; Wegener, M. 3D metamaterials. Nat. Rev. Phys. 2019, 1, 198–210. [Google Scholar] [CrossRef]
- Bao, L.; Cui, T.J. Tunable, reconfigurable, and programmable metamaterials. Microw. Opt. Technol. Lett. 2020, 62, 9–32. [Google Scholar] [CrossRef]
- Xiao, S.; Wang, T.; Liu, T.; Zhou, C.; Jiang, X.; Zhang, J. Active metamaterials and metadevices: A review. J. Phys. D Appl. Phys. 2020, 53, 503002. [Google Scholar] [CrossRef]
- Ren, Y.; Zhang, J.J.; Gao, X.X.; Zheng, X.; Liu, X.Y.; Cui, T.J. Active spoof plasmonics: From design to applications. J. Phys. Condens. Matter 2021, 34, 053002. [Google Scholar] [CrossRef]
- Padilla, W.J.; Averitt, R.D. Imaging with metamaterials. Nat. Rev. Phys. 2021, 4, 85–100. [Google Scholar] [CrossRef]
- Walia, S.; Shah, C.M.; Gutruf, P.; Nili, H.; Chowdhury, D.R.; Withayachumnankul, W.; Bhaskaran, M.; Sriram, S. Flexible metasurfaces and metamaterials: A review of materials and fabrication processes at micro− and nano−scales. Appl. Phys. Rev. 2015, 2, 011303. [Google Scholar] [CrossRef]
- Zangeneh−Nejad, F.; Sounas, D.L.; Alù, A.; Fleury, R. Analogue computing with metamaterials. Nat. Rev. Mater. 2020, 6, 207–225. [Google Scholar] [CrossRef]
- Shalaginov, M.Y.; Campbell, S.D.; An, S.S.; Zhang, Y.F.; Ríos, C.; Whiting, E.B.; Wu, Y.H.; Kang, L.; Zheng, B.W.; Fowler, C.; et al. Design for quality: Reconfigurable flat optics based on active metasurfaces. Nanophotonics 2020, 9, 3505–3534. [Google Scholar] [CrossRef]
- Zhang, X.G.; Jiang, W.X.; Jiang, H.L.; Wang, Q.; Tian, H.W.; Bai, L.; Luo, Z.J.; Sun, S.; Luo, Y.; Qiu, C.W.; et al. An optically driven digital metasurface for programming electromagnetic functions. Nat. Electron. 2020, 43, 165–171. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, M.Z.; Tang, W.; Dai, J.Y.; Miao, L.; Zhou, X.Y.; Jin, S.; Cheng, Q.; Cui, T.J. A wireless communication scheme based on space− and frequency−division multiplexing using digital metasurfaces. Nat. Electron. 2021, 4, 218–227. [Google Scholar] [CrossRef]
- Shalaginov, M.Y.; An, S.S.; Zhang, Y.F.; Yang, F.; Su, P.; Liberman, V.; Chou, J.B.; Roberts, C.M.; Kang, M.; Ríos, C.; et al. Reconfigurable all−dielectric metalens with diffraction−limited performance. Nat. Commun. 2021, 12, 1225. [Google Scholar] [CrossRef]
- Guo, X.X.; Ding, Y.M.; Duan, Y.; Ni, X.J. Nonreciprocal metasurface with space−time phase modulation. Light Sci. Appl. 2019, 8, 123. [Google Scholar] [CrossRef]
- Taravati, S.; Eleftheriades, G.V. Full−duplex reflective beamsteering metasurface featuring magnetless nonreciprocal amplification. Nat. Commun. 2021, 12, 4414. [Google Scholar] [CrossRef]
- Sobolewski, J.; Yashchyshyn, Y. State of the art sub−terahertz switching solutions. IEEE Access 2022, 10, 12983–12989. [Google Scholar] [CrossRef]
- Wang, Z.M.; Qiao, J.; Zhao, S.Q.; Wang, S.L.; He, C.; Tao, X.T.; Wang, S.P. Recent progress in terahertz modulation using photonic structures based on two−dimensional materials. InfoMat 2021, 3, 1110–1133. [Google Scholar] [CrossRef]
- Sze, S.M.; Ng, K.K. Physics of Semiconductor Devices, 3rd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006; pp. 60–93. [Google Scholar]
- Zhao, J.; Cheng, Q.; Chen, J.; Qi, M.Q.; Jiang, W.X.; Cui, T.J. A tunable metamaterial absorber using varactor diodes. New J. Phys. 2013, 15, 043049. [Google Scholar] [CrossRef]
- Capolino, F. Applications of Metamaterials, 1st ed.; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Fu, X.J.; Cui, T.J. Recent progress on metamaterials: From effective medium model to real−time information processing system. Prog. Quant. Electron. 2019, 67, 100223. [Google Scholar] [CrossRef]
- Salim, A.; Lim, S. Review of recent metamaterial microfluidic sensors. Sensors 2018, 18, 232. [Google Scholar] [CrossRef] [Green Version]
- Sievenpiper, D.; Schaffner, J. Beam steering microwave reflector based on electrically tunable impedance surface. Electron. Lett. 2002, 38, 1237–1238. [Google Scholar] [CrossRef]
- Sievenpiper, D.F.; Schaffner, J.H.; Song, H.J.; Loo, R.Y.; Tangonan, G. Two−dimensional beam steering using an electrically tunable impedance surface. IEEE Trans. Antennas Propag. 2003, 51, 2713–2722. [Google Scholar] [CrossRef]
- Mias, C.; Yap, J.H. A varactor−tunable high impedance surface with a resistive−lumped−element biasing grid. IEEE Trans. Antennas Propag. 2007, 55, 1955–1962. [Google Scholar] [CrossRef]
- Kim, H.K.; Lee, D.; Lim, S. Frequency−tunable metamaterial absorber using a varactor−loaded fishnet−like resonator. Appl. Opt. 2016, 55, 4113–4118. [Google Scholar]
- Ma, B.; Liu, S.; Kong, X.; Jiang, Y.; Xu, J.; Yang, H. A novel wide−band tunable metamaterial absorber based on varactor diode/graphene. Optik 2016, 127, 3039–3043. [Google Scholar] [CrossRef]
- Guo, Q.X.; Li, Z.R.; Su, J.X.; Song, J.M.; Yang, L.Y. Active frequency selective surface with wide reconfigurable passband. IEEE Access 2019, 7, 38348–38355. [Google Scholar] [CrossRef]
- Zhang, W.; Lin, J.H.; Fang, X.H.; Lin, Y.X.; Wang, K.; Zhang, M. An active electromagnetically induced transparency (EIT) metamaterial based on conductive coupling. Materials 2022, 15, 7371. [Google Scholar] [CrossRef]
- Boardman, A.D.; Grimalsky, V.V.; Kivshar, Y.S.; Koshevaya, S.V.; Lapine, M.; Litchinitser, N.M.; Malnev, V.N.; Noginov, M.; Rapoport, Y.G.; Shalaev, V.M. Active and tunable metamaterials. Laser Photonics Rev. 2011, 5, 287–307. [Google Scholar] [CrossRef]
- Watts, C.M.; Liu, X.L.; Padilla, W.J. Metamaterial electromagnetic wave absorbers. Adv. Mater. 2012, 24, OP98–OP120. [Google Scholar] [CrossRef]
- Wang, Y.F.; Yin, J.C.; Yuan, G.S.; Dong, X.C.; Du, C.L. Tunable I−shaped metamaterial by loading varactor diode for reconfigurable antenna. Appl. Phys. A 2011, 104, 1243–1247. [Google Scholar] [CrossRef]
- Cui, T.J.; Qi, M.Q.; Wan, X.; Zhao, J.; Cheng, Q. Coding metamaterials, digital metamaterials and programmable metamaterials. Light Sci. Appl. 2014, 3, e218. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.B.; Li, L.L.; Xu, B.B.; Wu, W.; Wu, R.Y.; Wan, X.; Cheng, Q.; Cui, T.J. Transmission−type 2−bit programmable metasurface for single−sensor and single−frequency microwave imaging. Sci. Rep. 2016, 6, 23731. [Google Scholar] [CrossRef]
- Li, L.L.; Cui, T.J.; Ji, W.; Liu, S.; Ding, J.; Wan, X.; Li, Y.B.; Jiang, M.H.; Qiu, C.W.; Zhang, S. Electromagnetic reprogrammable coding−metasurface holograms. Nat. Commun. 2017, 8, 197. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, X.Q.; Liu, S.; Zhang, Q.; Zhao, J.; Dai, J.Y.; Bai, G.D.; Wan, X.; Cheng, Q.; Castaldi, G.; et al. Space−time−coding digital metasurfaces. Nat. Commun. 2018, 9, 4334. [Google Scholar] [CrossRef]
- Nouman, M.T.; Kim, H.W.; Woo, J.M.; Jeong, M.; Hwang, J.H.; Ji, H.; Kim, D.; Jang, J.H. Terahertz modulator based on metamaterials integrated with metal−semiconductor−metal varactors. Sci. Rep. 2016, 6, 26452. [Google Scholar] [CrossRef]
- Kleinman, D.A. The forward characteristic of the pin diode. Bell Syst. Tech. J. 1956, 35, 685–706. [Google Scholar] [CrossRef]
- Li, L. Machine−learning reprogrammable metasurface imager. Nat. Commun. 2019, 10, 1028. [Google Scholar] [CrossRef]
- Cui, T.J.; Liu, S.; Bai, G.D.; Ma, Q. Direct transmission of digital message via programmable coding metasurface. Research 2019, 2019, 2584509. [Google Scholar] [CrossRef]
- Ali, Q.; Shahzad, W.; Ahmad, I.; Safiq, S.; Bin, X.; Abbas, S.M.; Sun, H. Recent developments and challenges on beam steering characteristics of reconfigurable transmitarray antennas. Electronics 2022, 11, 587. [Google Scholar] [CrossRef]
- Chang, T.K.; Langley, R.J.; Parker, E.A. An active square loop frequency selective surface. IEEE Microw. Guided Wave Lett. 1993, 3, 387–388. [Google Scholar] [CrossRef]
- Philips, B.; Park, E.A.; Langley, R.J. Active FSS in an experimental horn antenna switchable between two beamwidths. Electron. Lett. 1995, 31, 1–2. [Google Scholar] [CrossRef]
- Chang, T.K.; Langley, R.J.; Parker, E.A. Active frequency−selective surfaces. IEE Proc. 1996, 143, 62–66. [Google Scholar] [CrossRef]
- Tanant, A.; Chambers, B. Experimental dual polarised phase−switched screen. Electron. Lett. 2003, 39, 119–121. [Google Scholar] [CrossRef]
- Cahill, B.M.; Parker, E.A. Field switching in an enclosure with active FSS screen. Electron. Lett. 2001, 37, 244–245. [Google Scholar] [CrossRef]
- Kiani, G.I.; Ford, K.L.; Esselle, K.P. Single−layer bandpass active frequency selective surface. Microw. Opt. Technol. Lett. 2008, 50, 2149–2151. [Google Scholar] [CrossRef]
- Tennant, A.; Chambers, B. A single−layer tunable microwave absorber using an active FSS. IEEE Microw. Wireless Compon. Lett. 2004, 14, 46–47. [Google Scholar] [CrossRef]
- Sanz−Izquierdo, B.; Parker, E.A.; Batchelor, J.C. Switchable frequency selective slot arrays. IEEE Trans. Antennas Propag. 2011, 59, 2728–2731. [Google Scholar] [CrossRef]
- Chang, K.; Kwak, S.I. Active frequency selective surfaces using incorporated PIN diodes. IECEI Trans. Electron. 2008, 91, 1917–1922. [Google Scholar] [CrossRef]
- Katko, A.R.; Hawkes, A.M. RF limiter metamaterial using p−i−n diodes. IEEE Antennas Wirel. Propag. Lett. 2011, 10, 1571–1573. [Google Scholar] [CrossRef]
- Fan, Y.; Qiao, T. An electromagnetic modulator based on electrically controllable metamaterial analogue to electromagnetically induced transparency. Sci. Rep. 2017, 7, 40441. [Google Scholar] [CrossRef]
- Li, Y.; Lin, J.; Guo, H.; Sun, W.; Xiao, S.; Zhou, L. A tunable metasurface with switchable functionalities: From perfect transparency to perfect absorption. Adv. Optic. Mater. 2020, 8, 1901548. [Google Scholar] [CrossRef]
- Song, X.; Yang, W. Switchable metasurface for nearly perfect reflection, transmission, and absorption using PIN diodes. Opt. Express. 2021, 29, 29320–29328. [Google Scholar] [CrossRef]
- Fang, J.; Huang, J. Research on broadband tunable metamaterial absorber based on PIN diode. Optik 2020, 200, 163171. [Google Scholar] [CrossRef]
- Wu, Z.; Zhao, J. An active metamaterial absorber with ultrawideband continuous tunability. IEEE Access 2022, 10, 25290–25295. [Google Scholar] [CrossRef]
- Tian, J.H.; Cao, X.Y.; Gao, J.; Yang, H.H.; Han, J.F.; Yu, H.C.; Wang, S.M.; Jin, R.; Li, T. A reconfigurable ultra−wideband polarization converter based on metasurface incorporated with PIN diodes. J. Appl. Phys. 2019, 125, 135105. [Google Scholar] [CrossRef]
- Sumathi, K.; Lavadiya, S.; Yin, P.; Parmar, J.; Patel, S.K. High gain multiband and frequency reconfigurable metamaterial superstrate microstrip patch antenna for C/X/Ku−band wireless network applications. Wirel. Netw. 2021, 27, 2131–2146. [Google Scholar] [CrossRef]
- Kumar, S.R.; Mithilesh, K. A metamaterial loaded hybrid fractal multiband antenna for wireless applications with frequency band reconfigurability characteristics. Frequenz 2020, 74, 401–416. [Google Scholar]
- Al, G.M.; Muhammad, I. A Novel Design Reconfigurable Antenna Based on the Metamaterial for Wearable Applications. J. Phys. Conf. Ser. 2021, 1973, 012042. [Google Scholar]
- Bao, L.; Ma, Q.; Wu, R.Y.; Fu, X.J.; Wu, J.W.; Cui, T.J. Programmable Reflection−Transmission Shared−Aperture Metasurface for Real−Time Control of Electromagnetic Waves in Full Space. Adv. Sci. 2021, 8, 2100149. [Google Scholar] [CrossRef]
- Singh, A.; Mandal, M.K. Parasitic Compensation and Hence Isolation Improvement of PIN Diode Based Switches. IEEE Trans. Circuits Syst. II 2020, 68, 97–101. [Google Scholar] [CrossRef]
- Liu, L.; Li, C.Y.; Zhang, Q.L.; Sun, X.W.; Sun, H. Design and analysis of a heterojunction AlGaAs/GaAs PIN diode structure. Laser Optoelectron. Prog. 2020, 57, 231604. [Google Scholar] [CrossRef]
- Al-Ahmadi, N.A. Metal oxide semiconductor−based Schottky diodes: A review of recent advances. Mater. Res. Express. 2020, 7, 032001. [Google Scholar]
- Harima, Y.; Okazaki, H.; Kunugi, Y. Formation of Schottky barriers at interfaces between metals and molecular semiconductors of p− and n−type conductances. Appl. Phys. Lett. 1996, 69, 1059–1061. [Google Scholar] [CrossRef]
- Schlecht, M.T.; Preu, S. An efficient terahertz rectifier on the graphene/SiC materials platform. Sci. Rep. 2019, 9, 11205. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.; Meng, H.F.; Duo, W.B.; Sun, Z.L. Terahertz sub−harmonic mixer using discrete Schottky diode for planetary science and remote sensing. Infrared Millim. Terahertz Waves 2017, 38, 630–637. [Google Scholar] [CrossRef]
- Bulcha, B.T.; Hesler, J.L.; Drakinskiy, V.; Stake, J.; Valavanis, A.; Dean, P.; Li, L.H.; Barker, N.S. Design and Characterization of 1.8–3.2 THz Schottky−Based Harmonic Mixers. IEEE Trans. THz. Sci. Technol. 2016, 6, 737–746. [Google Scholar] [CrossRef]
- Zhang, B.; Lv, X.L.; He, J.; Xing, D.; Fan, Y.; Chen, X.D. 1.1 THz tenth harmonic mixer based on planar GaAs Schottky diode. IET Microw. Antenna. Propag. 2019, 13, 1799–1803. [Google Scholar] [CrossRef]
- Liu, X.Y.; Zhang, Y.; Wang, H.R.; Wu, C.K.; Wei, H.M.; Xu, Y.H.; Zhou, J.T.; Jin, Z.; Yan, B. InGaAs/InP Schottky barrier diode with submicron T−shaped contact and Cut−Off frequency above 9 THz. Infrared Phys. Techn. 2022, 123, 104173. [Google Scholar] [CrossRef]
- Chen, H.−T.; Padilla, W.J. Active terahertz metamaterial devices. Nature 2006, 444, 597–600. [Google Scholar] [CrossRef]
- Chen, H.−T.; Padilla, W.J. A metamaterial solid−state terahertz phase modulator. Nature 2009, 3, 148–152. [Google Scholar] [CrossRef]
- Chen, H.−T.; Lu, H. Electronic control of extraordinary terahertz transmission through subwavelength metal hole arrays. Opt. Express 2008, 16, 7641–7648. [Google Scholar] [CrossRef]
- Liu, X.; Chen, H. Ultrabroadband electrically controllable terahertz modulation based on GaAs Schottky diode structure. APL Photon. 2021, 6, 111301. [Google Scholar] [CrossRef]
- Zhang, Y.; Ling, H.; Chen, P.; Qian, P.; Shi, Y.; Wang, Y.; Feng, Y.; Xin, Q.; Wang, Q.; Shi, S.; et al. Tunable surface plasmon polaritons with monolithic Schottky diodes. ACS Appl. Electron. Mater. 2019, 1, 2124–2129. [Google Scholar] [CrossRef]
- Ling, H.; Zhang, B.; Feng, M.; Qian, P.; Wang, Y.; Wang, Q.; Zhang, Y.; Song, A. Multi frequency multi bit amplitude modulation of spoof surface plasmon polaritons by Schottky diode bridged interdigital SRRs. Sci. Rep. 2021, 11, 19181. [Google Scholar] [CrossRef]
- Ling, H.; Qian, P.; Zhang, B.; Feng, M.; Wang, Y.; Zhang, X.; Wang, Q.; Zhang, Y.; Song, A. Active terahertz metamaterials electrically modulated by InGaZnO Schottky diodes. Opt. Mater. Express 2021, 11, 2966–2974. [Google Scholar] [CrossRef]
- Ratanak, P.; Sungjoon, L. Design and analysis of active metamaterial modulated by RF power level. Sci. Rep. 2020, 10, 8703. [Google Scholar]
- Vassos, E.; Churm, J.; Powell, J.; Viegas, C.; Alderman, B.; Feresidis, A. Air−bridged Schottky diodes for dynamically tunable millimeter−wave metamaterial phase shifters. Sci. Rep. 2021, 11, 5988. [Google Scholar] [CrossRef]
- Zhou, Y.J.; Dai, L.H.; Li, Q.Y.; Xiao, Z.Y. Two−Way Fano resonance switch in plasmonic metamaterials. Front. Phys. 2020, 8, 576419. [Google Scholar] [CrossRef]
- Zhang, B.; Ji, D.; Fang, D.; Liang, S.; Fan, Y.; Chen, X. A novel 220−GHz GaN diode on−chip tripler with high driven power. IEEE Electron. Device Lett. 2019, 40, 780–783. [Google Scholar] [CrossRef]
- Zhang, L.; Liang, S.; Lv, Y.; Yang, D.; Fu, X.; Song, X.; Gu, G.; Xu, P.; Guo, Y.; Bu, A.; et al. High−power 300 GHz solid−state source chain based on GaN doublers. IEEE Electron. Device Lett. 2021, 42, 1588–1591. [Google Scholar] [CrossRef]
- Giuseppe, D.G.; Mohammed, S.; Vinay, C.; Priyanka, M.; Jeanne, T.; Malek, Z.; Guillaume, D.; Mohammed, Z.; Yannick, R. GaN Schottky diode on sapphire substrate for THz frequency multiplier applications. Micro Nanostruct. 2022, 164, 107116. [Google Scholar]
- Liao, S.Y. Microwave Devices and Circuits, 3rd ed.; Perntice−Hall, Inc.: Englewood Cliffs, NJ, USA, 1990; p. 07632. [Google Scholar]
- Mei, X.; Yoshida, W.; Lange, M.; Lee, J.; Zou, J.; Liu, P.H.; Leong, K.; Zamora, A.; Padilla, J.; Sarkozy, S.; et al. First demonstration of amplification at 1 THz using 25−nm InP high electron mobility transistor process. IEEE Electron. Device Lett. 2015, 36, 327–329. [Google Scholar] [CrossRef]
- Hosono, H. How we made the IGZO transistor. Nat. Electron. 2018, 1, 428. [Google Scholar] [CrossRef]
- Shrekenhamer, D.; Rout, S.; Strikwerda, A.C.; Bingham, C.; Averitt, R.D.; Sonkusale, S.; Padilla, W.J. High speed terahertz modulation from metamaterials with embedded high electron mobility transistors. Opt. Express 2011, 19, 9968–9975. [Google Scholar] [CrossRef] [PubMed]
- Li, A.; Kim, S.; Luo, Y.; Li, Y.B.; Long, J.; Sievenpiper, D.F. High−power transistor−based tunable and switchable metasurface absorber. IEEE Trans. Microw. Theory Techn. 2017, 65, 2810–2818. [Google Scholar] [CrossRef]
- Zhang, Y.X.; Qiao, S.; Liang, S.X.; Wu, Z.H.; Yang, Z.Q.; Feng, Z.H.; Sun, H.; Zhou, Y.C.; Sun, L.L.; Chen, Z.; et al. Gbps terahertz external modulator based on a composite metamaterial with a double−channel heterostructure. Nano. Lett. 2015, 15, 3501–3506. [Google Scholar] [CrossRef]
- Zhang, Y.X.; Zhao, Y.C.; Liang, S.X.; Zhang, B.; Wang, L.; Zhou, T.C.; Kou, W.; Lan, F.; Zeng, H.X.; Han, J.G.; et al. Large phase modulation of THz wave via an enhanced resonant active HEMT metasurface. Nanophotonics 2018, 8, 153–170. [Google Scholar] [CrossRef]
- Pan, W.; Yang, L.; Ma, Y.; Xiao, H.; Liu, B. Design of a terahertz dual−channel modulator based on metamaterials. Appl. Opt. 2021, 60, 9519–9524. [Google Scholar] [CrossRef]
- Ren, F.F.; Xu, W.Z.; Lu, H.; Ye, J.D.; Tan, H.H.; Jagadish, C. Dynamic control of THz waves through thin−film transistor metamaterials. Proc. SPIE 2015, 9668, 96680O. [Google Scholar]
- Xu, W.Z.; Ren, F.F.; Ye, J.D.; Lu, H.; Liang, L.J.; Huang, X.M.; Liu, M.K.; Shadrivov, I.V.; Powell, D.A.; Yu, G.; et al. Electrically tunable terahertz metamaterials with embedded large−area transparent thin−film transistor arrays. Sci. Rep. 2016, 6, 23486. [Google Scholar] [CrossRef]
- Escorcia Carranza, I.; Grant, J.P.; Gough, J.; Cumming, D. Terahertz metamaterial absorbers implemented in CMOS technology for imaging applications: Scaling to large format focal plane arrays. IEEE J. Sel. Top. Quant. Electron. 2017, 23, 4700508. [Google Scholar] [CrossRef]
- Liu, Y.S.; Sun, T.; Wu, X.J.; Bai, Z.Y.; Sun, Y.; Li, H.L.; Zhang, H.Y.; Chen, K.L.; Ruan, C.J.; Sun, Y.Z.; et al. Active tunable THz metamaterial array implemented in CMOS technology. J. Phys. D Appl. Phys. 2021, 54, 085107. [Google Scholar] [CrossRef]
- Zeng, B.B.; Huang, Z.Q.; Singh, A.; Yao, Y.; Azad, A.K.; Mohite, A.D.; Taylor, A.J.; Smith, D.R.; Chen, H.-T. Hybrid graphene metasurfaces for highspeed mid−infrared light modulation and single−pixel imaging. Light Sci. Appl. 2018, 7, 51. [Google Scholar] [CrossRef]
- Lee, S.J.; Baek, S.J.; Kim, T.T.; Cho, H.J.; Lee, S.H.; Kang, J.H.; Min, B. Metamaterials for enhanced optical responses and their application to active control of terahertz waves. Adv. Mater. 2020, 32, 2000250. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Z.F.; Shao, L.D.; Zhu, W.R. Dynamical absorption manipulation in a graphene−based optically transparent and flexible metasurface. Carbon 2021, 176, 374–382. [Google Scholar] [CrossRef]
- Sang, M.Y.; Shin, J.; Kim, K.; Jun Yu, K. Electronic and thermal properties of graphene and recent advances in graphene based electronics applications. Nanomaterials 2019, 9, 374. [Google Scholar] [CrossRef]
- Wang, J.G.; Mu, X.J.; Sun, M.T. The thermal, electrical and thermoelectric properties of graphene nanomaterials. Nanomaterials 2019, 9, 218. [Google Scholar] [CrossRef] [Green Version]
- Katzmarek, D.A.; Aiswarya, P.; Ziolkowski, R.W.; Iacopi, F. Review of graphene for the generation, manipulation, and detection of electromagnetic fields from microwave to terahertz. 2D Mater. 2022, 9, 022002. [Google Scholar] [CrossRef]
- Ren, J.K.; Stagi, L.; Innocenzi, P. Hydroxylated boron nitride materials: From structures to functional applications. J. Mater. Sci. 2020, 56, 4053–4079. [Google Scholar] [CrossRef]
- Maksoud, M.I.A.A.; Bedir, A.G.; Bekhit, M.; Abouelela, M.M.; Fahim, R.A.; Awed, A.S.; Attia, S.Y.; Kassem, S.M.; Elkodous, M.A.; El−Sayyad, G.S.; et al. MoS2−based nanocomposites: Synthesis, structure, and applications in water remediation and energy storage: A review. Environ. Chem. Lett. 2021, 19, 3645–3681. [Google Scholar] [CrossRef]
- Zhu, H.Y.; Gan, X.; McCreary, A.; Lv, R.; Lin, Z.; Terrones, M. Heteroatom doping of two−dimensional materials: From graphene to chalcogenides. Nano Today 2020, 30, 100829. [Google Scholar] [CrossRef]
- Grigorenko, A.N.; Polini, M.; Novoselov, K.S. Graphene plasmonics. Nat. Photonics 2012, 6, 749–758. [Google Scholar] [CrossRef]
- Kumar, P.; Kumar Singh, A.; Hussain, S.; Nam Hui, K.; San Hui, K.; Eom, J.; Jung, J.; Singh, J. Graphene: Synthesis, properties and application in transparent electronic devices. Rev. Adv. Sci. Eng. 2013, 2, 238–258. [Google Scholar] [CrossRef]
- Low, T.; Avouris, P. Graphene plasmonics for terahertz to mid IR applications. ACS Nano 2014, 8, 1086–1101. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Li, J.T.; Yang, Y.; Li, J.N.; Zhang, Y.T.; Wu, L.; Zhang, Z.; Yang, M.S.; Zheng, C.L.; Li, J.H.; et al. Metal−graphene hybrid active chiral metasurfaces for dynamic terahertz wavefront modulation and near field imaging. Carbon 2020, 163, 34–42. [Google Scholar] [CrossRef]
- Sambit Kumar, G.; Santanu, D.; Somak, B. Transmittive−type triple−band linear to circular polarization conversion in THz region using graphene−based metasurface. Opt. Commun. 2021, 480, 126480. [Google Scholar]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef]
- Balci1, O.; Polat, E.O.; Kakenov, N.; Kocabas, C. Graphene−enabled electrically switchable radar−absorbing surfaces. Nat. Commun. 2015, 6, 6628. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Yin, X.; Ulin Avila, E. A graphene−based broadband optical modulator. Nature 2011, 474, 64–67. [Google Scholar] [CrossRef]
- Ju, L.; Geng, B.S.; Horng, J.; Girit, C.; Martin, M.; Hao, Z.; Bechtel, H.A.; Liang, X.G.; Zettl, A.; Ron Shen, Y.; et al. Graphene plasmonics for tunable terahertz metamaterials. Nat. Nanotechnol. 2011, 6, 630–634. [Google Scholar] [CrossRef]
- Lee, S.H.; Choi, M.; Kim, T.T.; Lee, S.; Liu, M.; Yin, X.B.; Choi, H.K.; Lee, S.S.; Choi, C.G.; Choi, S.Y.; et al. Switching terahertz waves with gate−controlled active graphene metamaterials. Nat. Mater. 2012, 11, 936–941. [Google Scholar] [CrossRef]
- Feng, H.; Xu, Z.X.; Li, K.; Wang, M.; Xie, W.L.; Luo, Q.P.; Chen, B.Y.; Kong, W.J.; Yun, M.J. Tunable polarization−independent and angle−insensitive broadband terahertz absorber with graphene metamaterials. Opt. Express 2021, 29, 7158–7167. [Google Scholar] [CrossRef]
- Zhu, J.; Yin, J.G.; Wu, C.S. Tunable perfect absorber of graphene metamaterial in the terahertz band and its sensing properties. Adv. Photonics Res. 2022, 3, 2100291. [Google Scholar] [CrossRef]
- Jiang, W.J.; Chen, T. A five−band absorber based on graphene metamaterial for terahertz ultrasensing. Nanotechnology 2022, 33, 165503. [Google Scholar] [CrossRef]
- Liu, W.W.; Song, Z.Y. Terahertz absorption modulator with largely tunable bandwidth and intensity. Carbon 2020, 174, 617–624. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, R.; Ouyang, Z.B. Terahertz absorber with dynamically switchable dual−broadband based on a hybrid metamaterial with vanadium dioxide and graphene. Opt. Express 2021, 29, 20839–20850. [Google Scholar] [CrossRef]
- Yao, H.Y.; Yan, X.; Yang, M.S.; Yang, Q.L.; Liu, Y.Y.; Li, A.Y.; Wang, M.; Wei, D.Q.; Tian, Z.J.; Liang, L.J. Frequency−dependent ultrasensitive terahertz dynamic modulation at the Dirac point on graphene−based metal and all−dielectric metamaterials. Carbon. 2021, 184, 400–408. [Google Scholar] [CrossRef]
- Rajabalipanah, H.; Abdolali, A.; Rouhi, K. Reprogrammable spatiotemporally modulated graphene−based functional metasurfaces. IEEE J. Emerg. Sel. Top. Circuits Syst. 2020, 10, 75–87. [Google Scholar] [CrossRef]
- Norouzi Razani, A.; Rezaei, P. Multiband polarization insensitive and tunable terahertz metamaterial perfect absorber based on the heterogeneous structure of graphene. Opt. Quant. Electron. 2022, 54, 407. [Google Scholar] [CrossRef]
- Feng, M.M.; Zhang, B.Q.; Ling, H.T.; Zhang, Z.H.; Wang, Y.M.; Wang, Y.L.; Zhang, X.J.; Hua, P.R.; Wang, Q.P.; Song, A.M.; et al. Active metal–graphene hybrid terahertz surface plasmon polaritons. Nanophotonis 2022, 11, 3331–3338. [Google Scholar] [CrossRef]
- Liu, P.Q.; Luxmoore, I.J.; Mikhailov, S.A.; Savostianova, N.A.; Valmorra, F.; Faist, J.; Nash, G.R. Highly tunable hybrid metamaterials employing split−ring resonators strongly coupled to graphene surface plasmons. Nat. Commun. 2015, 6, 8969. [Google Scholar] [CrossRef] [PubMed]
- Choi, G.; Chau, T.K.; Hong, S.J.; Kim, D.; Kim, S.H.; Kim, D.S.; Suh, D.; Bahk, Y.M.; Jeong, M.S. Augmented all−optical active terahertz device using graphene−based metasurface. Adv. Opt. Mater. 2021, 9, 2100462. [Google Scholar] [CrossRef]
- Efazat, S.S.; Raheleh Basiri, R.; Al−Din Makki, S.V. The gain enhancement of a graphene loaded reconfigurable antenna with non−uniform metasurface in terahertz band. Optik 2019, 183, 1179–1190. [Google Scholar] [CrossRef]
- Shubham, A.; Samantaray, D.; Ghosh, S.K.; Dwivedi, S.; Bhattacharyya, S. Performance improvement of a graphene patch antenna using metasurface for THz applications. Optik 2022, 264, 169412. [Google Scholar] [CrossRef]
- Jarchi, S. Radiation pattern direction control of THz antenna with applying planar graphene metasurface. Optik 2021, 243, 167458. [Google Scholar] [CrossRef]
- Yanbin Luo, Y.B.; Zeng, Q.S.; Yan, X. A graphene−based tunable negative refractive index metamaterial and its application in dynamic beam−tilting terahertz antenna. Microw. Opt. Technol. Lett. 2019, 61, 2766–2772. [Google Scholar]
- Gong, Y.M.; Hu, F.R.; Jiang, M.Z.; Zhang, L.H.; Zou, Y.C.; Jiang, G.B.; Liu, Y.C. Terahertz binary coder based on graphene metasurface. Carbon 2021, 184, 167–176. [Google Scholar] [CrossRef]
- Leong, W.S.; Wang, H.; Yeo, J.; Martin−Martinez, F.J.; Zubair, A. Paraffin−enabled graphene transfer. Nat. Commun. 2019, 10, 867. [Google Scholar] [CrossRef]
- Riffat, S.; Mempouo, B.; Fang, W. Phase change material developments: A review. Int. J. Ambient Energy 2013, 36, 102–115. [Google Scholar] [CrossRef]
- Gonzalez−Hernandez, J.; Prokhorov, E.; Vorobiev, Y. Temperature dependence of structure and electrical properties of germanium−antimony−tellurium thin films. J. Vac. Sci. Technol. 2000, 18, 1694–1700. [Google Scholar] [CrossRef]
- Zhu, H.Q.; Li, Y.; Li, Y.M.; Huang, Y.Z.; Tong, G.X.; Fang, B.Y.; Zheng, Q.X.; Li, L.; Shen, Y. Effect of annealing on optical properties and structure of the vanadium dioxide thin films. Proc. SPIE 2012, 8418, 84181S. [Google Scholar]
- Inglesfield, J.E. The structure and phase changes of gallium. J. Phys. C Solid State Phys. 1968, 1, 1337. [Google Scholar] [CrossRef]
- Jeong, Y.G.; Bahk, Y.M.; Kim, D.S. Dynamic terahertz plasmonics enabled by phase−change materials. Adv. Opt. Mater. 2019, 8, 1900548. [Google Scholar] [CrossRef]
- Mou, N.L.; Tang, B.; Li, J.Z.; Zhang, Y.Q.; Dong, H.X.; Zhang, L. Demonstration of thermally tunable multi−Band and ultra−broadband metamaterial absorbers maintaining high efficiency during tuning process. Materials 2021, 14, 5708. [Google Scholar] [CrossRef]
- Zhang, C.; Zhou, G.; Wu, J. Active control of terahertz waves using vanadium−dioxide−embedded metamaterials. Phys. Rev. Appl. 2019, 11, 054016. [Google Scholar] [CrossRef]
- Dong, K.; Hong, S.; Deng, Y.; Ma, H.; Li, J.; Wang, X.; Yeo, J.; Wang, L.; Lou, S.; Tom, K.B.; et al. A lithography−free and field−programmable photonic metacanvas. Adv. Mater. 2018, 30, 1703878. [Google Scholar] [CrossRef]
- Seo, M.; Kyoung, J.; Park, H.; Koo, S.; Kim, H.S.; Bernien, H.; Kim, B.J.; Choe, J.H.; Ahn, Y.H.; Kim, H.T.; et al. Active terahertz nanoantennas based on VO2 phase transition. Nano Lett. 2010, 10, 2064–2068. [Google Scholar] [CrossRef]
- Jeong, Y.G.; Han, S.; Rhie, J.; Kyoung, J.S.; Choi, J.W.; Park, N.; Hong, S.; Kim, B.-J.; Kim, H.-T.; Kim, D.-S. A vanadium dioxide metamaterial disengaged from insulator−to−metal transition. Nano Lett. 2015, 15, 6318–6323. [Google Scholar] [CrossRef]
- Wang, D.C.; Zhang, L.C.; Gu, Y.H.; Mehmood, M.Q.; Gong, Y.D.; Srivastava, A.; Jian, L.K.; Venkatesan, T.; Qiu, C.W.; Hong, M.H. Switchable ultrathin quarter−wave plate in terahertz using active phase−change metasurface. Sci. Rep. 2015, 5, 15020. [Google Scholar] [CrossRef]
- Wang, S.X.; Kang, L.; Werner, D.H. Active terahertz chiral metamaterials based on phase transition of vanadium dioxide (VO2). Sci. Rep. 2018, 8, 189. [Google Scholar] [CrossRef] [Green Version]
- Jeong, Y.G.; Bernien, H.; Kyoung, J.-S.; Park, H.-R.; Kim, H.-S.; Choi, J.-W.; Kim, B.-J.; Kim, H.-T.; Ahn, K.J.; Kim, D.-S. Electrical control of terahertz nano antennas on VO2 thin film. Opt. Express 2011, 19, 21211–21215. [Google Scholar] [CrossRef] [PubMed]
- Vitale, W.A.; Tamagnone, M.; Emond, N.; Le Drogoff, B.; Capdevila, S.; Skrivervik, A.; Chaker, M.; Mosig, J.R.; Ionescu, A.M. Modulated scattering technique in the terahertz domain enabled by current actuated vanadium dioxide switches. Sci. Rep. 2017, 7, 41546. [Google Scholar] [CrossRef] [PubMed]
- Kang, T.; Ma, Z.; Qin, J.; Peng, Z.; Yang, W.; Huang, T.; Xian, S.; Xia, S.; Yan, W.; Yang, Y.; et al. Large−scale, power−efficient Au/VO2 active metasurfaces for ultrafast optical modulation. Nanophotonics 2020, 10, 909–918. [Google Scholar] [CrossRef]
- Lu, X.G.; Dong, B.W.; Zhu, H.F.; Shi, Q.W.; Tang, L.; Su, Y.D.; Zhang, C.; Huang, W.X.; Cheng, Q. Two−channel VO2 memory meta−device for terahertz waves. Nanomaterials 2021, 11, 3409. [Google Scholar] [CrossRef]
- Luo, H.; Liu, H.; Chen, C.; Feng, Y.; Gao, P.; Ren, Z.Y.; Qiao, Y.J. Dual−broadband terahertz absorber based on phase transition characteristics of VO2. Results Phys. 2022, 34, 105270. [Google Scholar] [CrossRef]
- Li, Z.; Xia, H.; Zhao, Y.F.; Lei, W.T.; Zhao, C.Y.; Xie, W.K. Polarization−insensitive and absorption−tunable ultra−broadband terahertz metamaterial absorbers based on multiple resonant rings. Results Phys. 2022, 39, 105786. [Google Scholar] [CrossRef]
- Song, Z.Y.; Zhang, J.H. Achieving broadband absorption and polarization conversion with a vanadium dioxide metasurface in the same terahertz frequencies. Opt. Express 2020, 28, 12487–12497. [Google Scholar] [CrossRef]
- Shin, J.H.; Park, K.H.; Ryu, H.C. A band−switchable and tunable THz metamaterial based on an etched vanadium dioxide thin film. Photonics 2022, 9, 89. [Google Scholar] [CrossRef]
- Sun, Z.S.; Wang, X.; Wang, J.L.; Li, H.; Lu, Y.H.; Zhang, Y. Switchable multifunctional terahertz metamaterials based on the phase−transition properties of vanadium dioxide. Micromachines 2022, 13, 1013. [Google Scholar] [CrossRef]
- Liu, X.B.; Wang, Q.; Zhang, X.Q.; Li, H.; Xu, Q.; Xu, Y.H.; Chen, X.Y.; Li, S.X.; Liu, M.; Tian, Z.; et al. Thermally dependent dynamic meta−holography using a vanadium dioxide integrated metasurface. Adv. Opt. Mater. 2019, 7, 1900175. [Google Scholar] [CrossRef]
- Du, H.T.; Jiang, M.Z.; Zeng, L.Z.; Zhang, L.H.; Xu, W.L.; Zhang, X.W.; Hu, F.R. Switchable terahertz polarization converter based on VO2 metamaterial. Chin. Phys. B 2022, 31, 064210. [Google Scholar] [CrossRef]
- Yang, C.H.; Gao, Q.G.; Dai, L.L.; Zhang, Y.L.; Zhang, H.Y.; Zhang, Y.P. Bifunctional tunable terahertz circular polarization converter based on Dirac semimetals and vanadium dioxide. Opt. Mater. Express 2020, 10, 2289–2303. [Google Scholar] [CrossRef]
- Lv, F.; Wang, L.; Xiao, Z.Y.; Chen, M.M.; Cui, Z.T.; Xu, Q.D. Asymmetric transmission polarization conversion of chiral metamaterials with controllable switches based on VO2. Opt. Mater. 2021, 114, 110667. [Google Scholar] [CrossRef]
- Hu, F.R.; Wang, H.; Zhang, X.W.; Xu, X.L.; Jiang, W.Y.; Rong, Q.; Zhao, S.; Jiang, M.Z.; Zhang, W.T.; Han, J.G. Electrically triggered tunable terahertz band−pass filter based on VO2 hybrid metamaterial. IEEE J. Sel. Top. Quantum Electron. 2019, 25, 4700207. [Google Scholar] [CrossRef]
- Shabanpour, J. Programmable anisotropic digital metasurface for independent manipulation of dual−polarized THz waves based on a voltage−controlled phase transition of VO2 microwires. J. Mater. Chem. C 2020, 8, 7189–7199. [Google Scholar] [CrossRef]
- Li, Z.L.; Wang, W.; Deng, S.X.; Qu, J.; Li, Y.X.; Lv, B.; Li, W.J.; Gao, X.; Zhu, Z.; Guan, C.Y.; et al. Active beam manipulation and convolution operation in VO(2)−integrated coding terahertz metasurfaces. Opt. Lett. 2022, 47, 441–444. [Google Scholar] [CrossRef]
- Li, J.; Yang, Y.; Li, J.N.; Zhang, Y.T.; Zhang, Z.; Zhao, H.L.; Li, F.Y.; Tang, T.T.; Dai, H.T.; Yao, J.Q. All−optical switchable vanadium dioxide integrated coding metasurfaces for wavefront and polarization manipulation of terahertz beams. Adv. Theory Simul. 2020, 3, 1900183. [Google Scholar] [CrossRef]
- Lin, Q.W.; Wong, H.; Huitema, L.; Crunteanu, A. Coding metasurfaces with reconfiguration capabilities based on optical activation of phase−change materials for terahertz beam manipulations. Adv. Opt. Mater. 2022, 10, 2101699. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Chou, J.B.; Li, J.Y.; Li, H.S.; Du, Q.Y.; Yadav, A.; Zhou, S.; Shalaginov, M.Y.; Fang, Z.R.; Zhong, H.K.; et al. Broadband transparent optical phase change materials for high−performance nonvolatile photonics. Nat. Commun. 2019, 10, 4279. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Rios, C.; Shalaginov, M.Y.; Li, M.; Majumdar, A.; Gu, T.; Hu, J.J. Myths and truths about optical phase change materials: A perspective. Appl. Phys. Lett. 2021, 118, 210501. [Google Scholar] [CrossRef]
- Wang, Q.; Rogers, E.T.F.; Gholipour, B.; Wang, C.-M.; Yuan, G.H.; Teng, J.H.; Zheludev, N.I. Optically reconfigurable metasurfaces and photonic devices based on phase change materials. Nat. Photonics 2016, 10, 60. [Google Scholar] [CrossRef]
- Kodama, C.H.; Coutu, R.A. Coutu Tunable split−ring resonators using germanium telluride. Appl. Phys. Lett. 2016, 108, 231901. [Google Scholar] [CrossRef]
- Gholipour, B.; Piccinotti, D.; Karvounis, A.; MacDonald, K.F.; Zheludev, N.I. Reconfigurable ultraviolet and high−energy−visible dielectric metamaterials. Nano Lett. 2019, 19, 1643–1648. [Google Scholar] [CrossRef] [PubMed]
- Pitchappa, P.; Kumar, A.; Prakash, S.; Jani, H.; Venkatesan, T.; Singh, R. Chalcogenide phase change material for active terahertz photonics. Adv. Mater. 2019, 31, 1808157. [Google Scholar] [CrossRef]
- Chen, J.J.; Chen, X.Y.; Liu, K.; Zhang, S.J.; Cao, T.; Tian, Z. A thermally switchable bifunctional metasurface for broadband polarization conversion and absorption based on phase−change material. Adv. Photonics Res. 2022, 3, 2100369. [Google Scholar] [CrossRef]
- Bao, J.X.; Chen, X.Y.; Liu, K.; Zhan, Y.; Li, H.Y.; Zhang, S.J.; Xu, Y.H.; Tian, Z.; Cao, T. Nonvolatile chirality switching in terahertz chalcogenide metasurfaces. Microsyst. Nanoeng. 2022, 8, 112. [Google Scholar] [CrossRef]
- Yang, F.; An, S.S.; Shalaginov, M.Y.; Zhang, H.L.; Rivero−Baleine, C.; Hu, J.J.; Gu, T. Design of broadband and wide−field−of−view metalenses. Opt. Lett. 2021, 46, 5735–5738. [Google Scholar] [CrossRef]
- Guo, L.Y.; Ma, X.H.; Chang, Z.P.; Xu, C.L.; Jun, L.; Ran, Z. Tunable a temperature−dependent GST−based metamaterial absorber for switching and sensing applications. J. Mater. Res. Technol. 2021, 14, 772–779. [Google Scholar]
- Xu, H.B. Design, simulation, and measurement of a multiband tunable metamaterial filter. Opt. Mater. 2022, 127, 112253. [Google Scholar]
- Wuttig, M.; Bhaskaran, H.; Taubner, T. Phase−change materials for non−volatile photonic applications. Nat. Photonics 2017, 11, 465–476. [Google Scholar] [CrossRef]
- Zhou, Z.; Li, W.; Qian, J.; Liu, W.; Wang, Y.; Zhang, X.; Guo, Q.; Yashchyshyn, Y.; Wang, Q.; Shi, Y.; et al. Flexible liquid crystal polymer technologies from microwave to Terahertz frequencies. Molecules 2022, 27, 1336. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, B.; Li, Z.; Wang, Y.; Guo, Q.; Liu, W.; Yashchyshyn, Y.; Song, A.; Zhang, Y. Frequency division multiplexer with directional filters in multilayer LCP films at E− and W−band. IEEE Microw. Wireless Compon. Lett. 2022, 32, 1287–1290. [Google Scholar] [CrossRef]
- Auton, G.; But, D.B.; Zhang, J.; Hill, E.; Coquillat, D.; Consejo, C.; Nouvel, P.; Knap, W.; Varani, L.; Teppe, F.; et al. Terahertz detection and imaging using graphene ballistic rectifiers. Nano Lett. 2017, 17, 7015–7020. [Google Scholar] [CrossRef]
- Auton, G.; Zhang, J.; Kumar, R.K.; Wang, H.; Zhang, X.; Wang, Q.; Hill, E.; Song, A. Graphene ballistic nano−rectifier with very high responsivity. Nat. Commun. 2016, 7, 11670. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, C.; Ma, J.; Chen, K.; Wang, X.; Sun, T.; Wang, Q.; Zhang, X.; Zhang, Y. Active and Programmable Metasurfaces with Semiconductor Materials and Devices. Crystals 2023, 13, 279. https://doi.org/10.3390/cryst13020279
Cui C, Ma J, Chen K, Wang X, Sun T, Wang Q, Zhang X, Zhang Y. Active and Programmable Metasurfaces with Semiconductor Materials and Devices. Crystals. 2023; 13(2):279. https://doi.org/10.3390/cryst13020279
Chicago/Turabian StyleCui, Can, Junqing Ma, Kai Chen, Xinjie Wang, Tao Sun, Qingpu Wang, Xijian Zhang, and Yifei Zhang. 2023. "Active and Programmable Metasurfaces with Semiconductor Materials and Devices" Crystals 13, no. 2: 279. https://doi.org/10.3390/cryst13020279
APA StyleCui, C., Ma, J., Chen, K., Wang, X., Sun, T., Wang, Q., Zhang, X., & Zhang, Y. (2023). Active and Programmable Metasurfaces with Semiconductor Materials and Devices. Crystals, 13(2), 279. https://doi.org/10.3390/cryst13020279