Quantum Behaviour of Mg and Mg-Al-Zn Microstructure
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussions
3.1. Band Structure
3.1.1. Brillouin Zone
3.1.2. Band Gap
3.1.3. DOS
3.2. HOMO–LUMO Analysis
3.3. Corrosion Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Garrison, S.R.; Korownyk, C.S.; Kolber, M.R.; Allan, G.M.; Musini, V.M.; Sekhon, R.K.; Dugré, N. Magnesium for skeletal muscle cramps. Cochrane Database Syst. Rev. 2020, 9, 21. [Google Scholar] [CrossRef]
- Byun, S.-H.; Lim, H.-K.; Cheon, K.-H.; Lee, S.-M.; Kim, H.-E.; Lee, J.-H. Biodegradable magnesium alloy (WE43) in bone-fixation plate and screw. J. Biomed. Mater. Res. Part B Appl. Biomater. 2020, 108, 2505–2512. [Google Scholar] [CrossRef] [Green Version]
- Dehghan, S.F.; Golbabaei, F.; Mousavi, T.; Mohammadi, H.; Kohneshahri, M.H.; Bakhtiari, R. Production of Nanofibers Containing Magnesium Oxide Nanoparticles for the Purpose of Bioaerosol Removal. Pollution 2020, 6, 185–196. [Google Scholar] [CrossRef]
- Vanoni, F.; Milani, G.; Agostoni, C.; Treglia, G.; Faré, P.; Camozzi, P.; Lava, S.; Bianchetti, M.; Janett, S. Magnesium metabolism in chronic alcohol-use disorder: Meta-analysis and systematic review. Nutrients 2021, 13, 1959. [Google Scholar] [CrossRef] [PubMed]
- Wan, Y.; Tang, B.; Gao, Y.; Tang, L.; Sha, G.; Zhang, B.; Liang, N.; Liu, C.; Jiang, S.; Chen, Z.; et al. Bulk nanocrystalline high-strength magnesium alloys prepared via rotary swaging. Acta Mater. 2020, 200, 274–286. [Google Scholar] [CrossRef]
- Xin, T.; Zhao, Y.; Mahjoub, R.; Jiang, J.; Yadav, A.; Nomoto, K.; Niu, R.; Tang, S.; Ji, F.; Quadir, Z.; et al. Ultrahigh specific strength in a magnesium alloy strengthened by spinodal decomposition. Sci. Adv. 2021, 23, 7. [Google Scholar] [CrossRef]
- Al-Amiery, A.; Salman, T.A.; Alazawi, K.F.; Shaker, L.M.; Kadhum, A.A.H.; Takriff, M.S. Quantum chemical elucidation on corrosion inhibition efficiency of Schiff base: DFT investigations supported by weight loss and SEM techniques. Int. J. Low Carbon Technol. 2019, 15, 202–209. [Google Scholar] [CrossRef] [Green Version]
- Javaid, A.; Czerwinski, F. Progress in twin roll casting of magnesium alloys: A review. J. Magnes. Alloy. 2021, 9, 362–391. [Google Scholar] [CrossRef]
- Weiler, J.P. Exploring the concept of castability in magnesium die-casting alloys. J. Magnes. Alloy 2021, 9, 102–111. [Google Scholar] [CrossRef]
- Luo, Y.; Deng, Y.; Guan, L.; Ye, L.; Guo, X. The microstructure and corrosion resistance of as-extruded Mg-6Gd-2Y-(0–1.5) Nd-0.2Zr alloys. Mater. Des. 2020, 186, 108289. [Google Scholar] [CrossRef]
- Song, G.L. Corrosion behavior and prevention strategies for magnesium (Mg) alloys. In Corrosion Prevention of Magnesium Alloys; Woodhead Publishing Series in Metals and Surface Engineering; Woodhead Publishing: Sawston, UK, 2013; pp. 3–37. [Google Scholar] [CrossRef]
- Shi, Y.; Peng, C.; Feng, Y.; Wang, R.; Wang, N. Microstructure and electrochemical corrosion behavior of extruded Mg–Al–Pb–La alloy as anode for seawater-activated battery. Mater. Des. 2017, 124, 24–33. [Google Scholar] [CrossRef] [Green Version]
- Prasad, S.V.S.; Verma, K.; Mishra, R.K.; Kumar, V.; Singh, S. The role and significance of Magnesium in modern day research—A review. J. Magnes. Alloy. 2021, 10, 1–61. [Google Scholar] [CrossRef]
- Aziz, I.A.A.; Abdulkareem, M.H.; Annon, I.A.; Hanoon, M.M.; Alkaabi, M.H.; Shaker, L.M.; Al-Amiery, A.A.; Kadhum, A.A.H. Corrosion inhibition potential of a new corrosion inhibitor for mild steel in 1 M hydrochloric acid solution determined by weight loss technique, complemented with adsorption studies and DFT calculations. Int. J. Corros. Scale Inhib. 2022, 11, 64–81. [Google Scholar]
- Li, X.; Yu, Q.; Chen, X.; Zhang, Q. Microstructures and electrochemical behaviors of casting magnesium alloys with enhanced compression strengths and decomposition rates. J. Magnes. Alloy. 2021, in press. [Google Scholar] [CrossRef]
- Mokhtar, M.; Talib, M.Z.M.; Majlan, E.H.; Tasirin, S.M.; Ramli, W.M.F.W.; Daud, W.R.W.; Sahari, J. Recent developments in materials for aluminum–air batteries: A review. J. Ind. Eng. Chem. 2015, 32, 1–20. [Google Scholar] [CrossRef]
- Basri, S.; Hazri, N.S.; Selladurai, S.R.; Zainoodin, A.M.; Kamarudin, S.K.; Zakaria, S.U.; Hashim, A.R. Analysis of Mg(OH)2 Deposition for Magnesium Air Fuel Cell (MAFC) by Saline Water. Sains Malays. 2020, 49, 3051–3061. [Google Scholar] [CrossRef]
- Würger, T.; Feiler, C.; Vonbun-Feldbauer, G.B.; Zheludkevich, M.L.; Meißner, R.H. A First-Principle’s analysis of the charge transfer in magnesium corrosion. Sci. Rep. 2020, 10, 15006. [Google Scholar] [CrossRef]
- Nezafati, M.; Cho, K.; Giri, A.; Kim, C.-S. DFT study on the water molecule adsorption and the surface dissolution behavior of Mg alloys. Mater. Chem. Phys. 2016, 182, 347–358. [Google Scholar] [CrossRef]
- Nezafati, M. Density Functional Theory (DFT) Study on the Hydrolysis Behavior of Degradable Mg/Mg Alloys for Biomedical Applications. Master’s Thesis, Harvard University, Cambridge, MA, USA, 2013; p. 237. [Google Scholar]
- Ma, H.; Chen, L.J.; Guo, L.Q.; Leng, L.; Lin, L. First-principles calculation of Al-Cu-Mg alloy strengthening phase. Adv. Mater. Res. 2015, 1096, 109–113. [Google Scholar] [CrossRef]
- Zhou, L.; Su, K.; Wang, Y.; Zeng, Q.; Li, Y. First-principles study of the properties of Li, Al and Cd doped Mg alloys. J. Alloys Compd. 2014, 596, 63–68. [Google Scholar] [CrossRef]
- Carrasco, J.; Hodgson, A.; Michaelides, A. A molecular perspective of water at metal interfaces. Nat. Mater. 2012, 11, 667–674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.; Schusteritsch, G.; Pickard, C.J.; Salzmann, C.G.; Michaelides, A. Two-dimensional ice from first principles: Structures and phase transitions. Phys. Rev. Lett. 2016, 116, 025501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kolb, M.J.; Wermink, J.; Calle-Vallejo, F.; Juurlink, L.B.; Koper, M.T. Initial stages of water solvation of stepped platinum surfaces. Phys. Chem. Chem. Phys. 2016, 18, 3416–3422. [Google Scholar] [CrossRef] [Green Version]
- Kolb, M.J.; Calle-Vallejo, F.; Juurlink, L.B.; Koper, M.T. Density functional theory study of adsorption of H2O, H, O, and OH on stepped platinum surfaces. J. Chem. Phys. 2014, 140, 134708. [Google Scholar] [CrossRef]
- Calle-Vallejo, F.; Martínez, J.I.; García-Lastra, J.M.; Sautet, P.; Loffreda, D. Fast prediction of adsorption properties for platinum nanocatalysts with generalised coordination numbers. Angew. Chem. Int. Ed. 2014, 53, 8316–8319. [Google Scholar] [CrossRef]
- Pekoz, R.; Wörner, S.; Ghiringhelli, L.M.; Donadio, D. Trends in the adsorption and dissociation of water clusters on flat and stepped metallic surfaces. J. Phys. Chem. C 2014, 118, 29990–29998. [Google Scholar] [CrossRef]
- Greeley, J.; Nørskov, J.K. Electrochemical dissolution of surface alloys in acids: Thermodynamic trends from first-principles calculations. Electrochim. Acta 2007, 52, 5829–5836. [Google Scholar] [CrossRef]
- Strasser, P.; Koh, S.; Greeley, J. Voltammetric surface dealloying of Pt bimetallic nanoparticles: An experimental and DFT computational analysis. Phys. Chem. Chem. Phys. 2008, 10, 3670–3683. [Google Scholar] [CrossRef]
- Materials Project. 2022. Available online: https://materialsproject.org/materials/mp-153/ (accessed on 5 September 2022).
- Gotsis, H.J.; Papaconstantopoulos, D.A.; Mehl, M.J. Tight-binding calculations of the band structure and total energies of the various phases of magnesium. Phys. Rev. B 2002, 65, 134101. [Google Scholar] [CrossRef]
- Deng, M.; Höche, D.; Lamaka, S.V.; Wang, L.; Zheludkevich, M.L. Revealing the impact of second phase morphology on discharge properties of binary Mg-Ca anodes for primary Mg-air batteries. Corros. Sci. 2019, 153, 225–235. [Google Scholar] [CrossRef]
- Canney, S.A.; Sashin, V.A.; Ford, M.J.; Kheifets, A.S. Electronic band structure of magnesium and magnesium oxide: Experiment and theory. J. Phys. Condens. Matter 1999, 11, 7507–7522. [Google Scholar] [CrossRef]
- Mahjoub, R.; Stanford, N. The electronic origins of the “rare earth” texture effect in magnesium alloys. Sci. Rep. 2021, 11, 14159. [Google Scholar] [CrossRef]
- Fu, C.L.; Wang, X.D.; Ye, Y.Y.; Ho, K.M. Phase stability, bonding mechanism, and elastic constants of Mo5Si3 by first-principles calculation. Intermetallics 1999, 7, 179–184. [Google Scholar] [CrossRef]
- Feiler, C.; Mei, D.; Vaghefinazari, B.; Würger, T.; Meißner, R.H.; Luthringer-Feyerabend, B.J.C.; Winkler, D.A.; Zheludkevich, M.L.; Lamaka, S.V. In Silico screening of modulators of magnesium dissolution. Corros. Sci. 2020, 163, 108245. [Google Scholar] [CrossRef]
- Kaseem, M.; Zehra, T.; Dikici, B.; Dafali, A.; Yang, H.W.; Ko, Y.G. Improving the electrochemical stability of AZ31 Mg alloy in a 3.5wt.% NaCl solution via the surface functinalisation of plasma electrolytic oxidation coating. J. Magnes. Alloy. 2022, 10, 1311–1325. [Google Scholar] [CrossRef]
- Jiang, Y.; Liu, Y.; Gao, S.; Guo, X.; Zhang, J. Experimental and theoretical studies on corrosion inhibition behavior of three imidazolium-based ionic liquids for magnesium alloys in sodium chloride solution. J. Mol. Liq. 2022, 345, 116998. [Google Scholar] [CrossRef]
- Nylén, J.; Garcia, F.J.; Mosel, B.D.; Põttgen, R.; Hãussermann, U. Structural relationships, phase stability and bonding of compounds PdSnn (n = 2, 3, 4). Solid State Sci. 2004, 6, 147–155. [Google Scholar] [CrossRef]
- Song, G.; Atrens, A. Understanding magnesium corrosion. A framework for improved alloy performance. Adv. Eng. Mater. 2003, 5, 837–858. [Google Scholar] [CrossRef]
- Deng, M.; Wang, R.-C.; Feng, Y.; Wang, N.-G.; Wang, L.-Q. Corrosion and discharge performance of Mg–9%Al–2.5%Pb alloy as anode for seawater activated battery. Trans. Nonferr. Met. Soc. China 2016, 26, 2144–2151. [Google Scholar] [CrossRef]
- Kim, J.H.; An, B.M.; Lim, D.H.; Park, J.Y. Electricity production and phosphorous recovery as struvite from synthetic wastewater using magnesium-air fuel cell electrocoagulation. Water Res. 2018, 132, 200–210. [Google Scholar] [CrossRef] [PubMed]
- Song, G.L. (Ed.) Corrosion electrochemistry of magnesium (Mg) and its alloys. In Corrosion of Magnesium Alloys; Woodhead Pub: Oxford, UK; Philadelphia, PA, USA, 2011; pp. 3–65. [Google Scholar] [CrossRef]
- Zainal, M.H.B.; Wun Fui, M.-L.; Tahir, S.M.; Ishak, B.A.; Kassim, M.B. Experimental and DFT Investigation on the Influence of Electron Donor/Acceptor on the Hydrogen Bonding Interactions of 1-(1,3-Benzothiazol-2-Yl)-3-(R-Benzoylthiourea). Sains Malays. 2018, 47, 921–927. [Google Scholar]
- Zhao, C.Z.; Wei, T.; Chen, L.Y.; Wang, S.S.; Wang, J. The activation energy for Mg acceptor in AlxGa1-xN alloys in the whole composition range. Superlattices Microstruct. 2017, 109, 758–762. [Google Scholar] [CrossRef]
- Nezafati, M.; Sohn, I.; Ferguson, J.; Park, J.; Cho, K.; Kim, C. DFT study on the adsorption and absorption behaviors of liquid nitrogen in the MG Nano alloys synthesized from powder metallurgy. Comput. Mater. Sci. 2015, 105, 18–26. [Google Scholar] [CrossRef]
Mg | Mg-Al-Zn | Mg-Al-Zn* | Mg-Al-Zn** | |
---|---|---|---|---|
EHOMO (eV) | −2.897 | −2.771 | −2.918 | −2.924 |
HOMO Diagram | ||||
ELUMO (eV) | −2.588 | −2.484 | −2.499 | −2.634 |
LUMO Diagram | ||||
ELUMO - EHOMO (eV) | 0.309 | 0.287 | 0.419 | 0.290 |
Global Reactivity | Mg | Mg-Al-Zn | Mg-Al-Zn* | Mg-Al-Zn** |
---|---|---|---|---|
Chemical potential (μ), (eV) | 2.74 | 2.63 | 2.71 | 2.78 |
Hardness (η), (eV) | −0.15 | −0.14 | −0.21 | −0.15 |
Softness (s), (eV−1) | −3.24 | −3.48 | −2.39 | −3.45 |
Electronegativity (χ), (eV) | −2.74 | −2.63 | −2.71 | −2.78 |
Electrophilicity index (ω), (eV) | −24.34 | −24.05 | −17.51 | −26.63 |
Mg | Mg-Al-Zn | Mg-Al-Zn* | Mg-Al-Zn** | |
---|---|---|---|---|
Reactant | ||||
(a) | (b) | (c) | (d) | |
Product | ||||
(e) | (f) | (g) | (h) | |
Transition State | ||||
(i) | (j) | (k) | (l) |
Component | Reactant Energy (eV) | Transition State Energy (eV) | Product Energy (eV) | Activation Energy (eV) | Activation Energy (KJ/mol) |
---|---|---|---|---|---|
Mg | 200,040.65 | 200,047.91 | 200,045.41 | 2.50 | 241.20 |
Mg-Al-Zn | 245,335.26 | 245,342.53 | 245,340.71 | 1.82 | 175.60 |
Mg-Al-Zn* | 245,320.15 | 245,326.91 | 245,322.68 | 4.23 | 416.84 |
Mg-Al-Zn** | 245,334.90 | 245,343.47 | 245,340.09 | 3.38 | 326.12 |
Surface Planes | Components | Surface Energies (KJ/mol) [42] | Components | Activation Energy (KJ/mol) |
---|---|---|---|---|
Basal (0001) | Mg Mg-Al Mg-Zn Mg-Y | 33.02 31.07 31.46 31.51 | None Mg-Al-Zn Mg-Al-Zn* Mg-Al-Zn** | 241.20 175.60 416.84 326.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Basri, S.; Zulkifli, M.E.; Hazri, N.S.; Kamarudin, S.K. Quantum Behaviour of Mg and Mg-Al-Zn Microstructure. Crystals 2023, 13, 501. https://doi.org/10.3390/cryst13030501
Basri S, Zulkifli ME, Hazri NS, Kamarudin SK. Quantum Behaviour of Mg and Mg-Al-Zn Microstructure. Crystals. 2023; 13(3):501. https://doi.org/10.3390/cryst13030501
Chicago/Turabian StyleBasri, Sahriah, Mohd Ezhar Zulkifli, Nurul Shahzira Hazri, and Siti Kartom Kamarudin. 2023. "Quantum Behaviour of Mg and Mg-Al-Zn Microstructure" Crystals 13, no. 3: 501. https://doi.org/10.3390/cryst13030501
APA StyleBasri, S., Zulkifli, M. E., Hazri, N. S., & Kamarudin, S. K. (2023). Quantum Behaviour of Mg and Mg-Al-Zn Microstructure. Crystals, 13(3), 501. https://doi.org/10.3390/cryst13030501