Comparison of Corrosion Behavior of WE43 and AZ80 Alloys in NaCl and Na2SO4 Solutions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Immersion Test
2.3. Microstructure Characterizations
2.4. Hydrogen Evolution
2.5. Electrochemical Measurements
3. Results and Discussion
3.1. Microstructure Characterization
3.2. Immersion Tests
3.2.1. Surfaces Characterization
3.2.2. Cross-Section Morphology Characterization
3.3. Hydrogen Evolution and Weight Loss Measurements
3.4. Electrochemical Measurements Results
3.4.1. Potential Dynamic Polarization Curves
3.4.2. EIS Test
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chu, P.-W.; Marquis, E.A. Linking the microstructure of a heat-treated WE43 Mg alloy with its corrosion behavior. Corros. Sci. 2015, 101, 94–104. [Google Scholar] [CrossRef]
- Jin, W.; Wu, G.; Feng, H.; Wang, W.; Zhang, X.; Chu, P.K. Improvement of corrosion resistance and biocompatibility of rare-earth WE43 magnesium alloy by neodymium self-ion implantation. Corros. Sci. 2015, 94, 142–155. [Google Scholar] [CrossRef]
- Gneiger, S.; Papenberg, N.; Frank, S.; Gradinger, R. Investigations on Microstructure and Mechanical Properties of Non-flammable Mg–Al–Zn–Ca–Y Alloys. In Magnesium Technology 2018; The Minerals, Metals & Materials Series; Springer: Berlin, Germany, 2018; pp. 105–113. [Google Scholar]
- Esmaily, M.; Svensson, J.E.; Fajardo, S.; Birbilis, N.; Frankel, G.S.; Virtanen, S.; Arrabal, R.; Thomas, S.; Johansson, L.G. Fundamentals and advances in magnesium alloy corrosion. Prog. Mater. Sci. 2017, 89, 92–193. [Google Scholar] [CrossRef]
- Pan, F.S.; Yang, M.B.; Ma, Y.L. Development of New Types of Magnesium Alloys Containing Sr or RE Elements. Mater. Sci. Forum 2007, 561–565, 191–197. [Google Scholar] [CrossRef]
- Cheng, C.; Lan, Q.; Liao, Q.; Le, Q.; Li, X.; Chen, X.; Cui, J. Effect of Ca and Gd combined addition on ignition temperature and oxidation resistance of AZ80. Corros. Sci. 2019, 160, 108176. [Google Scholar] [CrossRef]
- Cheng, C.; Li, X.; Le, Q.; Guo, R.; Lan, Q.; Cui, J. Effect of REs (Y, Nd) addition on high temperature oxidation kinetics, oxide layer characteristic and activation energy of AZ80 alloy. J. Magnes. Alloy 2020, 8, 1281–1295. [Google Scholar] [CrossRef]
- Ubeda, C.; Garces, G.; Adeva, P.; Llorente, I.; Frankel, G.S.; Fajardo, S. The role of the beta-Mg17Al12 phase on the anomalous hydrogen evolution and anodic dissolution of AZ magnesium alloys. Corros. Sci. 2020, 165. [Google Scholar] [CrossRef]
- Wang, L.; Shinohara, T.; Zhang, B.-P.; Iwai, H. Characterization of surface products on AZ31 magnesium alloy in dilute NaCl solution. J. Alloys Compd. 2009, 485, 747–752. [Google Scholar] [CrossRef]
- Pardo, A.; Merino, M.C.; Coy, A.E.; Arrabal, R.; Viejo, F.; Matykina, E. Corrosion behaviour of magnesium/aluminium alloys in 3.5wt.% NaCl. Corros. Sci. 2008, 50, 823–834. [Google Scholar] [CrossRef]
- Sanchez, C.; Nussbaum, G.; Azavant, P.; Octor, H. Elevated temperature behaviour of rapidly solidified magnesium alloys containing rare earths. Mater. Sci. Eng. A 1996, 221, 48–57. [Google Scholar] [CrossRef]
- Liu, L.J.; Schlesinger, M. Corrosion of magnesium and its alloys. Corros. Sci. 2009, 51, 1733–1737. [Google Scholar] [CrossRef]
- Zucchi, F.; Grassi, V.; Frignani, A.; Monticelli, C.; Trabanelli, G. Electrochemical behaviour of a magnesium alloy containing rare earth elements. J. Appl. Electrochem. 2005, 36, 195–204. [Google Scholar] [CrossRef]
- Mościcki, A.; Chmiela, B.; Sozańska, M. Corrosion of WE43 and AE44 Magnesium Alloys in Sodium Sulfate Solution. Solid State Phenom. 2015, 227, 91–94. [Google Scholar] [CrossRef]
- Knapek, M.; Minárik, P.; Čapek, J.; Král, R.; Kubásek, J.; Chmelík, F. Corrosion of pure magnesium and a WE43 magnesium alloy studied by advanced acoustic emission analysis. Corros. Sci. 2018, 145, 10–15. [Google Scholar] [CrossRef]
- Cao, F.; Zheng, D.; Song, G.-L.; Shi, Z.; Atrens, A. The Corrosion Behavior of Mg5Y in Nominally Distilled Water. Adv. Eng. Mater. 2018, 20, 1700986. [Google Scholar] [CrossRef]
- Kharitonov, D.S.; Zimowska, M.; Ryl, J.; Zieliński, A.; Osipenko, M.A.; Adamiec, J.; Wrzesińska, A.; Claesson, P.M.; Kurilo, I.I. Aqueous molybdate provides effective corrosion inhibition of WE43 magnesium alloy in sodium chloride solutions. Corros. Sci. 2021, 190, 109664. [Google Scholar] [CrossRef]
- Wang, S.D.; Xu, D.K.; Chen, X.B.; Han, E.H.; Dong, C. Effect of heat treatment on the corrosion resistance and mechanical properties of an as-forged Mg–Zn–Y–Zr alloy. Corros. Sci. 2015, 92, 228–236. [Google Scholar] [CrossRef]
- Wang, S.D.; Xu, D.K.; Wang, B.J.; Sheng, L.Y.; Qiao, Y.X.; Han, E.-H.; Dong, C. Influence of phase dissolution and hydrogen absorption on the stress corrosion cracking behavior of Mg-7%Gd-5%Y-1%Nd-0.5%Zr alloy in 3.5 wt.% NaCl solution. Corros. Sci. 2018, 142, 185–200. [Google Scholar] [CrossRef]
- Wang, S.D.; Xu, D.K.; Wang, B.J.; Sheng, L.Y.; Han, E.H.; Dong, C. Effect of solution treatment on stress corrosion cracking behavior of an as-forged Mg-Zn-Y-Zr alloy. Sci. Rep. 2016, 6, 29471. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.D.; Xu, D.K.; Wang, B.J.; Han, E.H.; Dong, C. Effect of solution treatment on the fatigue behavior of an as-forged Mg-Zn-Y-Zr alloy. Sci. Rep. 2016, 6, 23955. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.D.; Xu, D.K.; Wang, B.J.; Han, E.H.; Dong, C. Effect of corrosion attack on the fatigue behavior of an as-cast Mg–7%Gd–5%Y–1%Nd–0.5%Zr alloy. Mater. Des. 2015, 84, 185–193. [Google Scholar] [CrossRef]
- Kalb, H.; Rzany, A.; Hensel, B. Impact of microgalvanic corrosion on the degradation morphology of WE43 and pure magnesium under exposure to simulated body fluid. Corros. Sci. 2012, 57, 122–130. [Google Scholar] [CrossRef]
- Feng, B.; Liu, G.; Yang, P.; Huang, S.; Qi, D.; Chen, P.; Wang, C.; Du, J.; Zhang, S.; Liu, J. Different role of second phase in the micro-galvanic corrosion of WE43 Mg alloy in NaCl and Na2SO4 solution. J. Magnes. Alloy 2021, 10, 1598–1608. [Google Scholar] [CrossRef]
- Liu, J.; Song, Y.; Shan, D.; Han, E.-H. Different Microgalvanic Corrosion Behavior of Cast and Extruded EW75 Mg Alloys. J. Electrochem. Soc. 2016, 163, C856–C863. [Google Scholar] [CrossRef] [Green Version]
- Unocic, K.A.; Elsentriecy, H.H.; Brady, M.P.; Meyer, H.M.; Song, G.L.; Fayek, M.; Meisner, R.A.; Davis, B. Transmission Electron Microscopy Study of Aqueous Film Formation and Evolution on Magnesium Alloys. J. Electrochem. Soc. 2014, 161, C302–C311. [Google Scholar] [CrossRef]
- Burduhos-Nergis, D.P.; Vizureanu, P.; Sandu, A.V.; Bejinariu, C. Phosphate Surface Treatment for Improving the Corrosion Resistance of the C45 Carbon Steel Used in Carabiners Manufacturing. Materials 2020, 13, 3410. [Google Scholar] [CrossRef]
- Yu, S.; Jia, R.-L.; Zhang, T.; Wang, F.-H.; Hou, J.; Zhang, H.-X. Effect of Different Scale Precipitates on Corrosion Behavior of Mg–10Gd–3Y–0.4Zr Alloy. Acta Metall. Sin. 2018, 32, 433–442. [Google Scholar] [CrossRef] [Green Version]
WE43 | Gd | Y | Nd | Zr |
---|---|---|---|---|
wt.% | 1.55 | 3.79 | 2.43 | 0.5 |
AZ80 | Al | Zn | Mn |
---|---|---|---|
wt.% | 8.5 | 0.4 | 0.2 |
Solution | Ecorr (VSCE) | icorr (μA·cm−2) | ba (mV/dec) | bc (−mV/dec) | Rp (Ω·cm2) | Pi (mm/Year) |
---|---|---|---|---|---|---|
NaCl | −1.581 | 12.21 | 153.6 | 203.4 | 22.31 | 2.762 |
Na2SO4 | −1.664 | 12.18 | 187.7 | 196.5 | 149.42 | 2.755 |
Solution | Ecorr (VSCE) | icorr (μA·cm−2) | ba (mV/dec) | bc (−mV/dec) | Rp (Ω·cm2) | Pi (mm/Year) |
---|---|---|---|---|---|---|
NaCl | −1.721 | 65.91 | 135.5 | 189.6 | 3.12 | 1.491 |
Na2SO4 | −1.823 | 50.33 | 156.7 | 178.3 | 11.16 | 1.138 |
Alloy | Solution | Rs | Qdl | ndl | Rct | Qf | nf | Rf |
---|---|---|---|---|---|---|---|---|
Ω·cm2 | μS·cm−2·S−1 | Ω·cm2 | μS·cm−2·S−1 | Ω·cm2 | ||||
AZ80 | Na2SO4 | 0.89 | 6.45 × 10−6 | 0.98 | 1689 | 6.47 × 10−4 | 0.86 | 2155 |
NaCl | 0.51 | 3.67 × 10−4 | 0.99 | 202.1 | 6.40 × 10−6 | 0.98 | 820 | |
WE43 | Na2SO4 | 3.99 | 1.11 × 10−5 | 0.96 | 764.1 | 2.55 × 10−3 | 0.88 | 311 |
NaCl | 0.81 | 6.42 × 10−4 | 0.86 | 171.6 | 9.27 × 10−6 | 0.95 | 363 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Zhao, Y.; Liu, J.; Xu, J.; Guo, D.; Zhang, H.; Zhou, X.; Yang, P.; Zhang, S. Comparison of Corrosion Behavior of WE43 and AZ80 Alloys in NaCl and Na2SO4 Solutions. Crystals 2023, 13, 506. https://doi.org/10.3390/cryst13030506
Li C, Zhao Y, Liu J, Xu J, Guo D, Zhang H, Zhou X, Yang P, Zhang S. Comparison of Corrosion Behavior of WE43 and AZ80 Alloys in NaCl and Na2SO4 Solutions. Crystals. 2023; 13(3):506. https://doi.org/10.3390/cryst13030506
Chicago/Turabian StyleLi, Chenxu, Yuming Zhao, Jinhui Liu, Jilei Xu, Dong Guo, Huanghua Zhang, Xianghong Zhou, Peixu Yang, and Shaojun Zhang. 2023. "Comparison of Corrosion Behavior of WE43 and AZ80 Alloys in NaCl and Na2SO4 Solutions" Crystals 13, no. 3: 506. https://doi.org/10.3390/cryst13030506
APA StyleLi, C., Zhao, Y., Liu, J., Xu, J., Guo, D., Zhang, H., Zhou, X., Yang, P., & Zhang, S. (2023). Comparison of Corrosion Behavior of WE43 and AZ80 Alloys in NaCl and Na2SO4 Solutions. Crystals, 13(3), 506. https://doi.org/10.3390/cryst13030506