Nucleation of L12-Al3M (M = Sc, Er, Y, Zr) Nanophases in Aluminum Alloys: A First-Principles ThermodynamicsStudy
Abstract
:1. Introduction
2. Computational Methods
3. Results and Discussion
3.1. Nucleation of Binary L12-Al3M Phases
3.2. Nucleation and Stability of Multicomponent L12-Al3M Phases
4. Conclusions
- (1)
- The critical radius and nucleation work of the L12-Al3M precipitate phase were as follows: Al3Er > Al3Y > Al3Sc > Al3Zr. The Al3Zr phase was the easiest to nucleate in thermodynamics, while the nucleation of the Al3Y and Al3Er phases were relatively difficult in thermodynamics.
- (2)
- Various structures of Al3(Y, Zr) phases with the radius r < 1 nm can coexist in Al-Y-Zr alloys. At a precipitate’s radius of 1–10 nanometers, the core–shelled Al3Zr(Y) phase illustrated the highest nucleation energy, while the separated structure, Al3Zr/Al3Y, obtained the lowest one, and had thermodynamic advantages in the nucleation process.
- (3)
- Core–double-shelled Al3Zr/Er(Y) obtained a lower nucleation energy than that of Al3Zr(Y) due to the negative ΔGchem of Al3Er and the negative Al3Er/Al3Y interface energy, and preferentially precipitated in thermodynamics stability.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, L.; Xu, G.; Deng, Y.; Yu, Q.; Li, G.; Zhang, L.; Liu, B.; Fu, L.; Pan, Q. Existing form of Sc in metal-inert gas welded Al-0.60 Mg-0.75 Si alloy and its role in welding strength. Mater. Charact. 2023, 197, 112649. [Google Scholar] [CrossRef]
- Ye, J.; Pan, Q.; Liu, B.; Hu, Q.; Qu, L.; Wang, W.; Wang, X. Effects of co-addition of minor Sc and Zr on aging precipitates and mechanical properties of Al-Zn-Mg-Cu alloys. J. Mater. Res. Technol. 2023, 22, 2944–2954. [Google Scholar] [CrossRef]
- Deng, P.; Mo, W.; Ouyang, Z.; Tang, C.; Luo, B.; Bai, Z. Mechanical properties and corrosion behaviors of (Sc, Zr) modified Al-Cu-Mg alloy. Mater. Charact. 2022, 196, 112619. [Google Scholar] [CrossRef]
- Zha, M.; Tian, T.; Jia, H.L.; Zhang, H.M.; Wang, H.Y. Sc/Zr ratio-dependent mechanisms of strength evolution and microstructural thermal stability of multi-scale hetero-structured Al–Mg–Sc–Zr alloys. J. Mater.Sci. Technol. 2023, 140, 67–78. [Google Scholar] [CrossRef]
- De Luca, A.; Seidman, D.N.; Dunand, D.C. Effects of Mo and Mn microadditions on strengthening and over-homogenization resistance of nanoprecipitation-strengthened Al-Zr-Sc-Er-Si alloys. Acta Mater. 2019, 165, 1–14. [Google Scholar] [CrossRef]
- Booth-Morrison, C.; Mao, Z.; Diaz, M.; Dunand, D.C.; Wolverton, C.; Seidman, D.N. Role of silicon in accelerating the nucleation of Al3(Sc, Zr) precipitates in dilute Al-Sc-Zr alloys. Acta Mater. 2012, 60, 4740–4752. [Google Scholar] [CrossRef]
- Senkov, O.N.; Shagiev, M.R.; Senkova, S.V.; Miracle, D.B. Precipitation of Al3(Sc, Zr) particles in an Al-Zn-Mg-Cu-Sc-Zr alloy during conventional solution heat treatment and its effect on tensile properties. Acta Mater. 2008, 56, 3723–3738. [Google Scholar] [CrossRef]
- Forbord, B.; Lefebvre, W.; Danoix, F.; Hallem, H.; Marthinsen, K. Three dimensional atom probe investigation on the formation of Al3(Sc, Zr)-dispersoids in aluminium alloys. Scripta Mater. 2004, 51, 333–337. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Wen, S.P.; Huang, H.; Li, B.L.; Wu, X.L.; Gao, K.Y.; Wang, W.; Nie, Z.R. Effects of homogenization on precipitation of Al3(Er, Zr) particles and recrystallization behavior in a new type Al-Zn-Mg-Er-Zr alloy. Mater. Sci. Eng. A 2017, 689, 313–322. [Google Scholar] [CrossRef]
- Leibner, M.; Vlach, M.; Kodetová, V.; Kudrnová, H.; Veselý, J.; Zikmund, S.; Čížek, J.; Melikhova, O.; Lukáč, F. Effect of deformation on evolution of Al3(Er, Zr) precipitates in Al-Er-Zr-based alloy. Mater. Charact. 2022, 186, 111781. [Google Scholar] [CrossRef]
- Peng, G.; Chen, K.; Fang, H.; Chen, S. A study of nanoscale Al3(Zr, Yb) dispersoids structure and thermal stability in Al–Zr–Yb alloy. Mater. Sci. Eng. A 2012, 535, 311–315. [Google Scholar] [CrossRef]
- Pang, H.C.; Shang, P.J.; Huang, L.P.; Chen, K.H.; Liu, G.; Xiong, X. Precipitates and precipitation behavior in Al–Zr–Yb–Cr alloys. Mater. Lett. 2012, 75, 192–195. [Google Scholar]
- Hu, T.; Ruan, Z.; Fan, T.; Wang, K.; He, K.; Wu, Y. First-principles investigation of the diffusion of TM and the nucleation and growth of L12 Al3TM particles in Al alloys. Crystals 2023, 13, 1032. [Google Scholar] [CrossRef]
- Fan, T.; Ruan, Z.; Zhong, F.; Xie, C.; Li, X.; Chen, D.; Tang, P.; Wu, Y. Nucleation and growth of L12-Al3RE particles in aluminum alloys: A first-principles study. J. Rare Earths 2023, 41, 1116–1126. [Google Scholar] [CrossRef]
- Zhang, Y.; Gu, J.; Tian, Y.; Gao, H.; Wang, J.; Sun, B. Microstructure evolution and mechanical property of Al–Zr and Al–Zr–Y alloys. Mater. Sci. Eng. A 2014, 616, 132–140. [Google Scholar] [CrossRef]
- Gao, H.; Feng, W.; Wang, Y.; Gu, J.; Zhang, Y.; Wang, J.; Sun, B. structure and compositional evolution of Al3(Zr, Y) precipitates in Al-Zr-Y alloy. Mater. Charact. 2016, 121, 195–198. [Google Scholar] [CrossRef]
- Wang, Y.; Miao, Y.; Peng, P.; Gao, H.; Wang, J.; Sun, B. Ab initio investigation on preferred orientation at the Al/Al3(Zr, Y) interface in Al–Zr–Y alloy. J. Appl. Phys. 2022, 131, 225111. [Google Scholar] [CrossRef]
- Song, Y.; Zhan, S.; Nie, B.; Liu, S.; Qi, H.; Liu, F.; Fan, T.; Chen, D. First-principle investigation of the interface properties of the core-shelled L12-Al3M (M = Sc, Zr, Er, Y) phase. Crystals 2023, 13, 420. [Google Scholar] [CrossRef]
- Dorin, T.; Babaniaris, S.; Jiang, L.; Cassel, A.; Eggeman, A.; Robson, J. Precipitation sequence in Al-Sc-Zr alloys revisited. Materialia 2022, 26, 101608. [Google Scholar] [CrossRef]
- Booth-Morrison, C.; Dunand, D.C.; Seidman, D.N. Coarsening resistance at 400 °C of precipitation-strengthened Al–Zr–Sc–Er alloys. Acta Mater. 2011, 59, 7029–7042. [Google Scholar] [CrossRef]
- Leibner, M.; Vlach, M.; Kodetová, V.; Veselý, J.; Čížek, J.; Kudrnová, H.; Lukáč, F. On the Sc-rich core of Al3(Sc, Er, Zr) precipitates. Mater. Lett. 2022, 325, 132759. [Google Scholar] [CrossRef]
- Qian, W.; Zhao, Y.; Kai, X.; Gao, X.; Huang, L.; Miao, C. Characteristics of microstructureand mechanical evolution in 6111Al alloy containing Al3(Er, Zr) nanoprecipitates. Mater. Charact. 2021, 178, 111310. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, T.; Yi, D.; Wang, H.; Wang, B. Double-shell structure of Al3(Zr, Sc) precipitate induced by thermomechanical treatment of Al–Zr–Sc alloy cable. J. Rare Earths 2019, 37, 668–672. [Google Scholar] [CrossRef]
- Zhang, C.; Jiang, Y.; Cao, F.; Hu, T.; Wang, Y.; Yin, D. Formation of coherent, core-shelled nano-particles in dilute Al-Sc-Zr alloys from the first-principles. J. Mater. Sci. Technol. 2019, 35, 930–938. [Google Scholar] [CrossRef]
- Zhang, C.; Yin, D.; Jiang, Y.; Wang, Y. Precipitation of L12-phase nano-particles in dilute Al-Er-Zr alloys from the first-principles. Comp. Mater. Sci. 2019, 162, 171–177. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Q.; Zhao, C.; Li, H.; Wang, M.; Chen, D.; Wang, H. Formation of ordered precipitates in Al-Sc-Er-(Si/Zr) alloy from first-principles study. J. Rare Earths 2023, 9, 609–620. [Google Scholar] [CrossRef]
- Nityananda, R.; Hohenberg, P.; Kohn, W. Inhomogeneous electron gas. Resonance 2017, 22, 809–811. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basisset. Comp. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1998, 77, 3865–3868. [Google Scholar] [CrossRef] [Green Version]
- Budimir, M.; Damjanovic, D.; Setter, N. Piezoelectric Response and Free Energy Instability in the Perovskite Crystals BaTiO3, PbTiO3 and Pb(Zr, Ti)O3. Phys. Rev. B 2006, 73, 4106. [Google Scholar] [CrossRef] [Green Version]
- Baroni, S.; De Gironcoli, S.; Dal Corso, A.; Giannozzi, P. Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 2001, 73, 515. [Google Scholar] [CrossRef] [Green Version]
- Mao, Z.; Chen, W.; Seidman, D.N.; Wolverton, C. First-principles study of the nucleation and stability of ordered precipitates in ternary Al–Sc–Li alloys. Acta Mater. 2011, 59, 3012–3023. [Google Scholar] [CrossRef]
- Swan-Wood, T.L.; Delaire, O.; Fultz, B. Vibrational entropy of spinodal decomposition in FeCr. Phys. Rev. B 2005, 72, 024305. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Liu, F.; Yan, Z.; Nie, B.; Fan, T.; Chen, D.; Song, Y. Nucleation of L12-Al3M (M = Sc, Er, Y, Zr) Nanophases in Aluminum Alloys: A First-Principles ThermodynamicsStudy. Crystals 2023, 13, 1228. https://doi.org/10.3390/cryst13081228
Liu S, Liu F, Yan Z, Nie B, Fan T, Chen D, Song Y. Nucleation of L12-Al3M (M = Sc, Er, Y, Zr) Nanophases in Aluminum Alloys: A First-Principles ThermodynamicsStudy. Crystals. 2023; 13(8):1228. https://doi.org/10.3390/cryst13081228
Chicago/Turabian StyleLiu, Shuai, Fangjun Liu, Zhanhao Yan, Baohua Nie, Touwen Fan, Dongchu Chen, and Yu Song. 2023. "Nucleation of L12-Al3M (M = Sc, Er, Y, Zr) Nanophases in Aluminum Alloys: A First-Principles ThermodynamicsStudy" Crystals 13, no. 8: 1228. https://doi.org/10.3390/cryst13081228
APA StyleLiu, S., Liu, F., Yan, Z., Nie, B., Fan, T., Chen, D., & Song, Y. (2023). Nucleation of L12-Al3M (M = Sc, Er, Y, Zr) Nanophases in Aluminum Alloys: A First-Principles ThermodynamicsStudy. Crystals, 13(8), 1228. https://doi.org/10.3390/cryst13081228