The High-Pressure Phase Transition in Jamesonite: A Single-Crystal Synchrotron X-ray Diffraction Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Procedure
2.2. Refinement Protocol and Elasticity Analysis
3. Results
3.1. Compressibility
3.2. High-Pressure Structural Evolution from α-Jamesonite to β-Jamesonite
3.2.1. Sb polyhedra
- (a)
- All Sb polyhedra turn out to have quite similar compressibilities: the polyhedral bulk moduli, calculated as the reciprocal value of the average polyedral compressibilities in the investigated P range, are 53, 53 and 31 GPa for Sb1, Sb2 and Sb3, respectively, in α-jamesonite; in contrast, they become 100, 90 and 96 GPa for Sb1, Sb2 and Sb3, respectively, in β-jamesonite. A similar value was measured for Sb polyhedra in chalcostibite by Comodi et al. [17]. The pyramid apexes are directed perpendicular to the rods, and the lone electron pairs of Sb are located in the LEP micelle. However, a significant change occurs in the orientation of the LEP upon the phase transition in accordance with the change in symmetry (Figure 6). Note that the three shortest Sb-S bonds from which the LEP is pointing include the apical atom of the square pyramid and the two atoms in its base; in α-jamesonite, these are the two below or above Sb (looking along the rod extension), whereas in the β polymorph, they are both on the side of the Sb atom. In other words, the LEP becomes perpendicular to the rods, which is a consequence of their mutual repulsion from Sb atoms to those Sb on the opposite side of a micelle (Figure 7). With increasing P, the distances between Sb and S on the opposite side of the micelle drastically decrease: at 1.6 GPa and 16.6 GPa, Sb1-S1 changes from 4.125(5) to 3.234(5) Å, Sb2-S6 from 3.992(5) to 3.108(5) Å and Sb3-S5 from 4.169(5) to 3.467(6) Å.
- (b)
- The stereochemical activity of Sb LEPs at room pressure is quite high: the eccentricities are 0.32, 0.29 and 0.33 for Sb1, Sb2 and Sb3, respectively, very similar to the value measured in chalcostibite by Comodi et al. [17] that is equal to 0.31 (Table 4). With increasing P, the stereochemical activity of the three Sb decreases (Table 4) in a similar way as can be observed with the reduction in the eccentricity (Figure 8a) and the increase in the sphericity (Figure 8b) of the Sb polyhedra. At the same time, the distorted quadratic bases of Sb polyhedra become more regular as P increases, as indicated by the Sb-S distance in Table 4, with a usually equalizing trend observed in other sulfosalts, where the longest Sb-S distances decrease more strongly than the shortest ones. This behavior can be also evaluated by the reduction in distortion (Figure 9) and eccentricity evolution (Table 4) with P. The regularization of polyhedra is a common behavior in high-pressure structures [32], as regular polyhedra have lower volume with respect to distorted polyhedra with the same superficial extension.
3.2.2. Pb polyhedra
3.2.3. Fe polyhedra
4. Discussions and Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kharbish, S.; Jeleň, S. Raman Spectroscopy of the Pb-Sb Sulfosalts Minerals: Boulangerite, Jamesonite, Robinsonite and Zinkenite. Vib. Spectrosc. 2016, 85, 157–166. [Google Scholar] [CrossRef]
- Hsu, K.F.; Loo, S.; Guo, F.; Chen, W.; Dyck, J.S.; Uher, C.; Hogan, T.; Polychroniadis, E.K.; Kanatzidis, M.G. Cubic AgPb m SbTe2+ m: Bulk Thermoelectric Materials with High Figure of Merit. Science 2004, 303, 818–821. [Google Scholar] [CrossRef] [PubMed]
- Shuklov, I.A.; Razumov, V.F. Lead Chalcogenide Quantum Dots for Photoelectric Devices. Russ. Chem. Rev. 2020, 89, 379. [Google Scholar] [CrossRef]
- Dittrich, H.; Bieniok, A.; Brendel, U.; Grodzicki, M.; Topa, D. Sulfosalts—a New Class of Compound Semiconductors for Photovoltaic Applications. Thin Solid Film. 2007, 515, 5745–5750. [Google Scholar] [CrossRef]
- Abdelkader, D.; Rabeh, M.B.; Khemiri, N.; Kanzari, M. Investigation on Optical Properties of SnxSbySz Sulfosalts Thin Films. Mater. Sci. Semicond. Process. 2014, 21, 14–19. [Google Scholar] [CrossRef]
- Peng, H.-J.; Huang, J.-Q.; Zhang, Q. A Review of Flexible Lithium–Sulfur and Analogous Alkali Metal–Chalcogen Rechargeable Batteries. Chem. Soc. Rev. 2017, 46, 5237–5288. [Google Scholar] [CrossRef] [Green Version]
- Dittrich, H.; Stadler, A.; Topa, D.; Schimper, H.-J.; Basch, A. Progress in Sulfosalt Research. Phys. Status Solidi 2009, 206, 1034–1041. [Google Scholar] [CrossRef]
- Makovicky, E. Rod-Based Sulphosalt Structures Derived from the SnS and PbS Archetypes. Eur. J. Mineral. 1993, 545–592. [Google Scholar] [CrossRef]
- Anthony, J.W.; Bideaux, R.A.; Bladh, K.W.; Nichols, M.C. Handbook of Mineralogy; Mineral Data Publishing: Tucson, AZ, USA, 2001; Volume 1. [Google Scholar]
- Zhou, X.; Zhao, C.; Li, Y.; Chen, J.; Chen, Y. The Flotation Process, Smelting Process and Extraction Products on Jamesonite: A Review. Miner. Eng. 2021, 172, 107146. [Google Scholar] [CrossRef]
- Krivovichev, S.V. Minerals as Advanced Materials I; Springer: Berlin/Heidelberg, Germany, 2008; ISBN 3-540-77123-9. [Google Scholar]
- Nishad, P.A.; Bhaskarapillai, A. Antimony, a Pollutant of Emerging Concern: A Review on Industrial Sources and Remediation Technologies. Chemosphere 2021, 277, 130252. [Google Scholar] [CrossRef]
- Chang, L.L.; Li, X.; Zheng, C. The Jamesonite-Benavidesite Series. Can. Mineral. 1987, 25, 667–672. [Google Scholar]
- Niizeki, Ν.; Buerger, M.J. The Crystal Structure of Jamesonite, FePb4Sb6S14. Z. Für Krist.-Cryst. Mater. 1957, 109, 161–183. [Google Scholar] [CrossRef]
- Léone, P.; Le Leuch, L.-M.; Palvadeau, P.; Molinié, P.; Moëlo, Y. Single Crystal Structures and Magnetic Properties of Two Iron or Manganese-Lead-Antimony Sulfides: MPb4Sb6S14 (M: Fe, Mn). Solid State Sci. 2003, 5, 771–776. [Google Scholar] [CrossRef]
- Makovicky, E. The Building Principles and Classification of Sulphosalts Based on the SnS Archetype. Fortschritte Der Mineral. 1985, 63, 45–89. [Google Scholar]
- Comodi, P.; Guidoni, F.; Nazzareni, S.; Balić-Žunić, T.; Zucchini, A.; Makovicky, E.; Prakapenka, V. A High-Pressure Phase Transition in Chalcostibite, CuSbS2. Eur. J. Mineral. 2018, 30, 491–505. [Google Scholar] [CrossRef]
- Balić Žunić, T.; Makovicky, E. Determination of the Centroid Orthe Best Centre’of a Coordination Polyhedron. Acta Crystallogr. Sect. B Struct. Sci. 1996, 52, 78–81. [Google Scholar] [CrossRef]
- Matsushita, Y.; Ueda, Y. Structure and Physical Properties of 1D Magnetic Chalcogenide, Jamesonite (FePb4Sb6S14). Inorg. Chem. 2003, 42, 7830–7838. [Google Scholar] [CrossRef]
- Poudeu, P.F.P.; Takas, N.; Anglin, C.; Eastwood, J.; Rivera, A. FexPb4−xSb4Se10: A New Class of Ferromagnetic Semiconductors with Quasi 1D {Fe2Se10} Ladders. J. Am. Chem. Soc. 2010, 132, 5751–5760. [Google Scholar] [CrossRef]
- Papp, G.; Criddle, A.J.; Stanley, C.J.; Kriston, L.; Nagy, G. Parajamesonite Revisited: Background of the Discreditation of an Enigmatic Mineral Species. Swiss J. Geosci. 2007, 100, 495–502. [Google Scholar] [CrossRef] [Green Version]
- Zsivny, V.; Náray-Szabó, I. Parajamesonit, Ein Neues Mineral von Kisbánya. Schweiz. Mineral. Petrogr. Mitt 1947, 27, 183–189. [Google Scholar]
- Baláž, P.; Achimovičová, M. Selective Leaching of Antimony and Arsenic from Mechanically Activated Tetrahedrite, Jamesonite and Enargite. Int. J. Miner. Process. 2006, 81, 44–50. [Google Scholar] [CrossRef]
- Olsen, L.A.; Friese, K.; Makovicky, E.; Balić-Žunić, T.; Morgenroth, W.; Grzechnik, A. Pressure Induced Phase Transition in Pb 6 Bi 2 S 9. Phys. Chem. Miner. 2011, 38, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Zucchini, A.; Balić-Žunić, T.; Collings, I.E.; Hanfland, M.; Comodi, P. High-Pressure Single-Crystal Synchrotron X-Ray Diffraction Study of Lillianite. Am. Mineral. 2022, 107, 1752–1759. [Google Scholar] [CrossRef]
- Hammersley, A.P.; Svensson, S.O.; Hanfland, M.; Fitch, A.N.; Hausermann, D. Two-Dimensional Detector Software: From Real Detector to Idealised Image or Two-Theta Scan. Int. J. High Press. Res. 1996, 14, 235–248. [Google Scholar] [CrossRef]
- Hübschle, C.B.; Sheldrick, G.M.; Dittrich, B. ShelXle: A Qt Graphical User Interface for SHELXL. J. Appl. Crystallogr. 2011, 44, 1281–1284. [Google Scholar] [CrossRef] [Green Version]
- Sheldrick, G.M. SHELXT–Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr. Sect. A Found. Adv. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Angel, R.; Gonzalez-Platas, J. ABSORB-7 and ABSORB-GUI for Single-Crystal Absorption Corrections. J. Appl. Crystallogr. 2013, 46, 252–254. [Google Scholar] [CrossRef]
- Angel, R.J. Equations of State. Rev. Mineral. Geochem. 2000, 41, 35–59. [Google Scholar] [CrossRef]
- Balić Žunić, T.; Vicković, I. IVTON–a Program for the Calculation of Geometrical Aspects of Crystal Structures and Some Crystal Chemical Applications. J. Appl. Crystallogr. 1996, 29, 305–306. [Google Scholar] [CrossRef]
- Comodi, P.; Ballaran, T.B.; Zanazzi, P.F.; Capalbo, C.; Zanetti, A.; Nazzareni, S. The Effect of Oxo-Component on the High-Pressure Behavior of Amphiboles. Am. Mineral. 2010, 95, 1042–1051. [Google Scholar] [CrossRef]
- Makovicky, E.; Balić-Žunić, T. New Measure of Distortion for Coordination Polyhedra. Acta Crystallogr. Sect. B Struct. Sci. 1998, 54, 766–773. [Google Scholar] [CrossRef] [Green Version]
- Comodi, P.; Zucchini, A.; Balić-Žunić, T.; Hanfland, M.; Collings, I. The High Pressure Behavior of Galenobismutite, PbBi2S4: A Synchrotron Single Crystal X-Ray Diffraction Study. Crystals 2019, 9, 210. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.; Kang, D.; Wu, X.; Niu, J.; Qin, S. Pressure-Induced Structural and Spin Transitions of Fe3S4. Sci. Rep. 2017, 7, 46334. [Google Scholar] [CrossRef] [PubMed]
- Lundegaard, L.F.; Miletich, R.; Balic-Zunic, T.; Makovicky, E. Equation of State and Crystal Structure of Sb2S3 between 0 and 10 GPa. Phys. Chem. Miner. 2003, 30, 463–468. [Google Scholar] [CrossRef]
- Knorr, K.; Ehm, L.; Hytha, M.; Winkler, B.; Depmeier, W. The High-Pressure α/β Phase Transition in Lead Sulphide (PbS) X-Ray Powder Diffraction and Quantum Mechanical Calculations. Eur. Phys. J. B-Condens. Matter Complex Syst. 2003, 31, 297–303. [Google Scholar] [CrossRef] [Green Version]
- Periotto, B.; Balić-žunić, T.; Nestola, F. The Role of the Sb3+ Lone-Electron Pairs and Fe2+ Coordination in the High-Pressure Behavior of Berthierite. Can. Mineral. 2012, 50, 201–218. [Google Scholar] [CrossRef]
- Lundegaard, L.F.; Makovicky, E.; Boffa-Ballaran, T.; Balic-Zunic, T. Crystal Structure and Cation Lone Electron Pair Activity of Bi2S3 between 0 and 10 GPa. Phys. Chem. Miner. 2005, 32, 578–584. [Google Scholar] [CrossRef]
P (GPa) | P1 1.26 | P2 4.50 | P3 6.76 | P4 9.70 | P5 12.30 | P6 14.40 | P7 16.60 |
---|---|---|---|---|---|---|---|
a (Å) | 3.9848 (1) | 3.8858 (1) | 3.8348 (1) | 3.7457 (1) | 3.70526 (9) | 3.6852 (1) | 3.6624 (2) |
b (Å) | 18.901 (6) | 18.514 (2) | 18.322 (2) | 18.039 (1) | 17.845 (2) | 17.715 (3) | 17.565 (3) |
c (Å) | 15.5453 (6) | 15.2605 (1) | 15.1042 (4) | 14.8801 (3) | 14.7276 (3) | 14.6271 (5) | 14.5040 (6) |
Beta (°) | 91.609 (2) | 91.158 (1) | 90.899 (2) | ||||
Space group | P21/c | P21/c | P21/c | Pmcb | Pmcb | Pmcb | Pmcb |
V (Å3) | 1170.3 (3) | 1097.65 (8) | 1061.13 (1) | 1005.42 (8) | 973.79 (9) | 954.90 (9) | 933.04 (2) |
Density (g/cm3) | 5.857 | 6.245 | 6.460 | 6.818 | 7.039 | 7.178 | 7.346 |
All reflect. | 2610 | 2365 | 2419 | 2279 | 2194 | 2144 | 2057 |
Unique reflect. | 1134 | 1046 | 1418 | 966 | 923 | 899 | 880 |
Rint | 0.0122 | 0.0209 | 0.0203 | 0.0210 | 0.0222 | 0.0176 | 0.0218 |
Rσ | 0.0157 | 0.0248 | 0.0239 | 0.0256 | 0.0225 | 0.0227 | 0.0200 |
2θ max | 41.53 | 41.72 | 39.45 | 39.91 | 40.04 | 40.18 | 43.02 |
Range hkl | −5 < h < 5 −10 < k< 8 −21 < l < 21 | −5 < h < 4 −10 < k< 8 −20 < l < 20 | −5 < h < 5 −15 < k< 14 −20 < l < 21 | −5 < h < 5 −13 < k< 15 −20< l < 21 | −5 < h < 5 −13 < k< 14 −20 < l < 20 | −5 < h < 5 −13 < k< 14 −20 < l < 20 | −5 < h < 5 −12 < k< 14 −19 < l < 22 |
Reflect. F0 > 4sig(F0) | 1075 | 1003 | 1338 | 930 | 877 | 815 | 785 |
Refine n. parameters | 116 | 116 | 116 | 78 | 78 | 78 | 78 |
Goodness of fit | 1.2 | 1.1 | 1.2 | 1.1 | 1.1 | 1.1 | 1.1 |
wR2 | 0.0648 | 0.0558 | 0.0962 | 0.0603 | 0.0956 | 0.1074 | 0.1179 |
R1 (F0 > 4σ > F0) | 0.0254 | 0.0219 | 0.0329 | 0.0244 | 0.0371 | 0.0527 | 0.0475 |
Highest peak In difference Fourier | 0.71 | 0.57 | 3.11 | 2.01 | 2.75 | 2.64 | 3.23 |
Deepest hole in difference Fourier | −0.73 | −0.74 | −2.22 | −1.31 | −1.77 | −1.90 | −1.92 |
α-Jamesonite | β-Jamesonite | ||
---|---|---|---|
V0 (Å3) | 1207.1 (4) | V9.7 (Å3) | 1027 (2) |
K0 (GPa) | 36 (1) | K9.7 (GPa) | 74 (2) |
K’ | 5.7 (7) | K’ | 4.0 |
a0 (Å) | 4.024 (2) | a9.7 (Å) | 3.768 (5) |
M0 (GPa) | 105 (2) | M9.7 (GPa) | 252 (18) |
b0 (Å) | 19.073 (8) | b9.7 (Å) | 18.19 (1) |
M0 (GPa) | 130 (3) | M9.7 (GPa) | 204 (6) |
c0 (Å) | 15.73 (2) | c9.7 (Å) | 15.00 (1) |
M0 (GPa) | 128 (7) | M9.7 (GPa) | 213 (9) |
Bond Types and Coordination Numbers | α-Jamesonite | β-Jamesonite | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
P0 | P1 | P2 | P3 | P4 | P5 | P6 | P7 | |||
Pb 1 CN = 7 | S4 | 2.873(1) | 2.871(3) | 2.857(2) | 2.843(2) | S4(x2) | 2.827(2) | 2.806(2) | 2.792(3) | 2.775(3) |
S4 | 2.901(1) | 2.901(2) | 2.893(2) | 2.876(3) | ||||||
S1 | 2.899(1) | 2.904(6) | 2.859(5) | 2.822(4) | S1 | 2.775(3) | 2.760(3) | 2.749(6) | 2.732(6) | |
S7 | 2.950(1) | 2.919(7) | 2.868(6) | 2.838(5) | S7 | 2.847(4) | 2.826(5) | 2.804(7) | 2.778(7) | |
S2 | 3.033(1) | 2.991(4) | 2.914(3) | 2.873(3) | S2(x2) | 2.842(2) | 2.811(3) | 2.789(4) | 2.768(4) | |
S2 | 3.065(1) | 3.019(4) | 2.931(3) | 2.886(3) | ||||||
S6 | 3.345(1) | 3.264(4) | 3.147(3) | 3.091(3) | S6 | 3.011(2) | 2.961(2) | 2.938(4) | 2.903(4) | |
Average bond length (CN = 7) | 3.010 | 2.982 | 2.924 | 2.890 | 2.85 | 2.83 | 2.80 | 2.79 | ||
Pb 2 CN = 8 | S2 | 2.939(1) | 2.931(2) | 2.894(2) | 2.877(2) | S2(x2) | 2.853(2) | 2.836(2) | 2.824(2) | 2.806(2) |
S2 | 2.955(1) | 2.940(2) | 2.911(2) | 2.893(2) | ||||||
S3 | 3.047(1) | 3.014(4) | 2.941(4) | 2.917(3) | S3(x2) | 2.917(3) | 2.892(3) | 2.863(5) | 2.846(5) | |
S3 | 3.056(1) | 3.024(4) | 2.957(4) | 2.927(3) | ||||||
S6 | 3.048(1) | 3.028(7) | 2.970(6) | 2.942(4) | S6 | 2.923(1) | 2.902(4) | 2.886(7) | 2.862(7) | |
S5 | 3.076(1) | 3.107(6) | 3.121(5) | 3.128(4) | S5 | 3.072(2) | 3.049(3) | 3.039(6) | 2.900(4) | |
S4 | 3.474(1) | 3.372(4) | 3.070(3) | 3.031(3) | S4(x2) | 2.990(2) | 2.947(3) | 2.925(4) | 2.900(4) | |
S4 | 3.230(1) | 3.165(4) | 3.196(4) | 3.121(3) | ||||||
Average bond length (CN = 8) | 3.103 | 3.073 | 3.007 | 2.979 | 2.94 | 2.91 | 2.89 | 2.87 | ||
Sb 1 CN = 7 3 + 2 + 2 | S2 | 2.450(1) | 2.472(6) | 2.468(6) | 2.453(4) | S2 | 2.438(3) | 2.438(5) | 2.434(7) | 2.424(7) |
S5 | 2.584(1) | 2.558(4) | 2.540(3) | 2.536(3) | S5 (x2) | 2.642(2) | 2.618(2) | 2.604(3) | 2.589(3) | |
S1 | 2.577(1) | 2.569(4) | 2.583(3) | 2.604(3) | S1(x2) | 2.734(2) | 2.717(2) | 2.711(4) | 2.704(4) | |
S5′ | 3.006(1) | 2.997(4) | 2.894(3) | 2.833(3) | ||||||
S1′ | 3.074(1) | 3.043(4) | 2.977(3) | 2.936(3) | ||||||
S1′’ | 3.537(1) | 3.429(7) | 3.303(5) | 3.263(4) | S1″(x2) | 3.382(3) | 3.321(3) | 3.278(5) | 3.234(5) | |
S1′’’ | 4.268(1) | 4.124(6) | 3.827(5) | 3.696(4) | ||||||
Average bond length (CN = 7) | 3.071 | 3.028 | 2.942 | 2.903 | 2.85 | 2.82 | 2.75 | 2.78 | ||
Sb 2 CN = 7 (3 + 2 + 2) | S3 | 2.444(1) | 2.449(6) | 2.453(6) | 2.445(4) | S3 | 2.435(3) | 2.441(3) | 2.446(7) | 2.431(6) |
S7 | 2.486(1) | 2.483(4) | 2.482(3) | 2.484(3) | S7(x2) | 2.553(1) | 2.534(2) | 2.523(2) | 2.510(2) | |
S5 | 2.714(1) | 2.666(5) | 2.669(4) | 2.680(3) | S5(x2) | 2.778(2) | 2.759(2) | 2.743(4) | 2.726(4) | |
S7′ | 2.871(1) | 2.873(4) | 2.775(3) | 2.725(3) | ||||||
S5′ | 3.113(1) | 3.077(4) | 2.993(4) | 2.942(3) | ||||||
S6 | 3.331(1) | 3.260(7) | 3.181(5) | 3.147(4) | S6(x2) | 3.252(3) | 3.187(3) | 3.149(5) | 3.108(5) | |
S6′ | 4.107(1) | 3.991(6) | 3.726(5) | 3.592(4) | ||||||
Average bond length (CN = 7) | 3.009 | 2.971 | 2.897 | 2.859 | 2.80 | 2.77 | 2.75 | 2.73 | ||
Sb 3 CN = 7 3 + 2 + 2 | S4 | 2.435(1) | 2.444(6) | 2.439(6) | 2.425(6) | S4 | 2.421(3) | 2.416(5) | 2.406(7) | 2.393(7) |
S6 | 2.478(1) | 2.484(4) | 2.493(3) | 2.495(3) | S6(x2) | 2.550(2) | 2.536(2) | 2.524(3) | 2.518(3) | |
S6′ | 2.807(1) | 2.775(4) | 2.706(3) | 2.670(3) | ||||||
S1 | 2.889(1) | 2.866(4) | 2.829(3) | 2.805(3) | S1(x2) | 2.858(2) | 2.824(2) | 2.802(3) | 2.768(3) | |
S1′ | 3.193(1) | 3.141(4) | 3.039(3) | 2.981(3) | ||||||
S5 | 3.642(1) | 3.594(7) | 3.522(5) | 3.492(4) | S5(x2) | 3.583(3) | 3.535(3) | 3.504(6) | 3.467(6) | |
S5′ | 4.297(1) | 4.169(6) | 3.931(5) | 3.825(4) | ||||||
Average bond length (CN 7) | 3.106 | 3.067 | 2.994 | 2.956 | 2.92 | 2.89 | 2.87 | 2.84 | ||
Fe CN = 6 | S7(x2) | 2.396(1) | 2.374(6) | 2.340(5) | 2.327(4) | S7(x2) | 2.230(3) | 2.195(5) | 2.185(7) | 2.173(7) |
S3(x2) | 2.614(1) | 2.588(3) | 2.544(2) | 2.509(2) | S3(x2) | 2.380(1) | 2.337(1) | 2.326(2) | 2.309(2) | |
S3(x2) | 2.682(1) | 2.646(3) | 2.560(2) | 2.518(3) | S3(x2) | 2.380(1) | 2.337(1) | 2.326(2) | 2.309(2) | |
Average bond length (CN = 6) | 2.564 | 2.536 | 2.482 | 2.451 | 2.33 | 2.28 | 2.27 | 2.26 |
Polyhedra | Phase | P | Eccentricity | Sphericity | Total Polyhedral Volume | Volume Distortion |
---|---|---|---|---|---|---|
Pb1 | α | P0 | 0.0757 | 0.9758 | 39.224 | 0.09 |
P1 | 0.0606 | 0.9771 | 38.179 | 0.0894 | ||
P2 | 0.0427 | 0.9781 | 35.905 | 0.0933 | ||
P3 | 0.0372 | 0.9788 | 34.59 | 0.0957 | ||
β | P4 | 0.035 | 0.9865 | 32.852 | 0.1077 | |
P5 | 0.0303 | 0.9882 | 31.902 | 0.1082 | ||
P6 | 0.0283 | 0.9877 | 31.332 | 0.1069 | ||
P7 | 0.0249 | 0.9882 | 30.631 | 0.1058 | ||
Pb2 | α | P0 | 0.0719 | 0.9647 | 52.431 | 0.0383 |
P1 | 0.0544 | 0.9666 | 50.875 | 0.0387 | ||
P2 | 0.0288 | 0.9682 | 47.616 | 0.0394 | ||
P3 | 0.0199 | 0.9683 | 46.198 | 0.0408 | ||
β | P4 | 0.0160 | 0.9766 | 44.270 | 0.0422 | |
P5 | 0.0131 | 0.9776 | 43.009 | 0.0430 | ||
P6 | 0.0102 | 0.9765 | 42.150 | 0.0431 | ||
P7 | 0.0116 | 0.9765 | 41.223 | 0.0443 | ||
Sb1 | α | P0 | 0.32 | 0.9388 | 38.72 | 0.1515 |
P1 | 0.2974 | 0.9434 | 37.368 | 0.1439 | ||
P2 | 0.2547 | 0.9556 | 34.818 | 0.133 | ||
P3 | 0.2362 | 0.9611 | 33.708 | 0.1291 | ||
β | P4 | 0.2026 | 0.9668 | 32.284 | 0.1253 | |
P5 | 0.1923 | 0.9676 | 31.344 | 0.1235 | ||
P6 | 0.1850 | 0.9694 | 30.754 | 0.1220 | ||
P7 | 0.1786 | 0.9716 | 30.134 | 0.1206 | ||
Sb2 | α | P0 | 0.2948 | 0.941 | 36.653 | 0.1575 |
P1 | 0.2783 | 0.9469 | 35.454 | 0.1532 | ||
P2 | 0.2397 | 0.9585 | 33.335 | 0.1449 | ||
P3 | 0.2207 | 0.9647 | 32.281 | 0.141 | ||
β | P4 | 0.1841 | 0.9779 | 30.611 | 0.1453 | |
P5 | 0.1714 | 0.9795 | 29.661 | 0.1470 | ||
P6 | 0.1639 | 0.9798 | 29.083 | 0.1465 | ||
P7 | 0.1588 | 0.9820 | 28.363 | 0.1470 | ||
Sb3 | α | P0 | 0.3281 | 0.9363 | 39.941 | 0.1460 |
P1 | 0.3107 | 0.9392 | 38.651 | 0.1403 | ||
P2 | 0.2811 | 0.9461 | 36.361 | 0.1312 | ||
P3 | 0.2704 | 0.9488 | 32.281 | 0.141 | ||
β | P4 | 0.2524 | 0.9525 | 34.016 | 0.1242 | |
P5 | 0.2455 | 0.9521 | 33.118 | 0.1229 | ||
P6 | 0.2427 | 0.9519 | 32.431 | 0.1223 | ||
P7 | 0.2387 | 0.9522 | 31.667 | 0.1220 | ||
Fe | α | P0 | 0 | 0.9479 | 22.101 | 0.0169 |
P1 | 0 | 0.9494 | 21.383 | 0.0168 | ||
P2 | 0 | 0.9557 | 20.059 | 0.0154 | ||
P3 | 0 | 0.9606 | 19.332 | 0.0155 | ||
β | P4 | 0 | 0.9666 | 16.359 | 0.0304 | |
P5 | 0 | 0.9681 | 15.433 | 0.0353 | ||
P6 | 0 | 0.9680 | 15.232 | 0.0346 | ||
P7 | 0 | 0.9689 | 14.924 | 0.0353 |
Pressure (GPa) | S3-S3 Shared Edges | S3-S3 Unshared Edges | |
---|---|---|---|
P0 | α | 3.46 | 4.02 |
P1 | 3.40 | 3.99 | |
P2 | 3.31 | 3.89 | |
P3 | 3.25 | 3.84 | |
P4 | β | 2.94 | 3.75 |
P5 | 2.85 | 3.71 | |
P6 | 2.84 | 3.69 | |
P7 | 2.81 | 3.66 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Comodi, P.; Balić-Žunić, T.; Fastelli, M.; Hanfland, M.; Collings, I.; Zucchini, A. The High-Pressure Phase Transition in Jamesonite: A Single-Crystal Synchrotron X-ray Diffraction Study. Crystals 2023, 13, 1258. https://doi.org/10.3390/cryst13081258
Comodi P, Balić-Žunić T, Fastelli M, Hanfland M, Collings I, Zucchini A. The High-Pressure Phase Transition in Jamesonite: A Single-Crystal Synchrotron X-ray Diffraction Study. Crystals. 2023; 13(8):1258. https://doi.org/10.3390/cryst13081258
Chicago/Turabian StyleComodi, Paola, Tonci Balić-Žunić, Maximiliano Fastelli, Michael Hanfland, Ines Collings, and Azzurra Zucchini. 2023. "The High-Pressure Phase Transition in Jamesonite: A Single-Crystal Synchrotron X-ray Diffraction Study" Crystals 13, no. 8: 1258. https://doi.org/10.3390/cryst13081258
APA StyleComodi, P., Balić-Žunić, T., Fastelli, M., Hanfland, M., Collings, I., & Zucchini, A. (2023). The High-Pressure Phase Transition in Jamesonite: A Single-Crystal Synchrotron X-ray Diffraction Study. Crystals, 13(8), 1258. https://doi.org/10.3390/cryst13081258