A Closed-Form Solution to the Mechanism of Interface Crack Formation with One Contact Area in Decagonal Quasicrystal Bi-Materials
Abstract
:1. Introduction
2. Basic Equations
3. Statement of the Problem
4. Theoretical Derivation of Interface Stresses and Displacement Jump
5. Complex Potential Solution of the Problem
6. Numerical Results and Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, Y.; Chen, J.; Zhang, L.; Ji, J.; Wang, Q.; Zhang, S. Effect of boron on the structural stability, mechanical properties, and electronic structures of γ′-Ni3Al in TLP joints of nickel-based single-crystal alloys. Mater. Today Commun. 2022, 31, 103375. [Google Scholar] [CrossRef]
- Long, X.; Chong, K.; Su, Y.; Chang, C.; Zhao, L. Meso-scale low-cycle fatigue damage of polycrystalline nickel-based alloy by crystal plasticity finite element method. Int. J. Fatigue 2023, 175, 107778. [Google Scholar] [CrossRef]
- Long, X.; Chong, K.; Su, Y.; Du, L.; Zhang, G. Connecting the macroscopic and mesoscopic properties of sintered silver nanoparticles by crystal plasticity finite element method. Eng. Fract. Mech. 2023, 281, 109137. [Google Scholar] [CrossRef]
- Bendersky, L. Quasicrystal with one-dimensional translational symmetry and a tenfold rotation axis. Phys. Rev. Lett. 1985, 55, 1461–1463. [Google Scholar] [CrossRef] [PubMed]
- Fung, K.K.; Yang, C.Y.; Zhou, Y.Q.; Zhao, J.G.; Zhan, W.S.; Shen, B.G. Icosahedral related decagonal quasicrystal in rapidly cooled Al-14-at.%-Fe alloy. Phys. Rev. Lett. 1986, 56, 2060–2063. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Urban, K. Transmission electron microscope observation of dislocation and stacking faults in a decagonal Al-Cu-Co alloy. Philos. Mag. Lett. 1989, 60, 97–102. [Google Scholar] [CrossRef]
- Girzhon, V.; Kovalyova, V.; Smolyakov, O.; Zakharenko, M. Modeling of decagonal quasicrystal lattice. J. Non-Crystalline Solids 2012, 358, 137–144. [Google Scholar] [CrossRef]
- Ma, H.; He, Z.; Hou, L.; Steurer, W. Exceptionally large areas of local tenfold symmetry in decagonal Al59Cr21Fe10Si10. J. Alloys Compd. 2018, 765, 753–756. [Google Scholar] [CrossRef]
- Qin, Y.; Wang, R.; Ding, D.H.; Lei, J. Analytical expressions of elastic displacement fields induced by straight dislocations in decagonal, octagonal and dodecagonal quasicrystals. J. Phys. Condens. Matter 1997, 9, 859–872. [Google Scholar] [CrossRef]
- Li, X.-F.; Duan, X.-Y.; Fan, T.-Y.; Sun, Y.-F. Elastic field for a straight dislocation in a decagonal quasicrystal. J. Phys. Condens. Matter 1999, 11, 703–711. [Google Scholar] [CrossRef]
- Liu, G.T.; Fan, T.Y. The complex method of the plane elasticity in 2D quasicrystals point 10 mm ten-fold rotation symmetry notch problems. Sci. China Ser. E 2003, 46, 326–336. [Google Scholar] [CrossRef]
- Wang, X.; Zhong, Z. Interaction between a semi-infinite crack and a straight dislocation in a decagonal quasicrystal. Int. J. Eng. Sci. 2004, 42, 521–538. [Google Scholar] [CrossRef]
- Li, L.H. Complex potential theory for the plane elasticity problem of decagonal quasicrystals and its application. Appl. Math. Comput. 2013, 219, 10105–10111. [Google Scholar] [CrossRef]
- Fan, C.; Lv, S.; Dang, H.; Yuan, Y.; Zhao, M. Fundamental solutions and analysis of the interface crack for two-dimensional decagonal quasicrystal bimaterial via the displacement discontinuity method. Eng. Anal. Bound. Elements 2019, 106, 462–472. [Google Scholar] [CrossRef]
- Wang, X.; Schiavone, P. Elastic field near the tip of an anticrack in a decagonal quasicrystalline material. Appl. Math. Mech. 2020, 41, 401–408. [Google Scholar] [CrossRef]
- Zhai, T.; Ma, Y.Y.; Ding, S.H.; Zhao, X.F. Circular inclusion problem of two-dimensional decagonal quasicrystals with interfacial rigid lines under concentrated force. ZAMM J. Appl. Math. Mech./Z. Angew. Mathe-Matik Mech. 2021, 101, e202100081. [Google Scholar] [CrossRef]
- Zhao, M.; Zhang, X.; Fan, C.; Lu, C.; Dang, H. Thermal fracture analysis of a two-dimensional decagonal quasicrystal coating structure with interface cracks. Mech. Adv. Mater. Struct. 2023, 30, 2001–2016. [Google Scholar] [CrossRef]
- Yu, J. Mode-I Plane Elasticity Problem of Two Asymmetrical Edge Cracks Emanating from an Elliptical Hole in Two-Dimensional Decagonal Quasicrystals. Crystals 2023, 13, 1038. [Google Scholar] [CrossRef]
- Li, P.; Li, W.; Fan, H.; Wang, Q.; Zhou, K. A phase-field framework for brittle fracture in quasi-crystals. Int. J. Solids Struct. 2023, 279, 112385. [Google Scholar] [CrossRef]
- Gautesen, A. The interface crack in a tension field: An eigenvalue problem for the gap. Int. J. Fract. 1992, 55, 261–271. [Google Scholar] [CrossRef]
- Gautesen, A.K. The interface crack under combined loading: An eigenvalue problem for the gap. Int. J. Fract. 1993, 60, 349–361. [Google Scholar] [CrossRef]
- Qin, Q.H.; Mai, Y.W. A closed crack model for interface cracks in thermopiezoelectric materials. Int. J. Solids Struct. 1999, 36, 2463–2479. [Google Scholar] [CrossRef]
- Herrmann, K.P.; Loboda, V.V. On interface crack models with contact zones situated in an anisotropic biomaterial. Arch. Appl. Mech. 1999, 69, 311–335. [Google Scholar] [CrossRef]
- Kharun, I.V.; Loboda, V.V. A set of interface cracks with contact zones in a combined tension-shear field. Acta Mech. 2003, 166, 43–56. [Google Scholar] [CrossRef]
- Herrmann, K.P.; Loboda, V.V.; Khodanen, T.V. An interface crack with contact zones in a piezoelectric/piezomagnetic bimaterial. Arch. Appl. Mech. 2010, 80, 651–670. [Google Scholar] [CrossRef]
- Saikia, P.; Muthu, N. Extrinsic cohesive zone modeling for interface crack growth: Numerical and experimental studies. Eng. Fract. Mech. 2022, 266, 108353. [Google Scholar] [CrossRef]
- Guo, Y.-C.; Fan, T.-Y. A Mode-II Griffith crack in decagonal quasicrystals. Appl. Math. Mech. 2001, 22, 1311–1317. [Google Scholar] [CrossRef]
- Li, L.H.; Fan, T.Y. Complex function method for solving notch problem of point 10 two-dimensional quasicrystal based on the stress potential function. J. Phys. Condens. Matter. 2006, 18, 10631–10641. [Google Scholar] [CrossRef]
- Li, L.H.; Fan, T.Y. Final governing equation of plane elasticity of icosahedral quasicrystals-stress potential method. Chin. Phys. Lett. 2006, 24, 2519–2521. [Google Scholar]
- Loboda, V. The quasi-invariant in the theory of interface cracks. Eng. Fract. Mech. 1993, 44, 573–580. [Google Scholar] [CrossRef]
- Fan, T.Y. Mathematical theory and methods of mechanics of quasicrystalline materials. Engineering 2013, 05, 407–448. [Google Scholar] [CrossRef]
Elastic Constants | The Value of Elastic Constant |
---|---|
Phonon field elastic constant/GPa | |
Phason field elastic constant/GPa | |
Coupling constant/GPa |
Elastic Constants | The Value of Elastic Constant |
---|---|
Phonon field elastic constant/GPa | |
Phason field elastic constant/GPa | |
Coupling constant/GPa |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Zhang, B.; Li, X.; Ding, S. A Closed-Form Solution to the Mechanism of Interface Crack Formation with One Contact Area in Decagonal Quasicrystal Bi-Materials. Crystals 2024, 14, 316. https://doi.org/10.3390/cryst14040316
Zhang Z, Zhang B, Li X, Ding S. A Closed-Form Solution to the Mechanism of Interface Crack Formation with One Contact Area in Decagonal Quasicrystal Bi-Materials. Crystals. 2024; 14(4):316. https://doi.org/10.3390/cryst14040316
Chicago/Turabian StyleZhang, Zhiguo, Baowen Zhang, Xing Li, and Shenghu Ding. 2024. "A Closed-Form Solution to the Mechanism of Interface Crack Formation with One Contact Area in Decagonal Quasicrystal Bi-Materials" Crystals 14, no. 4: 316. https://doi.org/10.3390/cryst14040316
APA StyleZhang, Z., Zhang, B., Li, X., & Ding, S. (2024). A Closed-Form Solution to the Mechanism of Interface Crack Formation with One Contact Area in Decagonal Quasicrystal Bi-Materials. Crystals, 14(4), 316. https://doi.org/10.3390/cryst14040316