Nanoindentation of HMX and Idoxuridine to Determine Mechanical Similarity
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Yeager, J.D.; Duque, A.L.H.; Shorty, M.; Bowden, P.R.; Stull, J.A. Development of inert density mock materials for HMX. J. Energ. Mater. 2017, 1–13. [Google Scholar] [CrossRef]
- Sheffield, S.A.; Gustavsen, R.L.; Alcon, R.R. Porous HMX initiation studies—Sugar as an inert simulant. AIP Conf. Proc. 1998, 429, 575–578. [Google Scholar]
- Buckner, I.S.; Wurster, D.E.; Aburub, A. Interpreting deformation behavior in pharmaceutical materials using multiple consolidation models and compaction energetics. Pharm. Dev. Technol. 2010, 15, 492–499. [Google Scholar] [CrossRef] [PubMed]
- Britton, T.B.; Liang, H.; Dunne, F.P.E.; Wilkinson, A.J. The effect of crystal orientation on the indentation response of commercially pure titanium: Experiments and simulations. Proc. Math. Phys. Eng. Sci. 2010, 466, 695–719. [Google Scholar] [CrossRef]
- Taw, M.R.; Yeager, J.D.; Hooks, D.E.; Carvajal, T.M.; Bahr, D.F. The mechanical properties of as-grown noncubic organic molecular crystals assessed by nanoindentation. J. Mater. Res. 2017, 32, 1–10. [Google Scholar] [CrossRef]
- Ramos, K.J.; Bahr, D.F. Mechanical behavior assessment of sucrose using nanoindentation. J. Mater. Res. 2017, 22, 2037–2045. [Google Scholar] [CrossRef]
- Ramos, K.J.; Hooks, D.E.; Bahr, D.F. Direct observation of plasticity and quantitative hardness measurements in single crystal cyclotrimethylene trinitramine by nanoindentation. Philos. Mag. 2009, 89, 2381–2402. [Google Scholar] [CrossRef]
- Millett, J.C.F.; Bourne, N.K. The shock Hugoniot of a plastic bonded explosive and inert simulants. J. Phys. D Appl. Phys. 2004, 37, 2613–2617. [Google Scholar] [CrossRef]
- Hudson, R.J.; Zioupos, P.; Gill, P.P. Investigating the mechanical properties of RDX crystals using nano-indentation. Propel. Explos. Pyrotech. 2012, 37, 191–197. [Google Scholar] [CrossRef]
- Weingarten, N.S.; Sausa, R.C. Nanomechanics of RDX single crystals by force–Displacement measurements and molecular dynamics simulations. J. Phys. Chem. A 2015, 119, 9338–9351. [Google Scholar] [CrossRef] [PubMed]
- Elban, W.L.; Armstrong, R.W.; Yoo, K.C.; Rosemeier, R.G.; Yee, R.Y. X-ray reflection topographic study of growth defect and microindentation strain fields in an RDX explosive crystal. J. Mater. Sci. 1989, 24, 1273–1280. [Google Scholar] [CrossRef]
- Vekilov, P.G.; Rosenberger, F. Dependence of lysozyme growth kinetics on step sources and impurities. J. Cryst. Growth 1996, 158, 540–551. [Google Scholar] [CrossRef]
- Liao, X.; Wiedmann, T.S. Measurement of process-dependent material properties of pharmaceutical solids by nanoindentation. J. Pharm. Sci. 2005, 94, 79–92. [Google Scholar] [CrossRef] [PubMed]
- Oliver, W.C.; Pharr, G.M. An improved technique for determining harness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 1992, 7, 1564–1583. [Google Scholar] [CrossRef]
- Egart, M.; Janković, B.; Lah, N.; Ilić, I.; Srčič, S. Nanomechanical properties of selected single pharmaceutical crystals as a predictor of their bulk behavior. Pharm. Res. 2015, 32, 469–481. [Google Scholar] [CrossRef] [PubMed]
- Vlassak, J.J.; Nix, W.D. Measuring the elastic properties of materials by means of indentation. J. Mech. Phys. Solids 1994, 42, 1223–1245. [Google Scholar] [CrossRef]
- Kiran, M.S.R.N.; Varughese, S.; Reddy, C.M.; Ramamurty, U.; Desiraju, G.R. Mechanical anisotropy in crystalline saccharin: Nanoindentation studies. Cryst. Growth Des. 2010, 10, 4650–4655. [Google Scholar] [CrossRef]
- Armstrong, R.W.; Bardenhagen, S.G.; Elban, W.L. Deformation-induced hot spot consequences of AP and RDX crystal hardness measurements. Int. J. Energ. Mater. Chem. Propuls. 2012, 11, 413–425. [Google Scholar] [CrossRef]
- Sanphui, P.; Mishra, M.K.; Ramamurty, U.; Desiraju, G.R. Tuning mechanical properties of pharmaceutical crystals with multicomponent crystals: Voriconazole as a case study. Mol. Pharm. 2015, 12, 889–897. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, S.K.; Bahr, D.F.; Zbib, H.M. Crystallographic orientation and indenter radius effects on the onset of plasticity during nanoindentation. J. Mater. Res. 2012, 27, 3058–3065. [Google Scholar] [CrossRef]
- Cook, R.F.; Pharr, G.M. Direct observation and analysis of indentation cracking in glasses and ceramics. J. Am. Ceram. Soc. 1990, 73, 787–817. [Google Scholar] [CrossRef]
- Marshall, D.B. The compelling case for indentation as a functional exploratory and characterization tool. J. Am. Ceram. Soc. 2015, 98, 2671–2680. [Google Scholar] [CrossRef] [Green Version]
- Morris, D.J.; Cook, R.F. In-Situ cube-corner indentation of soda-lime glass and fused silica. J. Am. Ceram. Soc. 2004, 87, 1494–1501. [Google Scholar] [CrossRef]
- Yeager, J.D.; Ramos, K.J.; Singh, S.; Rutherford, M.E.; Majewski, J.; Hooks, D.E. Nanoindentation of explosive polymer composites to simulate deformation and failure. Mater. Sci. Technol. 2012, 28, 1147–1155. [Google Scholar] [CrossRef]
- Meier, M.; John, E.; Wieckhusen, D.; Wirth, W.; Peukert, W. Influence of mechanical properties on impact fracture: Prediction of the milling behaviour of pharmaceutical powders by nanoindentation. Powder Technol. 2009, 188, 301–313. [Google Scholar] [CrossRef]
- Olusanmi, D.; Roberts, K.J.; Ghadiri, M.; Ding, Y. The breakage behaviour of Aspirin under quasi-static indentation and single particle impact loading: Effect of crystallographic anisotropy. Int. J. Pharm. 2011, 411, 49–63. [Google Scholar] [CrossRef] [PubMed]
- Lawn, B.; Wilshaw, R. Indentation fracture: Principles and applications. J. Mater. Sci. 1975, 10, 1049–1081. [Google Scholar] [CrossRef]
- Morris, D.J. Instrumented Indentation Contact with Sharp Probes of Varying Acuity. MRS Online Proc. Library Arch. 2008, 1049, 111–116. [Google Scholar] [CrossRef]
- Schuh, C.A.; Mason, J.K.; Lund, A.C. Quantitative insight into dislocation nucleation from high-temperature nanoindentation experiments. Nat. Mater. 2005, 4, 617–621. [Google Scholar] [CrossRef] [PubMed]
- Maughan, M.R.; Bahr, D.F. Discontinuous yield behaviors under various pre-strain conditions in metals with different crystal structures. Mater. Res. Lett. 2016, 4, 83–89. [Google Scholar] [CrossRef]
- Hooks, D.E.; Ramos, K.J.; Bahr, D.F. The effect of cracks and voids on the dynamic yield of RDX single crystals. AIP Conf. Proc. 2007, 955, 789–794. [Google Scholar]
- Maughan, M.R.; Carvajal, M.T.; Bahr, D.F. Nanomechanical testing technique for millimeter-sized and smaller molecular crystals. Int. J. Pharm. 2015, 486, 324–330. [Google Scholar] [CrossRef] [PubMed]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burch, A.C.; Yeager, J.D.; Bahr, D.F. Nanoindentation of HMX and Idoxuridine to Determine Mechanical Similarity. Crystals 2017, 7, 335. https://doi.org/10.3390/cryst7110335
Burch AC, Yeager JD, Bahr DF. Nanoindentation of HMX and Idoxuridine to Determine Mechanical Similarity. Crystals. 2017; 7(11):335. https://doi.org/10.3390/cryst7110335
Chicago/Turabian StyleBurch, Alexandra C., John D. Yeager, and David F. Bahr. 2017. "Nanoindentation of HMX and Idoxuridine to Determine Mechanical Similarity" Crystals 7, no. 11: 335. https://doi.org/10.3390/cryst7110335
APA StyleBurch, A. C., Yeager, J. D., & Bahr, D. F. (2017). Nanoindentation of HMX and Idoxuridine to Determine Mechanical Similarity. Crystals, 7(11), 335. https://doi.org/10.3390/cryst7110335