Pr9.33(SiO4)6O2 Crystals: Czochralski Growth and Near UV-Visible FR Performance
Abstract
:1. Introduction
2. Experimental
3. Results and Discussion
3.1. Structure Refinement
3.2. Optical Transmission
3.3. Paramagnetic Behavior
3.4. Magneto-Optical Performance
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Khazanov, E.; Andreev, N.; Palashov, O.; Poteomkin, A.; Sergeev, A.; Mehl, O.; Reitze, D.H. Effect of terbium gallium garnet crystal orientation on the isolation ratio of a Faraday isolator at high average power. Appl. Opt. 2002, 41, 483–492. [Google Scholar] [CrossRef] [PubMed]
- Vasyliev, V.; Villora, E.G.; Nakamura, M.; Sugahara, Y.; Shimamura, K. UV–visible Faraday rotators based on rare-earth fluoride single crystals: LiREF4 (RE = Tb, Dy, Ho, Er and Yb), PrF3 and CeF3. Opt. Express 2012, 20, 14460–14470. [Google Scholar] [CrossRef] [PubMed]
- Bedarev, V.A.; Pashchenko, M.I.; Merenkov, D.N.; Savina, Y.O.; Pashchenko, V.O.; Gnatchenko, S.L.; Bezmaternykh, L.N.; Temerov, V.L. The Faraday effect in TbFe3(BO3)4 and TbAl3(BO3)4 borates. J. Magn. Magn. Mater. 2014, 362, 150–153. [Google Scholar] [CrossRef]
- Tsushima, K.; Koshizuka, N. Research activities on magneto-optical devices in Japan. IEEE Trans. Magn. 1987, 23, 3473–3478. [Google Scholar] [CrossRef]
- Tanaka, K.; Tatehata, N.; Fujita, K.; Hirao, K.; Soga, N. The Faraday effect and magneto-optical figure of merit in the visible region for lithium borate glasses containing Pr3+. J. Phys. D Appl. Phys. 1998, 31, 2622–2627. [Google Scholar] [CrossRef]
- Shoji, Y.; Mizumoto, T.; Yokoi, H.; Hsieh, I.W.; Osgood, R.M. Magneto-optical isolator with silicon waveguides fabricated by direct bonding. Appl. Phys. Lett. 2008, 92, 071117. [Google Scholar] [CrossRef]
- Modi, K.B.; Vara, R.P.; Vora, H.G.; Chhantbar, M.C.; Joshi, H.H. Infrared spectroscopic study of Fe3+ substituted yttrium iron garnet. J. Mater. Sci. 2004, 39, 2187–2189. [Google Scholar] [CrossRef]
- Lee, D.; Choi, K.; Kim, K.D.; Park, Y. Visible light wireless communications based on predistorted OFDM. Opt. Commun. 2012, 285, 1767–1770. [Google Scholar] [CrossRef]
- Cui, K.Y.; Quan, J.G.; Xu, Z.Y. Performance of indoor optical femtocell by visible light communication. Opt. Commun. 2013, 298–299, 59–66. [Google Scholar] [CrossRef]
- Das, P.; Park, Y.; Kim, K.D. Performance of color-independent OFDM visible light communication based on color space. Opt. Commun. 2014, 324, 264–268. [Google Scholar] [CrossRef]
- Geho, M.; Sekijima, T.; Fujii, T. Growth of terbium aluminum garnet (Tb3Al5O12; TAG) single crystals by the hybrid laser floating zone machine. J. Cryst. Growth 2004, 267, 188–193. [Google Scholar] [CrossRef]
- Yasuhara, R.; Tokita, S.; Kawanaka, J.; Kawashima, T.; Kan, H.; Yagi, H.; Nozawa, H.; Yanagitani, T.; Fujimoto, Y.; Yoshida, H.; et al. Cryogenic temperature characteristics of Verdet constant on terbium gallium garnet ceramics. Opt. Express 2007, 15, 11255–11261. [Google Scholar] [CrossRef] [PubMed]
- Giesen, A.; Speiser, J. Fifteen years of work on thin-disk lasers: Results and scaling laws. IEEE J. Sel. Top. Quantum 2007, 13, 598–609. [Google Scholar] [CrossRef]
- Hayakawa, T.; Nogami, M.; Nishi, N.; Sawanobori, N. Faraday rotation effect of highly Tb2O3/Dy2O3-concentrated B2O3−Ga2O3−SiO2−P2O5 glasses. Chem. Mater. 2002, 14, 3223–3225. [Google Scholar] [CrossRef]
- Chen, Q.L.; Wang, H.; Wang, Q.W.; Chen, Q.P. Properties of tellurite core/cladding glasses for magneto-optical fibers. J. Non-Cryst. Solids 2014, 400, 51–57. [Google Scholar] [CrossRef]
- Miyanaga, N.; Azechi, H.; Tanaka, K.A.; Kanabe, T.; Jitsuno, T.; Kawanaka, J.; Fujimoto, Y.; Kodama, R.; Shiraga, H.; Knodo, K.; et al. 10-kJ PW laser for the FIREX-I program. J. Phys. IV France 2006, 133, 81–87. [Google Scholar] [CrossRef] [Green Version]
- Linares, R.C. Growth of garnet laser crystals. Solid State Commun. 1964, 2, 229–231. [Google Scholar] [CrossRef]
- Carruthers, J.R.; Kokta, M.; Barns, R.L.; Grasso, M. Nonstoichiometry and crystal growth of gadolinium gallium garnet. J. Cryst. Growth 1973, 19, 204–208. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, W.H.; Wan, Q.P.; Guo, F.Y.; Zhuang, N.F.; Fu, H.; Xie, X.T.; Chen, J.Z. Czochralski growth of Sr2Tb8(SiO4)6O2 crystals for visible–near IR magneto-optical applications. Opt. Mater. 2014, 37, 188–192. [Google Scholar] [CrossRef]
- Berger, S.B.; Rubinstein, C.B.; Kurkjian, C.R.; Treptow, A.W. Faraday rotation of rare-earth (III) phosphate glasses. Phys. Rev. 1964, 133, A723–A727. [Google Scholar] [CrossRef]
- MacFarlane, D.R.; Bradbury, C.R.; Newman, P.J.; Javorniczky, J. Faraday rotation in rare earth fluorozirconate glasses. J. Non-Cryst. Solids 1997, 213–214, 199–204. [Google Scholar] [CrossRef]
- Higuchi, M.; Katase, H.; Kodaira, K.; Nakayama, S. Float zone growth and characterization of Pr9.33(SiO4)6O2 and Sm9.33(SiO4)6O2 single crystals with an apatite structure. J. Cryst. Growth 2000, 218, 282–286. [Google Scholar] [CrossRef]
- Kolitsch, U.; Seifert, H.J.; Aldinger, F. The Identity of Monoclinic La2O3 and Monoclinic Pr2O3 With La9.33(SiO4)6O2 and Pr9.33(SiO4)6O2, Respectively. J. Solid State Chem. 1995, 120, 38–42. [Google Scholar] [CrossRef]
- Masubuchi, Y.; Higuchi, M.; Takeda, T.; Kikkawa, S. Oxide ion conduction mechanism in RE9.33(SiO4)6O2 and Sr2RE8(SiO4)6O2 (RE = La, Nd) from neutron powder diffraction. Solid State Ion. 2006, 177, 263–268. [Google Scholar] [CrossRef]
- Yamane, A.; Kunimoto, T.; Kobayashi, H. Luminescent properties of Tb-activated rare-earth oxyapatite silicate MLn4Si3O13 (M = Ca, Sr, Ln = La, Gd). Phys. Status Solidi C 2006, 3, 2705–2708. [Google Scholar] [CrossRef]
- Lebedev, V.A.; Voroshilov, I.V.; Ignatiev, B.V.; Gavrilenko, A.N.; Isaev, V.A.; Shestakov, A.V. Spectroscopy of ytterbium in Gd4CaO(SiO4)3 (CGS). J. Lumin. 2000, 92, 139–144. [Google Scholar] [CrossRef]
- Druon, F.; Chénais, S.; Raybaut, P.; Balembois, F.; Georges, P.; Gaumé, R.; Haumesser, P.H.; Viana, B.; Vivien, D.; Dhellemmes, S.; et al. Apatite-structure crystal, Yb3+: SrY4(SiO4)3O, for the development of diode-pumped femtosecond lasers. Opt. Lett. 2002, 27, 1914–1916. [Google Scholar] [CrossRef]
- Chen, X.; Gong, Z.L.; Fu, H.; Zhuang, N.F.; Zhang, W.H.; Xie, X.T.; Guo, F.Y.; Chen, J.Z. Czochralski growth and Faraday rotation properties of Tb9.33(SiO4)6O2 crystals. J. Cryst. Growth 2015, 418, 126–129. [Google Scholar] [CrossRef]
- Liebertz, J. Crystal growth from melts of high viscosity. Prog. Cryst. Growth Charact. 1983, 6, 361–369. [Google Scholar] [CrossRef]
- Young, R.A.; Shakthivel, A.; Moss, T.S.; Paiva-Santos, C.O. DBWS-9411-an upgrade of the DBWS*.* programs for Rietveld refinement with PC and mainframe computers. J. Appl. Crystallogr. 1995, 28, 366–367. [Google Scholar] [CrossRef]
- Yoshida, H.; Tsubakimoto, K.; Fujimoto, Y.; Mikami, K.; Fujita, H.; Miyanaga, N.; Nozawa, H.; Yagi, H.; Yanagitani, T.; Nagata, Y.; et al. Optical properties and Faraday effect of ceramicterbium gallium garnet for a room temperatureFaraday rotator. Opt. Express 2011, 19, 15181–15187. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, M.; Uematsu, K.; Ye, Z.G.; Sato, M. Single-Crystal Growth and Structure Determination of a new oxide apatite, NaLa9(GeO4)6O2. J. Solid State Chem. 1998, 139, 304–309. [Google Scholar] [CrossRef]
- Rosenkranz, S.; Ramirez, A.P.; Hayashi, A.; Cava, R.J.; Siddharthan, R.; Shastry, B.S. Crystal-field interaction in the pyrochlore magnet Ho2Ti2O7. J. Appl. Phys. 2000, 87, 5914–5916. [Google Scholar] [CrossRef]
- Gingras, M.; Hertog, B.; Faucher, M.; Gardner, J.; Dunsiger, S.; Chang, L.; Gaulin, B.; Raju, N.; Greedanm, J. Thermodynamic and single-ion properties of Tb3+within thecollective paramagnetic-spin liquid state of the frustrated pyrochlore antiferromagnet Tb2Ti2O7. Phys. Rev. B 2000, 62, 6496–6511. [Google Scholar] [CrossRef]
- Hiroaki, N.; Makoto, W.; Yukio, H. Crystal structures, magnetic and thermal properties of Ln3IrO7(Ln=Pr, Nd, Sm, and Eu). J. Solid State Chem. 2004, 177, 739–744. [Google Scholar]
- Qiu, J.R.; Tanaka, K.; Sugimoto, N.; Hirao, K. Faraday effect in Tb3+-containing borate, fluoride and fluorophosphates glasses. J. Non-Cryst. Solids 1997, 213–214, 193–198. [Google Scholar] [CrossRef]
Atom | Site | Site Occ. | x | y | z |
---|---|---|---|---|---|
Pr1 | 4f | 0.849 | 1/3 | 2/3 | 0.0014 |
Pr2 | 6h | 1.0 | 0.0124 | 0.2400 | 1/4 |
Si | 6h | 1.0 | 0.3935 | 0.3702 | 1/4 |
O1 | 6h | 1.0 | 0.3165 | 0.4693 | 1/4 |
O2 | 6h | 1.0 | 0.5813 | 0.4818 | 1/4 |
O3 | 12i | 1.0 | 0.3432 | 0.2570 | 0.0735 |
O4 | 2a | 1.0 | 0 | 0 | 1/4 |
Crystal | λ0 (nm) | E (107 rad nm2 T–1 m–1) | NRE (1021 ions cm–3) |
---|---|---|---|
PSO | 239 | 5.2755 | 16.71 |
TGG | 260 | 4.2595 | 12.74 |
PrF3 [2] | 184 | 4.5965 | 19.10 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Chen, J. Pr9.33(SiO4)6O2 Crystals: Czochralski Growth and Near UV-Visible FR Performance. Crystals 2017, 7, 229. https://doi.org/10.3390/cryst7080229
Chen X, Chen J. Pr9.33(SiO4)6O2 Crystals: Czochralski Growth and Near UV-Visible FR Performance. Crystals. 2017; 7(8):229. https://doi.org/10.3390/cryst7080229
Chicago/Turabian StyleChen, Xin, and Jianzhong Chen. 2017. "Pr9.33(SiO4)6O2 Crystals: Czochralski Growth and Near UV-Visible FR Performance" Crystals 7, no. 8: 229. https://doi.org/10.3390/cryst7080229
APA StyleChen, X., & Chen, J. (2017). Pr9.33(SiO4)6O2 Crystals: Czochralski Growth and Near UV-Visible FR Performance. Crystals, 7(8), 229. https://doi.org/10.3390/cryst7080229