Can Microbially Induced Calcite Precipitation (MICP) through a Ureolytic Pathway Be Successfully Applied for Removing Heavy Metals from Wastewaters?
Abstract
:1. Heavy Metals and Environmental Problems
2. Conventional Treatment of Wastewaters Containing Heavy Metals
3. Microbially Induced Calcite Precipitation (MICP) Process
3.1. Precipitation by Ureolytic MICP Process
- (a)
- (b)
- Chemical equilibrium: Ammonia from the urea hydrolysis turns into ammonium, releasing hydroxide ions and increasing the micro-environmental pH, which generates favorable conditions for further precipitation [11] (Equation (3)). Hydroxide ions induce carbonate formation from carbonic acid (Equations (4) and (5)).
- (c)
- Heterogeneous nucleation: Calcium ions are bound to the external cell surface because of the negatively charged functional groups in the cell wall (Equation (6)). Then, calcite formation occurs in the cell surface, once the calcium ion activity is sufficient and the saturation conditions are favorable for CaCO3 precipitation (Equation (7)) [16].
- (d)
- Successive stratification: Successive calcite layers are developed on the external cell surface (stratification) [17]. The nutrients transfer is limited, and the cells get embedded by calcite crystals, provoking cellular death.
3.2. Factors Governing the Ureolytic MICP Process
4. The Ureolytic MICP Process as Treatment for Heavy Metal Removal from Wastewaters
4.1. How Can the Ureolytic MICP Process Remove Heavy Metals?
4.2. Heavy Metals Precipitation through Ureolytic MICP Process for Wastewaters
4.3. Key Aspects for the Application of Ureolytic MICP Process for Wastewater Treatment
4.3.1. Inoculum (Soil/Wastewater)
4.3.2. Substrates
4.3.3. pH of Metal Containing Wastewaters
4.3.4. Bacterial Re-Use after Precipitation/Re-Inoculation
4.3.5. Ammonium Release
5. Wastewaters That May Be Potentially Treated by the Ureolytic MICP Process
5.1. Tannery
5.2. Mining and Metal Refinery
5.3. Electroplating
6. Concluding Remarks
Funding
Acknowledgments
Conflicts of Interest
References
- Fu, F.; Wang, Q. Removal of heavy metal ions from wastewaters: A review. J. Environ. Manag. 2011, 92, 407–418. [Google Scholar] [CrossRef] [PubMed]
- Ilhan, S.; Nourbaksh, M.; Kilicarslan, S.; Ozdag, H. Removal of chromium, lead and copper ions from industrial waste waters by Staphylococcus saprophyticus. Turk. Electron. J. Biotechnol. 2004, 2, 50–57. [Google Scholar]
- Barakat, M.A. New trends in removing heavy metals from industrial wastewater. Arab. J. Chem. 2011, 4, 361–377. [Google Scholar] [CrossRef]
- Zhao, M.; Xu, Y.; Zhang, C.; Rong, H.; Zeng, G. New trends in removing heavy metals from wastewater. Appl. Microbiol. Biotechnol. 2016, 100, 6509–6518. [Google Scholar] [CrossRef] [PubMed]
- Arbabi, M.; Hemati, S.; Amiri, M. Removal of lead ions from industrial wastewater: A review of Removal methods. Int. J. Epidemiol. Res. 2015, 2, 105–109. [Google Scholar]
- Ahluwalia, S.S.; Goyal, D. Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresour. Technol. 2007, 98, 2243–2257. [Google Scholar] [CrossRef] [PubMed]
- Nancharaiah, Y.V.; Mohan, S.V.; Lens, P.N.L. Biological and Bioelectrochemical Recovery of Critical and Scarce Metals. Trends Biotechnol. 2016, 34, 137–155. [Google Scholar] [CrossRef] [PubMed]
- Tsezos, M.; Hatzikioseyian, A.; Remoudaki, E. Biofilm Reactors in Mining and Metallurgical Effluent Treatment: Biosorption, Bioprecipitation, Bioreduction Processes. 2012. Available online: http://www.metal.ntua.gr/uploads (accessed on 2 September 2018).
- Lesmana, S.O.; Febriana, N.; Soetaredjo, F.E.; Sunarso, J.; Ismadji, S. Studies on potential applications of biomass for the separation of heavy metals from water and wastewater. Biochem. Eng. J. 2009, 44, 19–41. [Google Scholar] [CrossRef]
- Phillips, A.J.; Gerlach, R.; Lauchnor, E.; Mitchell, A.C.; Cunningham, A.B.; Spangler, L. Engineered applications of ureolytic biomineralization: A review. Biofouling 2013, 29, 715–733. [Google Scholar] [CrossRef] [PubMed]
- Hammes, F.; Verstraete, W. Key roles of pH and calcium metabolism in microbial carbonate precipitation. Rev. Environ. Sci. Biotechnol. 2002, 1, 3–7. [Google Scholar] [CrossRef]
- Seifan, M.; Samani, A.K.; Berenjian, A. New insights into the role of pH and aeration in the bacterial production of calcium carbonate (CaCO3). Appl. Microbiol. Biotechnol. 2017, 101, 3131–3142. [Google Scholar] [CrossRef] [PubMed]
- Whiffin, V.S.; van Paassen, L.A.; Harkes, M.P. Microbial Carbonate Precipitation as a Soil Improvement Technique. Geomicrobiol. J. 2007, 24, 417–423. [Google Scholar] [CrossRef]
- Seifan, M.; Samani, A.K.; Berenjian, A. Bioconcrete: Next generation of self-healing concrete. Appl. Microbiol. Biotechnol. 2016, 100, 2591–2602. [Google Scholar] [CrossRef] [PubMed]
- Stocks-Fischer, S.; Galinat, J.K.; Bang, S.S. Microbiological precipitation of CaCO3. Soil Biol. Biochem. 1999, 31, 1563–1571. [Google Scholar] [CrossRef]
- Kumari, D.; Qian, X.-Y.; Pan, X.; Achal, V.; Li, Q.; Gadd, G.M. Microbially-induced Carbonate Precipitation for Immobilization of Toxic Metals. Adv. Appl. Microbiol. 2016, 94, 79–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castanier, S.; Le Métayer-Levrel, G.; Perthuisot, J.-P. Ca-carbonates precipitation and limestone genesis–The microbiogeologist point of view. Sediment. Geol. 1999, 126, 9–23. [Google Scholar] [CrossRef]
- DeJong, J.T.; Mortensen, B.M.; Martinez, B.C.; Nelson, D.C. Bio-mediated soil improvement. Ecol. Eng. 2010, 36, 197–210. [Google Scholar] [CrossRef]
- Dhami, N.K.; Reddy, M.S.; Mukherjee, M.S. Biomineralization of calcium carbonates and their engineered applications: A review. Front. Microbiol. 2013, 4, 314. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, S.K.; Ramakrishnan, V.; Bang, S.S. Remediation of concrete using micro-organisms. ACI Mater. J. 2001, 98, 3–9. [Google Scholar]
- Achal, V.; Mukherjee, A. A review of microbial precipitation for sustainable construction. Constr. Build. Mater. 2015. [Google Scholar] [CrossRef]
- Mitchell, A.C.; Dideriksen, K.; Spangler, L.H.; Cunningham, A.B.; Gerlach, R. Microbially enhanced carbon capture and storage by mineral-trapping and solubility-trapping. Environ. Sci. Technol. 2010, 44, 5270–5276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Declet, A.; Reyes, E.; Suárez, O.M. Calcium Carbonate Precipitation: A Review of the Carbonate Crystallization Process and Applications in Bioinspired Composites. Rev. Adv. Mater. Sci. 2016, 44, 87–107. [Google Scholar]
- Anbu, P.; Kang, C.-H.; Shin, Y.-J.; So, J.-S. Formations of calcium carbonate minerals by bacteria and its multiple applications. Springerplus 2016, 5, 250. [Google Scholar] [CrossRef] [PubMed]
- Bhaduri, S.; Debnath, N.; Mitra, S.; Liu, Y.; Kumar, A. Microbiologically Induced Calcite Precipitation Mediated by Sporosarcina pasteurii. J. Vis. Exp. 2016, e53253. [Google Scholar] [CrossRef] [PubMed]
- Gorospe, C.M.; Han, S.H.; Kim, S.G.; Park, J.Y.; Kang, C.H.; Jeong, J.H.; So, J.S. Effects of different calcium salts on calcium carbonate crystal formation by Sporosarcina pasteurii KCTC 3558. Biotechnol. Bioprocess Eng. 2013, 18, 903–908. [Google Scholar] [CrossRef]
- Li, M.; Cheng, X.; Guo, H. Heavy metal removal by biomineralization of urease producing bacteria isolated from soil. Int. Biodeterior. Biodegrad. 2013, 76, 81–85. [Google Scholar] [CrossRef]
- Mugwar, A.J.; Harbottle, M.J. Toxicity effects on metal sequestration by microbially-induced carbonate precipitation. J. Hazard. Mater. 2016, 314, 237–248. [Google Scholar] [CrossRef] [PubMed]
- De Muynck, W.; De Belie, N.; Verstraete, W. Microbial carbonate precipitation in construction materials: A review. Ecol. Eng. 2010, 36, 118–136. [Google Scholar] [CrossRef]
- Okwadha, G.D.O.; Li, J. Optimum conditions for microbial carbonate precipitation. Chemosphere 2010, 81, 1143–1148. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, A.C.; Ferris, F.G. The coprecipitation of Sr into calcite precipitates induced by bacterial ureolysis in artificial groundwater: Temperature and kinetic dependence. Geochim. Cosmochim. Acta 2005, 69, 4199–4210. [Google Scholar] [CrossRef]
- Krajewska, B. Urease-aided calcium carbonate mineralization for engineering applications: A review. J. Adv. Res. 2017. [Google Scholar] [CrossRef] [PubMed]
- Achal, V.; Pan, X.; Zhang, D. Remediation of copper-contaminated soil by Kocuria flava CR1, based on microbially induced calcite precipitation. Ecol. Eng. 2011, 37, 1601–1605. [Google Scholar] [CrossRef]
- Li, M.; Fu, Q.L.; Zhang, Q.; Achal, V.; Kawasaki, S. Bio-grout based on microbially induced sand solidification by means of asparaginase activity. Sci. Rep. 2015, 5, 16128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, C.-H.; Oh, S.J.; Shin, Y.; Han, S.-H.; Nam, I.-H.; So, J.-S. Bioremediation of lead by ureolytic bacteria isolated from soil at abandoned metal mines in South Korea. Ecol. Eng. 2015, 74, 402–407. [Google Scholar] [CrossRef]
- Mwandira, W.; Nakashima, K.; Kawasaki, S. Bioremediation of lead-contaminated mine waste by Pararhodobacter sp. based on the microbially induced calcium carbonate precipitation technique and its effects on strength of coarse and fine grained sand. Ecol. Eng. 2017, 109, 57–64. [Google Scholar] [CrossRef]
- Qian, X.; Fang, C.; Huang, M.; Achal, V. Characterization of fungal-mediated carbonate precipitation in the biomineralization of chromate and lead from an aqueous solution and soil. J. Clean. Prod. 2017, 164, 198–208. [Google Scholar] [CrossRef]
- Kang, C.H.; Han, S.H.; Shin, Y.; Oh, S.J.; So, J.S. Bioremediation of Cd by microbially induced calcite precipitation. Appl. Biochem. Biotechnol. 2014, 172, 2907–2915. [Google Scholar] [CrossRef] [PubMed]
- Kumari, D.; Pan, X.; Lee, D.J.; Achal, V. Immobilization of cadmium in soil by microbially induced carbonate precipitation with Exiguobacterium undae at low temperature. Int. Biodeterior. Biodegrad. 2014, 94, 98–102. [Google Scholar] [CrossRef]
- Zhao, C.; Fu, Q.; Song, W.; Zhang, D.; Ahati, J.; Pan, X.; Al-Misned, F.A.; Mortuza, M.G. Calcifying cyanobacterium (Nostoc calcicola) reactor as a promising way to remove cadmium from water. Ecol. Eng. 2015, 81, 107–114. [Google Scholar] [CrossRef]
- Achal, V.; Pan, X.; Fu, Q.; Zhang, D. Biomineralization based remediation of As(III) contaminated soil by Sporosarcina ginsengisoli. J. Hazard. Mater. 2012, 201–202, 178–184. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Csetenyi, L.; Gadd, G.M. Biomineralization of metal carbonates by Neurospora crassa. Environ. Sci. Technol. 2014, 48, 14409–14416. [Google Scholar] [CrossRef] [PubMed]
- Hammes, F.; Seka, A.; Van Hege, K.; Van De Wiele, T.; Vanderdeelen, J.; Siciliano, S.D.; Verstraete, W. Calcium removal from industrial wastewater by bio-catalytic CaCO3 precipitation. J. Chem. Technol. Biotechnol. 2003, 78, 670–677. [Google Scholar] [CrossRef]
- Carballa, M.; Moerman, W.; De Windt, W.; Grootaerd, H.; Verstraete, W. Strategies to optimize phosphate removal from industrial anaerobic effluents by magnesium ammonium phosphate (MAP) production. J. Chem. Technol. Biotechnol. 2009, 84, 63–68. [Google Scholar] [CrossRef]
- Arias, D.; Cisternas, L.; Rivas, M. Biomineralization Mediated by Ureolytic Bacteria Applied to Water Treatment: A Review. Crystals 2017, 7, 345. [Google Scholar] [CrossRef]
- Fujita, Y.; Ferris, F.; Lawson, R.; Colwell, F.; Smith, R. Calcium Carbonate Precipitation by Ureolytic Subsurface Bacteria. Geomicrobiol. J. 2000, 17, 305–318. [Google Scholar] [CrossRef]
- Zhao, Y.; Yao, J.; Yuan, Z.; Wang, T.; Zhang, Y.; Wang, F. Bioremediation of Cd by strain GZ-22 isolated from mine soil based on biosorption and microbially induced carbonate precipitation. Environ. Sci. Pollut. Res. 2017, 24. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Pan, X.; Zhao, C.; Mou, S.; Achal, V.; Al-Misned, F.A.; Mortuza, M.G.; Gadd, G.M. Bioimmobilization of Heavy Metals in Acidic Copper Mine Tailings Soil. Geomicrobiol. J. 2016, 33, 261–266. [Google Scholar] [CrossRef]
- Arias, D.; Valdes, P.; Cisternas, L.A.; Rivas, M. Isolation and Selection of Halophilic Ureolytic Bacteria for Biocementation of Calcium and Magnesium from Seawater. Adv. Mater. Res. 2015, 1130, 489–492. [Google Scholar] [CrossRef]
- Kang, C.; Kwon, Y.; So, J. Bioremediation of heavy metals by using bacterial mixtures. Ecol. Eng. 2016, 89, 64–69. [Google Scholar] [CrossRef]
- Gat, D.; Tsesarsky, M.; Shamir, D.; Ronen, Z. Accelerated microbial-induced CaCO3 precipitation in a defined coculture of ureolytic and non-ureolytic bacteria. Biogeosciences 2014, 11, 2561–2569. [Google Scholar] [CrossRef]
- Matijašević, L.; Dejanović, I.; Lisac, H. Treatment of wastewater generated by urea production. Resour. Conserv. Recycl. 2010, 54, 149–154. [Google Scholar] [CrossRef]
- Barmaki, M.M.; Rahimpour, M.R.; Jahanmiri, A. Treatment of wastewater polluted with urea by counter-current thermal hydrolysis in an industrial urea plant. Sep. Purif. Technol. 2009, 66, 492–503. [Google Scholar] [CrossRef]
- Van Langerak, E.P.A.; Hamelers, H.V.M.; Lettinga, G. Influent calcium removal by crystallization reusing anaerobic effluent alkalinity. Water Sci. Technol. 1997, 36, 341–348. [Google Scholar] [CrossRef]
- Akcil, A.; Koldas, S. Acid Mine Drainage (AMD): Causes, treatment and case studies. J. Clean. Prod. 2006, 14, 1139–1145. [Google Scholar] [CrossRef]
- Gaikwad, R.W.; Gupta, D.V. Review on Removal of Heavy Metals From Acid Mine Drainage. Appl. Ecol. Environ. Res. 2008, 6, 81–98. [Google Scholar] [CrossRef]
- Gat, D.; Ronen, Z.; Tsesarsky, M. Long-term sustainability of microbial-induced CaCO3 precipitation in aqueous media. Chemosphere 2017, 184, 524–531. [Google Scholar] [CrossRef] [PubMed]
- Meessen, J.; Wo, F. Urea synthesis. 2014, 2180–2189. [Google Scholar] [CrossRef]
- Mao, N.; Ren, H.; Geng, J.; Ding, L.; Xu, K. Engineering application of anaerobic ammonium oxidation process in wastewater treatment. World J. Microbiol. Biotechnol. 2017, 33, 153. [Google Scholar] [CrossRef] [PubMed]
- Khalid, S.; Shahid, M.; Niazi, N.K.; Murtaza, B.; Bibi, I.; Dumat, C. A comparison of technologies for remediation of heavy metal contaminated soils. J. Geochem. Explor. 2016, 182, 247–268. [Google Scholar] [CrossRef]
- Kalidhasan, S.; Kumar, A.S.K.; Rajesh, V.; Rajesh, N. The journey traversed in the remediation of hexavalent chromium and the road ahead toward greener alternatives—A perspective. Coord. Chem. Rev. 2016, 317, 157–166. [Google Scholar] [CrossRef]
- Achal, V.; Pan, X.; Lee, D.J.; Kumari, D.; Zhang, D. Remediation of Cr(VI) from chromium slag by biocementation. Chemosphere 2013, 93. [Google Scholar] [CrossRef] [PubMed]
- Ferris, F.G.; Phoenix, V.; Fujita, Y.; Smith, R.W. Kinetics of calcite precipitation induced by ureolytic bacteria at 10 to 20 °C in artificial groundwater. Geochim. Cosmochim. Acta 2004, 68, 1701–1722. [Google Scholar] [CrossRef]
- Rehman, A.; Shakoori, F.R.; Shakoori, A.R. Heavy metal resistant freshwater ciliate, Euplotes mutabilis, isolated from industrial effluents has potential to decontaminate wastewater of toxic metals. Bioresour. Technol. 2008, 99, 3890–3895. [Google Scholar] [CrossRef] [PubMed]
- Castro, S.H.; Sa, M. Environmental viewpoint on small-scale copper, gold and silver mining in Chile. J. Clean. Prod. 2003, 11, 207–213. [Google Scholar] [CrossRef]
- Obreque-Contreras, J.; Pérez-Flores, D.; Gutiérrez, P.; Chávez-Crooker, P. Acid Mine Drainage in Chile: An Opportunity to Apply Bioremediation Technology. J. Forensic Res. 2015, 6, 1–8. [Google Scholar] [CrossRef]
- Wang, L.; Ji, B.; Hu, Y.; Liu, R.; Sun, W. A review on in situ phytoremediation of mine tailings. Chemosphere 2017, 184, 594–600. [Google Scholar] [CrossRef] [PubMed]
- Martín-Lara, M.A.; Blázquez, G.; Trujillo, M.C.; Pérez, A.; Calero, M. New treatment of real electroplating wastewater containing heavy metal ions by adsorption onto olive stone. J. Clean. Prod. 2014, 81, 120–129. [Google Scholar] [CrossRef]
- Panayotova, T.; Dimova-Todorova, M.; Dobrevsky, I. Purification and reuse of heavy metals containing wastewaters from electroplating plants. Desalination 2007, 206, 135–140. [Google Scholar] [CrossRef]
- Kurniawan, T.A.; Chan, G.Y.S.; Lo, W.H.; Babel, S. Physico-chemical treatment techniques for wastewater laden with heavy metals. Chem. Eng. J. 2006, 118, 83–98. [Google Scholar] [CrossRef]
Bacteria Strain | Medium Conditions | Assay Conditions | Reference | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Medium | Calcium | Urea | Metal | Temperature | Initial pH | Assay Time | Metal Removal | |||
mM | mM | mM | °C | d | % | |||||
Copper | Kocuria flava CR1 | Nutrient broth | 25 | 333 | 4.0 | 30 | 8 | 5 | 97 | [33] |
Sporosarcina pasteurii | NH4–YE medium | 0 | 500 | 14.88 | 30 | n.r. | 2 | 90.5 a | [27] | |
Terrabacter tumescens | 90 a | |||||||||
Sporosarcina sp. R-31323 (UR31) | 90 a | |||||||||
Bacillus lentus (UR41) | 89.5 a | |||||||||
Sporosarcina koreensis (UR47) | 93 a | |||||||||
Sporosarcina globispora (UR53) | 89.5 a | |||||||||
Sporosarcina pasteurii | Oxoid CM0001 nutrient broth/NH4Cl/sodium bicarbonate | 50 | 333 | 0.01 | 30 | 6.5 | 7 | 100 | [28] | |
0.5 | 30 | |||||||||
5.0 | 10 | |||||||||
Terrabacter tumescens A12 | NH4–YE medium | 0 | 500 | 14.88 | Room T° | n.r. | 4 | 90 | [34] | |
Nickel | Sporosarcina pasteurii | NH4–YE medium | 0 | 500 | 15.43 | 30 | n.r. | 2 | 90 a | [27] |
Terrabacter tumescens | 90.5 a | |||||||||
Sporosarcina sp. R-31323 (UR31) | 90 a | |||||||||
Bacillus lentus (UR41) | 89.5 a | |||||||||
Sporosarcina koreensis (UR47) | 89.5 a | |||||||||
Sporosarcina globispora (UR53) | 89.5 a | |||||||||
Terrabacter tumescens A12 | NH4–YE medium | 0 | 500 | 15.43 | Room T° | n.r. | 4 | 90 | [34] | |
Lead | Sporosarcina pasteurii | NH4–YE medium | 0 | 500 | 7.19 | 30 | n.r. | 2 | 100 | [27] |
Terrabacter tumescens | 100 | |||||||||
Sporosarcina sp. R-31323 (UR31) | 100 | |||||||||
Bacillus lentus (UR41) | 100 | |||||||||
Sporosarcina koreensis (UR47) | 100 | |||||||||
Sporosarcina globispora (UR53) | 100 | |||||||||
Enterobacter cloacae KJ46 | NH4–YE medium | 0 | 500 | 0.035 | 30 | 7 | 2 | 68.1 | [35] | |
Enterobacter cloacae KJ47 | 0.028 | 54.2 | ||||||||
Sporosarcina pasteurii | Oxoid CM0001 nutrient broth/NH4Cl/sodium bicarbonate | 50 | 333 | 0.05 | 30 | 6.5 | 7 | 100 | [28] | |
0.5 | 100 | |||||||||
5.0 | 100 | |||||||||
Pararhodobacter sp. | ZoBell marine broth 2216 | 500 | 500 | 5.0 | 30 | 7.6–7.8 | 0.25 | 100 | [36] | |
Penicillium chrysogenum CS1 | modified martin broth | 40 | 333 | 0.48 | 27 | 6.5 | 12 | 98.7 | [37] | |
0.96 | 98.8 | |||||||||
Terrabacter tumescens A12 | NH4–YE medium | 0 | 500 | 7.19 | Room T° | n.r. | 4 | 100 | [34] | |
Cobalt | Sporosarcina pasteurii | NH4–YE medium | 0 | 500 | 15.4 | 30 | n.r. | 2 | 92 a | [27] |
Terrabacter tumescens | 91.5 a | |||||||||
Sporosarcina sp. R-31323 (UR31) | 94 a | |||||||||
Bacillus lentus (UR41) | 90 a | |||||||||
Sporosarcina koreensis (UR47) | 93 a | |||||||||
Sporosarcina globispora (UR53) | 90 a | |||||||||
Terrabacter tumescens A12 | NH4–YE medium | 0 | 500 | 15.4 | Room T° | n.r. | 4 | 91 a | [34] | |
Zinc | Sporosarcina pasteurii | NH4–YE medium | 0 | 500 | 14.68 | n.r. | n.r. | 2 | 95.5 | [27] |
Terrabacter tumescens | 97 | |||||||||
Sporosarcina sp. R-31323 (UR31) | 99.5 | |||||||||
Bacillus lentus (UR41) | 93 | |||||||||
Sporosarcina koreensis (UR47) | 99 | |||||||||
Sporosarcina globispora (UR53) | 96.5 | |||||||||
Sporosarcina pasteurii | Oxoid CM0001 nutrient broth/NH4Cl/sodium bicarbonate | 50 | 333 | 0.1 | 30 | 6.5 | 7 | 100 | [28] | |
2.0 | 70 | |||||||||
10.0 | 65 | |||||||||
Terrabacter tumescens A12 | NH4–YE medium | 0 | 500 | 14.68 | Room T° | n.r. | 4 | 97 | [34] | |
Cadmium | Sporosarcina pasteurii | NH4–YE medium | 0 | 500 | 10.91 | 30 | n.r. | 2 | 99.5 | [27] |
Terrabacter tumescens | 100 | |||||||||
Sporosarcina sp. R-31323 (UR31) | 100 | |||||||||
Bacillus lentus (UR41) | 97.5 | |||||||||
Sporosarcina koreensis (UR47) | 100 | |||||||||
Sporosarcina globispora (UR53) | 98 | |||||||||
Lysinibacillus sphaericus CH-5 | Beef extract–peptone broth | 0 | 333 | 7.32 | 30 | 8.3 | 2 | 99.95 | [38] | |
Exiguobacterium undae YR10 | Soil mixed with bacterial suspension at a ratio of 2:1 (w/w) in nutrient broth | 25 | 333 | 39.3 | 10 | 7.5 | 14 | 96.7 | [39] | |
25 | 97.2 | |||||||||
Nostoc calcicola | Fed-batch reactor | 2.5 | - | 0.0025 | 25 | 8 | 60 | 98.8 | [40] | |
Sporosarcina pasteurii | Oxoid CM0001 nutrient broth/NH4Cl/sodium bicarbonate | 50 | 333 | 0.015 | 30 | 6.5 | 7 | 100 | [28] | |
0.15 | 100 | |||||||||
1.5 | 100 | |||||||||
Sporosarcina ginsengisoli | Nutrient broth | 25 | 333 | 0.05 | n.r. | 8 | 7 | 96.3 | [41] | |
Neurospora crassa | modified AP1 medium | n.r. | 40 | 500 | 25 | 6.09 | n.r. | 51.2 | [42] | |
Terrabacter tumescens A12 | NH4–YE medium | 0 | 500 | 10.91 | Room T° | n.r. | 4 | 100 | [34] | |
Chromium | Penicillium chrysogenum CS1 | Modified martin broth | 40 | 333 | 0.96 | 27 | 6.5 | 12 | 65.2 | [37] |
1.92 | 39.4 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torres-Aravena, Á.E.; Duarte-Nass, C.; Azócar, L.; Mella-Herrera, R.; Rivas, M.; Jeison, D. Can Microbially Induced Calcite Precipitation (MICP) through a Ureolytic Pathway Be Successfully Applied for Removing Heavy Metals from Wastewaters? Crystals 2018, 8, 438. https://doi.org/10.3390/cryst8110438
Torres-Aravena ÁE, Duarte-Nass C, Azócar L, Mella-Herrera R, Rivas M, Jeison D. Can Microbially Induced Calcite Precipitation (MICP) through a Ureolytic Pathway Be Successfully Applied for Removing Heavy Metals from Wastewaters? Crystals. 2018; 8(11):438. https://doi.org/10.3390/cryst8110438
Chicago/Turabian StyleTorres-Aravena, Álvaro Esteban, Carla Duarte-Nass, Laura Azócar, Rodrigo Mella-Herrera, Mariella Rivas, and David Jeison. 2018. "Can Microbially Induced Calcite Precipitation (MICP) through a Ureolytic Pathway Be Successfully Applied for Removing Heavy Metals from Wastewaters?" Crystals 8, no. 11: 438. https://doi.org/10.3390/cryst8110438
APA StyleTorres-Aravena, Á. E., Duarte-Nass, C., Azócar, L., Mella-Herrera, R., Rivas, M., & Jeison, D. (2018). Can Microbially Induced Calcite Precipitation (MICP) through a Ureolytic Pathway Be Successfully Applied for Removing Heavy Metals from Wastewaters? Crystals, 8(11), 438. https://doi.org/10.3390/cryst8110438