The Many Facets of Diamond Crystals
Abstract
:1. Introduction
2. Some Facets of Natural Diamond Crystals
3. Some Facets of Synthetic Diamond Crystals
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Sobolev, N.V. The Deep-Seated Inclusions in Kimberlites and the Problem of the Composition of the Upper Mantle; American Geophysics Union: Washington, DC, USA, 1977. [Google Scholar]
- Meyer, H.O.A. Inclusions in diamond. In Mantle Xenoliths; Nixon, H.P., Ed.; John Wiley and Sons: New York, NY, USA, 1987; pp. 501–523. [Google Scholar]
- Harris, J.W. Diamond geology. In The Properties of Natural and Synthetic Diamond; Field, J.E., Ed.; Academic Press: London, UK, 1992; pp. 345–389. [Google Scholar]
- Haggerty, S.E. A diamond trilogy: Superplumes, supercontinents, and supernovae. Science 1995, 285, 851–860. [Google Scholar] [CrossRef]
- Richardson, S.H.; Gurney, J.J.; Erlank, A.J.; Harris, J.W. Origin of diamonds in old enriched mantle. Nature 1984, 310, 198–202. [Google Scholar] [CrossRef]
- Agrosì, G.; Tempesta, G.; Della Ventura, G.; Cestelli Guidi, M.; Hutchison, M.; Nimis, P.; Nestola, F. Non-Destructive In Situ Study of Plastic Deformations in Diamonds: X-ray Diffraction Topography and µFTIR Mapping of Two Super Deep Diamond Crystals from São Luiz (Juina, Brazil). Crystals 2017, 7, 233. [Google Scholar] [CrossRef]
- Kaminsky, F.V.; Khachatryan, G.K.; Andreazza, P.; Araujo, D.P.; Griffin, W.L. Super-deep diamonds from kimberlites in the Juina area, Mato Grosso State, Brazil. Lithos 2009, 112, 833–842. [Google Scholar] [CrossRef]
- Stachel, T.; Brey, G.P.; Harris, J.W. Kankan diamonds (Guinea) I: From the lithosphere down to the transition zone. Contrib. Mineral. Petrol. 2000, 140, 1–15. [Google Scholar] [CrossRef]
- Kaminsky, F. Mineralogy of the lower mantle: A review of ‘super-deep’ mineral inclusions in diamond. Earth Sci. Rev. 2012, 110, 127–147. [Google Scholar] [CrossRef]
- Ragozin, A.; Zedgenizov, D.; Kuper, K.; Palyanov, Y. Specific Internal Structure of Diamonds from Zarnitsa Kimberlite Pipe. Crystals 2017, 7, 133. [Google Scholar] [CrossRef]
- Ragozin, A.; Zedgenizov, D.; Kuper, K.; Kalinina, V.; Zemnukhov, A. The Internal Structure of Yellow Cuboid Diamonds from Alluvial Placers of the Northeastern Siberian Platform. Crystals 2017, 7, 238. [Google Scholar] [CrossRef]
- Cartigny, P.; Palot, M.; Thomassot, E.; Harris, J.W. Diamond formation: A stable isotope perspective. Ann. Rev. Earth Planet. Sci. 2014, 42, 699–732. [Google Scholar] [CrossRef]
- Shirey, S.B.; Cartigny, P.; Frost, D.G.; Keshav, S.; Nestola, F.; Nimis, P.; Pearson, D.G.; Sobolev, N.V.; Walter, M.J. Diamonds and the geology of mantle carbon. Rev. Mineral. Geochem. 2013, 75, 355–421. [Google Scholar] [CrossRef]
- Reutsky, V.N.; Kowalski, P.M.; Palyanov, Y.N.; EIMF; Wiedenbeck, M. Experimental and Theoretical Evidence for Surface-Induced Carbon and Nitrogen Fractionation during Diamond Crystallization at High Temperatures and High Pressures. Crystals 2017, 7, 190. [Google Scholar] [CrossRef]
- Palyanov, Y.N.; Bataleva, Y.V.; Sokol, A.G.; Borzdov, Y.M.; Kupriyanov, I.N.; Reutsky, V.N.; Sobolev, N.V. Mantle–slab interaction and redox mechanism of diamond formation. Proc. Natl. Acad. Sci. USA 2013, 110, 20408–20413. [Google Scholar] [CrossRef] [PubMed]
- Palyanov, Y.N.; Shatsky, V.S.; Sokol, A.G.; Tomilenko, A.A.; Sobolev, N.V. Crystallization of Metamorphic Diamond: An Experimental Modeling. Dokl. Earth Sci. 2001, 381, 935. [Google Scholar]
- Bataleva, Y.V.; Palyanov, Y.N.; Borzdov, Y.M.; Bayukov, O.A.; Sobolev, N.V. Conditions for diamond and graphite formation from iron carbide at the P-T parameters of lithospheric mantle. Russ. Geol. Geophys. 2016, 57, 176–189. [Google Scholar] [CrossRef]
- Palyanov, Y.N.; Sokol, A.G.; Khokhryakov, A.F.; Kruk, A.N. Conditions of diamond crystallization in kimberlite melt: Experimental data. Russ. Geol. Geophys. 2015, 56, 196–210. [Google Scholar] [CrossRef]
- Bundy, F.P.; Hall, H.T.; Strong, H.M.; Wentorf, J.R. Man-made diamonds. Nature 1955, 176, 51–55. [Google Scholar] [CrossRef]
- Bovenkerk, H.P.; Bundy, F.P.; Hall, H.T.; Strong, H.M.; Wentorf, J.R. Preparation of diamond. Nature 1959, 184, 1094–1098. [Google Scholar] [CrossRef]
- Wrachtrup, J.; Jelezko, F.J. Processing quantum information in diamond. J. Phys. Condens. Matter 2006, 18, S807–S824. [Google Scholar] [CrossRef]
- Weber, J.R.; Koehl, W.F.; Varley, J.B.; Janotti, A.; Buckley, B.B.; Van de Walle, C.G.; Awschalom, D.D. Quantum computing with defects. Proc. Natl. Acad. Sci. USA 2010, 107, 8513–8518. [Google Scholar] [CrossRef] [PubMed]
- Prawer, S.; Aharonovich, I. (Eds.) Quantum Information Processing with Diamond; Woodhead Publishing: Cambridge, UK, 2014; 330p. [Google Scholar]
- Dolde, F.; Fedder, H.; Doherty, M.W.; Nöbauer, T.; Rempp, F.; Balasubramanian, G.; Wolf, T.; Reinhard, F.; Hollenberg, L.C.L.; Jelezko, F.; et al. Electric-field sensing using single diamond spins. Nat. Phys. 2011, 7, 459–463. [Google Scholar] [CrossRef]
- Rondin, L.; Tetienne, J.-P.; Hingant, T.; Roch, J.-F.; Maletinsky, P.; Jacques, V. Magnetometry with nitrogen-vacancy defects in diamond. Rep. Prog. Phys. 2014, 77, 056503. [Google Scholar] [CrossRef] [PubMed]
- Schietinger, S.; Barth, M.; Aichele, T.; Benson, O. Plasmon-Enhanced Single Photon Emission from a Nanoassembled Metal−Diamond Hybrid Structure at Room Temperature. Nano Lett. 2009, 9, 1694–1698. [Google Scholar] [CrossRef] [PubMed]
- Barnard, A.S. Diamond standard in diagnostics: Nanodiamond biolabels make their mark. Analyst 2009, 134, 1751–1764. [Google Scholar] [CrossRef] [PubMed]
- Mohan, N.; Chen, C.S.; Hsieh, H.H.; Wu, Y.C.; Chang, H.C. In Vivo Imaging and Toxicity Assessments of Fluorescent Nanodiamonds in Caenorhabditis elegans. Nano Lett. 2010, 10, 3692–3699. [Google Scholar] [CrossRef] [PubMed]
- Hensen, B.; Bernien, H.; Dréau, A.E.; Reiserer, A.; Kalb, N.; Blok, M.S.; Ruitenberg, J.; Vermeulen, R.F.L.; Schouten, R.N.; Abellán, C.; et al. Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature 2015, 526, 682–686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balasubramanian, G.; Chan, I.Y.; Kolesov, R.; Al-Hmoud, M.; Tisler, J.; Shin, C.; Kim, C.; Wojcik, A.; Hemmer, P.R.; Krueger, A.; et al. Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature 2008, 455, 648–651. [Google Scholar] [CrossRef] [PubMed]
- Bernardi, E.; Nelz, R.; Sonusen, S.; Neu, E. Nanoscale Sensing Using Point Defects in Single-Crystal Diamond: Recent Progress on Nitrogen Vacancy Center-Based Sensors. Crystals 2017, 7, 124. [Google Scholar] [CrossRef]
- Pezzagna, S.; Rogalla, D.; Wildanger, D.; Meijer, J.; Zaitsev, A. Creation and nature of optical centres in diamond for single-photon emission—Overview and critical remarks. New J. Phys. 2011, 13, 035024. [Google Scholar] [CrossRef]
- Müller, T.; Hepp, C.; Pingault, B.; Neu, E.; Gsell, S.; Schreck, M.; Sternschulte, H.; Steinmüller-Nethl, D.; Becher, C.; Atatüre, M. Optical signatures of silicon-vacancy spins in diamond. Nat. Commun. 2014, 5, 3328. [Google Scholar] [CrossRef] [PubMed]
- Green, B.L.; Mottishaw, S.; Breeze, B.G.; Edmonds, A.M.; D’Haenens-Johansson, U.F.S.; Doherty, M.W.; Williams, S.D.; Twitchen, D.J.; Newton, M.E. Neutral Silicon-Vacancy Center in Diamond: Spin Polarization and Lifetimes. Phys. Rev. Lett. 2017, 119, 096402. [Google Scholar] [CrossRef] [PubMed]
- Iwasaki, T.; Ishibashi, F.; Miyamoto, Y.; Doi, Y.; Kobayashi, S.; Miyazaki, T.; Tahara, K.; Jahnke, K.D.; Rogers, L.J.; Naydenov, B.; et al. Germanium-Vacancy Single Color Centers in Diamond. Sci. Rep. 2015, 5, 12882. [Google Scholar] [CrossRef] [PubMed]
- Palyanov, Y.N.; Kupriyanov, I.N.; Borzdov, Y.M.; Surovtsev, N.V. Germanium: A new catalyst for diamond synthesis and a new optically active impurity in diamond. Sci. Rep. 2015, 5, 14789. [Google Scholar] [CrossRef] [PubMed]
- Siyushev, P.; Metsch, M.H.; Ijaz, A.; Binder, J.M.; Bhaskar, M.K.; Sukachev, D.D.; Sipahigil, A.; Evans, R.E.; Nguyen, C.T.; Lukin, M.D.; et al. Optical and microwave control of germanium-vacancy center spins in diamond. Phys. Rev. B 2017, 96, 081201. [Google Scholar] [CrossRef]
- Iwasaki, T.; Miyamoto, Y.; Taniguchi, T.; Siyushev, P.; Metsch, M.H.; Jelezko, F.; Hatano, M. Tin-Vacancy Quantum Emitters in Diamond. Phys. Rev. Lett. 2017, 119, 253601. [Google Scholar] [CrossRef] [PubMed]
- Tchernij, S.D.; Herzig, T.; Forneris, J.; Kupper, J.; Pezzagna, S.; Traina, P.; Moreva, E.; Degiovanni, I.P.; Brida, G.; Skukan, N.; et al. Single-Photon-Emitting Optical Centers in Diamond Fabricated upon Sn Implantation. ACS Photonics 2017, 4, 2580–2586. [Google Scholar] [CrossRef]
- Orwa, J.O.; Greentree, A.D.; Aharonovich, I.; Alves, A.D.C.; Van Donkelaar, J.; Stacey, A.; Prawer, S. Fabrication of single optical centres in diamond—A review. J. Lumin. 2010, 130, 1646–1654. [Google Scholar] [CrossRef]
- Aharonovich, I.; Castelletto, S.; Johnson, B.C.; McCallum, J.C.; Prawer, S. Engineering chromium-related single photon emitters in single crystal diamonds. New J. Phys. 2011, 13, 045015. [Google Scholar] [CrossRef]
- Magyar, A.; Hu, W.; Shanley, T.; Flatté, M.E.; Hu, E.; Aharonovich, I. Synthesis of luminescent europium defects in diamond. Nat. Commun. 2014, 5, 3523. [Google Scholar] [CrossRef] [PubMed]
- Nadolinny, V.; Komarovskikh, A.; Palyanov, Y. Incorporation of Large Impurity Atoms into the Diamond Crystal Lattice: EPR of Split-Vacancy Defects in Diamond. Crystals 2017, 7, 237. [Google Scholar] [CrossRef]
- Palyanov, Y.; Kupriyanov, I.; Borzdov, Y.; Nechaev, D.; Bataleva, Y. HPHT Diamond Crystallization in the Mg-Si-C System: Effect of Mg/Si Composition. Crystals 2017, 7, 119. [Google Scholar] [CrossRef]
- Palyanov, Y.N.; Borzdov, Y.M.; Kupriyanov, I.N.; Khokhryakov, A.F.; Nechaev, D.V. Diamond crystallization from an Mg-C system at high pressure high temperature conditions. CrystEngComm 2015, 17, 4928–4936. [Google Scholar] [CrossRef]
- Palyanov, Y.N.; Kupriyanov, I.N.; Borzdov, Y.M.; Bataleva, Y.V. High-pressure synthesis and characterization of diamond from an Mg–Si–C system. CrystEngComm 2015, 17, 7323–7331. [Google Scholar] [CrossRef]
- Palyanov, Y.N.; Kupriyanov, I.N.; Borzdov, Y.M.; Khokhryakov, A.F.; Surovtsev, N.V. High-pressure synthesis and characterization of Ge-doped single crystal diamond. Cryst. Growth Des. 2016, 16, 3510–3518. [Google Scholar] [CrossRef]
- Khokhryakov, A.F.; Sokol, A.G.; Borzdov, Y.M.; Palyanov, Y.N. Morphology of diamond crystals grown in magnesium-based systems at high temperatures and high pressures. J. Cryst. Growth 2015, 426, 276–282. [Google Scholar] [CrossRef]
- Palyanov, Y.N.; Kupriyanov, I.N.; Khokhryakov, A.F.; Borzdov, Y.M. High-pressure crystallization and properties of diamond from magnesium-based catalysts. CrystEngComm 2017, 19, 4459–4475. [Google Scholar] [CrossRef]
- Tallaire, A.; Achard, J.; Silva, F.; Brinza, O.; Gicquel, A. Growth of large size diamond single crystals by plasma assisted chemical vapour deposition: Recent achievements and remaining challenges. Comptes Rendus Phys. 2013, 14, 169–184. [Google Scholar] [CrossRef]
- Martineau, P.M.; Gaukroger, M.P.; Guy, K.B.; Lawson, S.C.; Twitchen, D.J.; Friel, I.; Hansen, J.O.; Summerton, G.C.; Addison, T.P.G.; Burns, R. High crystalline quality single crystal chemical vapour deposition diamond. J. Phys. Condens. Matter 2009, 21, 364205. [Google Scholar] [CrossRef] [PubMed]
- Zytkiewicz, Z.R. Epitaxial Lateral Overgrowth of Semiconductors. In Springer Handbook of Crystal Growth; Dhanaraj, G., Byrappa, K., Prasad, V., Dudley, M., Eds.; Springer-Verlag: Berlin/Heidelberg, Germany, 2010; p. 999. [Google Scholar]
- Tallaire, A.; Brinza, O.; Mille, V.; William, L.; Achard, J. Reduction of dislocations in single crystal diamond by lateral growth over a macroscopic hole. Adv. Mater. 2017, 29, 1604823. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Zhang, J.; Wang, X.; Zhang, M.; Wang, H. Fabrication of Low Dislocation Density, Single-Crystalline Diamond via Two-Step Epitaxial Lateral Overgrowth. Crystals 2017, 7, 114. [Google Scholar] [CrossRef]
- Ashkinazi, E.E.; Khmelnitskii, R.A.; Sedov, V.S.; Khomich, A.A.; Khomich, A.V.; Ralchenko, V.G. Morphology of Diamond Layers Grown on Different Facets of Single Crystal Diamond Substrates by a Microwave Plasma CVD in CH4-H2-N2 Gas Mixtures. Crystals 2017, 7, 166. [Google Scholar] [CrossRef]
- Surovtsev, N.V.; Kupriyanov, I.N. Effect of Nitrogen Impurities on the Raman Line Width in Diamond, Revisited. Crystals 2017, 7, 239. [Google Scholar] [CrossRef]
- Ravichandran, R.; Binukumar, J.P.; Amri, I.A.; Davis, C.A. Diamond detector in absorbed dose measurements in high-energy linear accelerator photon and electron beams. J. Appl. Clin. Med. Phys. 2016, 17, 291–303. [Google Scholar] [CrossRef] [PubMed]
- Moignier, C.; Tromson, D.; de Marzi, L.; Marsolat, F.; Hernández, J.C.G.; Agelou, M.; Pomorski, M.; Woo, R.; Bourbotte, J.-M.; Moignau, F.; et al. Development of a synthetic single crystal diamond dosimeter for dose measurement of clinical proton beams. Phys. Med. Biol. 2017, 62, 5417. [Google Scholar] [CrossRef] [PubMed]
- Trischuk, W. (On behalf of the RD42 Collaboration). Diamond Particle Detectors for High Energy Physics. Nucl. Part. Phys. Proc. 2016, 273–275, 1023–1028. [Google Scholar]
- Prins, J.F. Ion implantation of diamond for electronic applications. Semicond. Sci. Technol. 2003, 18, S27. [Google Scholar] [CrossRef]
- Belousov, Y.M. Evolution in Time of Radiation Defects Induced by Negative Pions and Muons in Crystals with a Diamond Structure. Crystals 2017, 7, 174. [Google Scholar] [CrossRef]
- Casstevens, J.M. Diamond turning of steel in carbon-saturated atmospheres. Precis. Eng. 1983, 5, 9–15. [Google Scholar] [CrossRef]
- Evans, C. Cryogenic diamond turning of stainless steel. CIRP Ann. Manuf. Technol. 1991, 40, 571–575. [Google Scholar] [CrossRef]
- Shamoto, E.; Suzuki, N. Ultrasonic vibration diamond cutting and ultrasonic elliptical vibration cutting. Compr. Mater. Process. 2014, 11, 405–454. [Google Scholar]
- Zou, L.; Huang, Y.; Zhou, M.; Xiao, G. Thermochemical Wear of Single Crystal Diamond Catalyzed by Ferrous Materials at Elevated Temperature. Crystals 2017, 7, 116. [Google Scholar] [CrossRef]
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palyanov, Y.N. The Many Facets of Diamond Crystals. Crystals 2018, 8, 72. https://doi.org/10.3390/cryst8020072
Palyanov YN. The Many Facets of Diamond Crystals. Crystals. 2018; 8(2):72. https://doi.org/10.3390/cryst8020072
Chicago/Turabian StylePalyanov, Yuri N. 2018. "The Many Facets of Diamond Crystals" Crystals 8, no. 2: 72. https://doi.org/10.3390/cryst8020072
APA StylePalyanov, Y. N. (2018). The Many Facets of Diamond Crystals. Crystals, 8(2), 72. https://doi.org/10.3390/cryst8020072