Twins in YAl3(BO3)4 and K2Al2B2O7 Crystals as Revealed by Changes in Optical Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Crystal Growth and Sample Preparation
2.2. Measurement of the Rotatory Power at Different Wavelengths
2.3. Space-Resolved Measurements of the Optical Rotation
3. Results
3.1. Low-Quartz, -SiO
3.2. YAB, YAl(BO)
3.3. KABO, KAlBO
4. Discussion
4.1. Relation between Optical Activity and Crystal Structure
4.2. Changes in Sign and Magnitude of Optical Activity within YAB and KABO Crystals
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
BBO | -BaBO |
CLBO | CsLiBO |
KABO | KAlBO |
KBBF | KBeBOF |
LBO | LiBO |
NLO | nonlinear optical |
REE | rare-earth element |
SBBO | SrBeBO |
SHG | second harmonic generation |
TSSG | top-seeded solution growth |
UV | ultraviolet |
YAB | YAl(BO) |
YLSB | YLaSc(BO) |
References
- Mills, A.D. Crystallographic data for new rare earth borate compounds, RX3(BO3)4. Inorg. Chem. 1962, 1, 960–961. [Google Scholar] [CrossRef]
- Ballman, A.A. A new series of synthetic borates isostructural with the carbonate mineral huntite. Am. Mineral. 1962, 47, 1380–1383. [Google Scholar]
- Leonyuk, N.I.; Leonyuk, L.I. Growth and characterization of RM3(BO3)4 crystals. Prog. Cryst. Growth Charact. 1995, 31, 179–278. [Google Scholar] [CrossRef]
- Chen, C.; Wang, Y.; Xia, Y.; Wu, B.; Tang, D.; Wu, K.; Wenrong, Z.; Yu, L.; Mei, L. New development of nonlinear optical crystals for the ultraviolet region with molecular engineering approach. J. Appl. Phys. 1995, 77, 2268–2272. [Google Scholar] [CrossRef]
- Becker, P. Borate materials in nonlinear optics. Adv. Mater. 1998, 10, 979–992. [Google Scholar] [CrossRef]
- Xue, D.; Betzler, K.; Hesse, H.; Lammers, D. Nonlinear optical properties of borate crystals. Solid State Commun. 2000, 114, 21–25. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.; Yue, Y.; Yao, J.; Hu, Z.G. YAl3(BO3)4: Crystal growth and characterization. J. Cryst. Growth 2010, 312, 3029–3033. [Google Scholar] [CrossRef]
- Yu, J.; Liu, L.; Zhai, N.; Zhang, X.; Wang, G.; Wang, X.; Chen, C. Crystal growth and optical properties of YAl3(BO3)4 for UV applications. J. Cryst. Growth 2012, 341, 61–65. [Google Scholar] [CrossRef]
- Rytz, D.; Gross, A.; Vernay, S.; Wesemann, V. YAl3(BO3)4: A novel NLO crystal for frequency conversion to UV wavelengths. In Proceedings of the Solid State Lasers and Amplifiers III SPIE, Strasbourg, France, 7–11 April 2008; Volume 6998, p. 699814. [Google Scholar] [CrossRef]
- Chen, C.T.; Wu, B.C.; Jiang, A.D.; You, G.M. A new-type ultraviolet SHG crystal: β-BaB2O4. Sci. Sin. B 1985, 18, 235–243. [Google Scholar]
- Chen, C.; Wu, Y.; Jiang, A.; Wu, B.; You, G.; Li, R.; Lin, S. New nonlinear-optical crystal: LiB3O5. J. Opt. Soc. Am. B 1989, 6, 616–621. [Google Scholar] [CrossRef]
- Mori, Y.; Kuroda, I.; Nakajima, S.; Sasaki, T.; Nakai, S. New nonlinear optical crystal: Cesium lithium borate. Appl. Phys. Lett. 1995, 67, 1818–1820. [Google Scholar] [CrossRef]
- Hu, Z.G.; Higashiyama, T.; Yoshimura, M.; Yap, Y.K.; Mori, Y.; Sasaki, T. A new nonlinear optical borate crystal K2Al2B2O7 (KAB). Jpn. J. Appl. Phys. 1998, 37, L1093. [Google Scholar] [CrossRef]
- Ye, N.; Zeng, W.; Jiang, J.; Wu, B.; Chen, C.; Feng, B.; Zhang, X. New nonlinear optical crystal K2Al2B2O7. J. Opt. Soc. Am. B 2000, 17, 764. [Google Scholar] [CrossRef]
- Chen, C.; Wang, Y.; Wu, B.; Wu, K.; Zeng, W.; Yu, L. Design and synthesis of an ultraviolet-transparent nonlinear optical crystal Sr2Be2B2O7. Nature 1995, 373, 322–324. [Google Scholar] [CrossRef]
- Chen, C.; Xu, Z.; Deng, D.; Zhang, J.; Wong, G.K.L.; Wu, B.; Ye, N.; Tang, D. The vacuum ultraviolet phase-matching characteristics of nonlinear optical KBe2BO3F2 crystal. Appl. Phys. Lett. 1996, 68, 2930–2932. [Google Scholar] [CrossRef]
- Wu, B.; Tang, D.; Ye, N.; Chen, C. Linear and nonlinear optical properties of the KBe2BO3F2 (KBBF) crystal. Opt. Mater. 1996, 5, 105–109. [Google Scholar] [CrossRef]
- Hu, X.B.; Jiang, S.S.; Huang, X.R.; Liu, W.J.; Ge, C.Z.; Wang, J.Y.; Pan, H.F.; Ferrari, C.; Gennari, S. X-ray topographic study of twins in NdxY(1 − x)Al3(BO3)4 crystal. Nuovo Cimento D 1997, 19, 175–180. [Google Scholar] [CrossRef]
- Hu, X.B.; Jiang, S.S.; Huang, X.R.; Liu, W.J.; Ge, C.Z.; Wang, J.Y.; Pan, H.F.; Jiang, J.H.; Wang, Z.G. The growth defects in self-frequency-doubling laser crystal NdxY1 − xAl3(BO3)4. J. Cryst. Growth 1997, 173, 460–466. [Google Scholar] [CrossRef]
- Péter, A.; Polgár, K.; Beregi, E. Revealing growth defects in non-linear borate single crystals by chemical etching. J. Cryst. Growth 2000, 209, 102–109. [Google Scholar] [CrossRef]
- Zhao, S.; Wang, J.; Sun, D.; Hu, X.; Liu, H. Twin structure in Yb:YAl3(BO3)4 crystal. J. Appl. Crystallogr. 2001, 34, 661–662. [Google Scholar] [CrossRef]
- Ye, N.; Stone-Sundberg, J.L.; Hruschka, M.A.; Aka, G.; Kong, W.; Keszler, D.A. Nonlinear optical crystal YxLayScz(BO3)4 (x + y + z = 4). Chem. Mater. 2005, 17, 2687–2692. [Google Scholar] [CrossRef]
- Bourezzou, M.; Maillard, A.; Maillard, R.; Villeval, P.; Aka, G.; Lejay, J.; Loiseau, P.; Rytz, D. Crystal defects revealed by Schlieren photography and chemical etching in nonlinear single crystal LYSB. Opt. Mater. Express 2011, 1, 1569–1576. [Google Scholar] [CrossRef]
- Ilas, S. Elaboration et Caractérisation de Matériaux Non-Linéaires Pour la Conception de Dispositifs Laser Émettant Dans L’ultraviolet. Ph.D. Thesis, Université Pierre et Marie Curie-Paris VI, Paris, France, 2014. [Google Scholar]
- Schlössin, H.H.; Lang, A.R. A study of repeated twinning, lattice imperfections and impurity distribution in amethyst. Philos. Mag. 1965, 12, 283–296. [Google Scholar] [CrossRef]
- McLaren, A.C.; Pitkethly, D.R. The twinning microstructure and growth of amethyst quartz. Phys. Chem. Miner. 1982, 8, 128–135. [Google Scholar] [CrossRef]
- He, M.; Kienle, L.; Simon, A.; Chen, X.L.; Duppel, V. Re-examination of the crystal structure of Na2Al2B2O7: stacking faults and twinning. J. Solid State Chem. 2004, 177, 3212–3218. [Google Scholar] [CrossRef]
- Giacovazzo, C.; Monaco, H.L.; Artioli, G.; Viterbo, D.; Milanesio, M.; Gilli, G.; Gilli, P.; Zanotti, G.; Ferraris, G.; Catti, M. (Eds.) Fundamentals of Crystallography, 3rd ed.; Oxford University Press: Oxford, UK, 2011. [Google Scholar]
- Dekker, P.; Dawes, J.M. Characterisation of nonlinear conversion and crystal quality in Nd- and Yb-doped YAB. Opt. Express 2004, 12, 5922–5930. [Google Scholar] [CrossRef]
- Dekker, P.; Dawes, J. Twinning and “natural quasi-phase matching” in Yb:YAB. Appl. Phys. B 2006, 83, 267. [Google Scholar] [CrossRef]
- Fejer, M.M.; Magel, G.A.; Jundt, D.H.; Byer, R.L. Quasi-phase-matched second harmonic generation: tuning and tolerances. IEEE J. Quantum Elect. 1992, 28, 2631–2654. [Google Scholar] [CrossRef]
- Kurimura, S.; Harada, M.; Muramatsu, K.i.; Ueda, M.; Adachi, M.; Yamada, T.; Ueno, T. Quartz revisits nonlinear optics: Twinned crystal for quasi-phase matching [Invited]. Opt. Mater. Express 2011, 1, 1367. [Google Scholar] [CrossRef]
- Ishizuki, H.; Taira, T. Quasi phase-matched quartz for intense-laser pumped wavelength conversion. Opt. Express 2017, 25, 2369. [Google Scholar] [CrossRef]
- Liu, H.; Li, J.; Fang, S.H.; Wang, J.Y.; Ye, N. Growth of YAl3(BO3)4 crystals with tungstate based flux. Mater. Res. Innov. 2011, 15, 102–106. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, J.; Hu, X.; Liu, H.; Wei, J.; Liu, Y.; Wu, Y.; Chen, C. Top-seeded growth of K2Al2B2O7. J. Cryst. Growth 2001, 231, 439–441. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, J.; Hu, X.; Jiang, H.; Liu, Y.; Chen, C. Growth of large K2Al2B2O7 crystals. J. Cryst. Growth 2002, 235, 1–4. [Google Scholar] [CrossRef]
- Nye, J.F. Physical Properties of Crystals: Their Representation by Tensors and Matrices; Oxford University Press: Oxford, UK, 1985; p. 352. [Google Scholar]
- Haussühl, S. Physical Properties of Crystals: An Introduction; Wiley-VCH: Weinheim, Germany, 2007; p. 453. [Google Scholar]
- Glazer, A.M.; Stadnicka, K. On the origin of optical activity in crystal structures. J. Appl. Crystallogr. 1986, 19, 108–122. [Google Scholar] [CrossRef] [Green Version]
- Dimitriu, D.G.; Dorohoi, D.O. New method to determine the optical rotatory dispersion of inorganic crystals applied to some samples of Carpathian Quartz. Spectrochim. Acta Part A 2014, 131, 674–677. [Google Scholar] [CrossRef] [PubMed]
- Dorohoi, D.O.; Dimitriu, D.G.; Cosutchi, I.; Breaban, I.; Closca, V. A new method for determining the optical rotatory dispersion of transparent crystalline layers. In Proceedings of the Second International Conference on Applications of Optics and Photonics, Aveiro, Portugal, 26–30 May 2014; Volume 9286, p. 92862. [Google Scholar] [CrossRef]
- Jiang, S.; Jia, H.; Lei, Y.; Shen, X.; Cao, J.; Wang, N. Novel method for determination of optical rotatory dispersion spectrum by using line scan CCD. Opt. Express 2017, 25, 7445–7454. [Google Scholar] [CrossRef] [PubMed]
- Lowry, T.M. Optical Rotatory Power; Longmans: London, UK, 1935. [Google Scholar]
- Devarajan, V.; Glazer, A.M. Theory and computation of optical rotatory power in inorganic crystals. Acta Crystallogr. A 1986, 42, 560–569. [Google Scholar] [CrossRef] [Green Version]
- Chandrasekhar, S. Optical rotatory dispersion of crystals. Proc. R. Soc. Lond. Ser. A 1961, 259, 531–553. [Google Scholar] [CrossRef]
- Lowry, T.M.; Coode-Adams, W.R.C.X. Optical rotatory dispersion. Part III.—The rotatory dispersion of quartz in the infra-red, visible and ultra-violet regions of the spectrum. Philos. Trans. R. Soc. A 1927, 226, 391–466. [Google Scholar] [CrossRef]
- Katzin, L.I. The rotatory dispersion of quartz. J. Phys. Chem. 1964, 68, 2367–2370. [Google Scholar] [CrossRef]
- Ramachandran, G.N. Theory of optical activity of crystals. In Proceedings of the Indian Academy of Sciences-Section A; Indian Academy of Sciences: Bengaluru, India, 1951; Volume 33, pp. 217–227. [Google Scholar] [CrossRef]
- Tossell, J.A. Electronic structures of silicon, aluminum, and magnesium in tetrahedral coordination with oxygen from SCF-Xα MO calculations. J. Am. Chem. Soc. 1975, 97, 4840–4844. [Google Scholar] [CrossRef]
- Belokoneva, E.L.; Azizov, A.V.; Leonyuk, N.I.; Simonov, M.A.; Belov, N.V. Crystal structure of YAl3[BO3]4. J. Struct. Chem. 1981, 22, 476–478. [Google Scholar] [CrossRef]
- Tossell, J.A. Studies of unoccupied molecular orbitals of the B–O bond by molecular orbital calculations, X-ray absorption near edge, electron transmission, and NMR spectroscopy. Am. Mineral. 1986, 71, 1170–1177. [Google Scholar]
- Tossell, J.A. The electronic structures of Mg, Al and Si in octahedral coordination with oxygen from SCF Xα MO calculations. J. Phys. Chem. Solids 1975, 36, 1273–1280. [Google Scholar] [CrossRef]
- Liu, L.; Liu, C.; Wang, X.; Hu, Z.G.; Li, R.K.; Chen, C.T. Impact of Fe3+ on UV absorption of K2Al2B2O7 crystals. Solid State Sci. 2009, 11, 841–844. [Google Scholar] [CrossRef]
Crystal | Dispersion Relation | ||
---|---|---|---|
A ( mm) | (nm) | ( mm) | |
Low-quartz, -SiO | 7.17(3) | 129(1) | 18.69(9) |
YAB, YAl(BO) | 1.32(2) | 149(4) | 3.50(6) |
KABO, KAlBO | 0.80(1) | 148(3) | 2.10(3) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buchen, J.; Wesemann, V.; Dehmelt, S.; Gross, A.; Rytz, D. Twins in YAl3(BO3)4 and K2Al2B2O7 Crystals as Revealed by Changes in Optical Activity. Crystals 2019, 9, 8. https://doi.org/10.3390/cryst9010008
Buchen J, Wesemann V, Dehmelt S, Gross A, Rytz D. Twins in YAl3(BO3)4 and K2Al2B2O7 Crystals as Revealed by Changes in Optical Activity. Crystals. 2019; 9(1):8. https://doi.org/10.3390/cryst9010008
Chicago/Turabian StyleBuchen, Johannes, Volker Wesemann, Steffen Dehmelt, Andreas Gross, and Daniel Rytz. 2019. "Twins in YAl3(BO3)4 and K2Al2B2O7 Crystals as Revealed by Changes in Optical Activity" Crystals 9, no. 1: 8. https://doi.org/10.3390/cryst9010008
APA StyleBuchen, J., Wesemann, V., Dehmelt, S., Gross, A., & Rytz, D. (2019). Twins in YAl3(BO3)4 and K2Al2B2O7 Crystals as Revealed by Changes in Optical Activity. Crystals, 9(1), 8. https://doi.org/10.3390/cryst9010008