Integrated Mach–Zehnder Interferometer Based on Liquid Crystal Evanescent Field Tuning
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Smit, M.K. Photonic Integrated Circuits. In Proceedings of the Integrated Photonics Research and Applications/Nanophotonics for Information Systems, San Diego, CA, USA, 10–13 April 2005. [Google Scholar]
- Zaoui, W.S.; Kunze, A.; Vogel, W.; Berroth, M.; Butschke, J.; Letzkus, F.; Burghartz, J. Bridging the gap between optical fibers and silicon photonic integrated circuits. Opt. Express OE 2014, 22, 1277–1286. [Google Scholar] [CrossRef] [PubMed]
- Liang, D.; Bowers, J.E. Photonic integration: Si or InP substrates? Electro. Lett 2009, 45, 578–581. [Google Scholar] [CrossRef]
- Coldren, L.A.; Nicholes, S.C.; Johansson, L.; Ristic, S.; Guzzon, R.S.; Norberg, E.J.; Krishnamachari, U. High Performance InP-Based Photonic ICs–A Tutorial. J. Light. Tech. 2011, 29, 554–570. [Google Scholar] [CrossRef]
- Orcutt, J.S.; Moss, B.; Sun, C.; Leu, J.; Georgas, M.; Shainline, J.; Zgraggen, E.; Li, H.; Sun, J.; Weaver, M.; et al. Open foundry platform for high-performance electronic-photonic integration. Opt. Express OE 2012, 20, 12222–12232. [Google Scholar] [CrossRef] [PubMed]
- Pérez, D.; Gasulla, I.; Crudgington, L.; Thomson, D.J.; Khokhar, A.Z.; Li, K.; Cao, W.; Mashanovich, G.Z.; Capmany, J. Multipurpose silicon photonics signal processor core. Nat. Commun. 2017, 8, 636. [Google Scholar] [CrossRef] [PubMed]
- Iv, J.B.; Hadeler, O.; Morris, S.M.; Wilkinson, T.D.; Penty, R.V.; White, I.H. Electro-Optic Integration of Liquid Crystal Cladding Switch with Multimode Passive Polymer Waveguides on PCB. In Proceedings of the Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, Baltimore, MA, USA, 31 May–5 June 2009; p. CFV6. [Google Scholar]
- Pfeifle, J.; Alloatti, L.; Freude, W.; Leuthold, J.; Koos, C. Silicon-organic hybrid phase shifter based on a slot waveguide with a liquid-crystal cladding. Opt. Express OE 2012, 20, 15359–15376. [Google Scholar] [CrossRef] [PubMed]
- Xing, Y.; Ako, T.; George, J.P.; Korn, D.; Yu, H.; Verheyen, P.; Pantouvaki, M.; Lepage, G.; Absil, P.; Ruocco, A.; et al. Digitally Controlled Phase Shifter Using an SOI Slot Waveguide with Liquid Crystal Infiltration. IEEE Photo. Tech. Lett. 2015, 27, 1269–1272. [Google Scholar] [CrossRef]
- Davis, S.R.; Farca, G.; Rommel, S.D.; Johnson, S.; Anderson, M.H. Liquid crystal waveguides: New devices enabled by >1000 waves of optical phase control. In Proceedings of the Emerging Liquid Crystal Technologies V, San Francisco, CA, USA, 25–27 January 2010; Volume 7618, p. 76180E. [Google Scholar]
- Jeu, W.H.; de Jeu, W.H. Physical Properties of Liquid Crystalline Materials; CRC Press: Boca Raton, FL, USA, 1980; ISBN 978-0-677-04040-0. [Google Scholar]
- Heilmeier, G.H.; Zanoni, L.A. Guest-host interactions in nematic liquid crystals. A new electro-optic effect. Appl. Phys. Lett. 1968, 13, 91–92. [Google Scholar] [CrossRef]
- Zhang, Z.; You, Z.; Chu, D. Fundamentals of phase-only liquid crystal on silicon (LCOS) devices. Light Sci. Appl. 2014, 3, e213. [Google Scholar] [CrossRef]
- Ho, B.-Y.; Su, H.-P.; Tseng, Y.-P.; Wu, S.-T.; Hwang, S.-J. Temperature effects of Mach-Zehnder interferometer using a liquid crystal-filled fiber. Opt. Express OE 2015, 23, 33588–33596. [Google Scholar] [CrossRef] [PubMed]
- Maldonado, J.; González-Guerrero, A.B.; Domínguez, C.; Lechuga, L.M. Label-free bimodal waveguide immunosensor for rapid diagnosis of bacterial infections in cirrhotic patients. Biosensors Bioelectr. 2016, 85, 310–316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muñoz, P.; Micó, G.; Bru, L.A.; Pastor, D.; Pérez, D.; Doménech, J.D.; Fernández, J.; Baños, R.; Gargallo, B.; Alemany, R.; et al. Silicon Nitride Photonic Integration Platforms for Visible, Near-Infrared and Mid-Infrared Applications. Sensors 2017, 17, 2088. [Google Scholar] [CrossRef] [PubMed]
- Photonic Chip Design Training Course. Available online: http://www.vlcphotonics.com/ (accessed on 2 July 2018).
- Li, J.; Gauza, S.; Wu, S.-T. Temperature effect on liquid crystal refractive indices. J. Appl. Phys. 2004, 96, 19–24. [Google Scholar] [CrossRef]
- Muñoz, P.; Domenech, J.D.; Artundo, I.; den Bested, J.H.; Capmany, J. Evolution of fabless generic photonic integration. In Proceedings of the 2013 15th International Conference on Transparent Optical Networks (ICTON), Cartagena, Spain, 23–27 June 2013; pp. 1–3. [Google Scholar]
- Caño-Garcia, M.; Elmogi, A.; Mattelin, M.-A.; Missinne, J.; Geday, M.A.; Oton, J.M.; Van Steenberge, G.; Quintana, X. All-organic switching polarizer based on polymer waveguides and liquid crystals. Opt. Express 2018, 26, 9584–9594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.-H.; Yoneya, M.; Yamamoto, J.; Yokoyama, H. Nano-rubbing of a liquid crystal alignment layer by an atomic force microscope: A detailed characterization. Nanotechnology 2002, 13, 133. [Google Scholar] [CrossRef]
- Caño-García, M.; Quintana, X.; Otón, J.M.; Geday, M.A. Dynamic multilevel spiral phase plate generator. Sci. Rep. 2018, 8, 15804. [Google Scholar] [CrossRef] [PubMed]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caño-García, M.; Poudereux, D.; Gordo, F.J.; Geday, M.A.; Otón, J.M.; Quintana, X. Integrated Mach–Zehnder Interferometer Based on Liquid Crystal Evanescent Field Tuning. Crystals 2019, 9, 225. https://doi.org/10.3390/cryst9050225
Caño-García M, Poudereux D, Gordo FJ, Geday MA, Otón JM, Quintana X. Integrated Mach–Zehnder Interferometer Based on Liquid Crystal Evanescent Field Tuning. Crystals. 2019; 9(5):225. https://doi.org/10.3390/cryst9050225
Chicago/Turabian StyleCaño-García, Manuel, David Poudereux, Fernando J. Gordo, Morten A. Geday, José M. Otón, and Xabier Quintana. 2019. "Integrated Mach–Zehnder Interferometer Based on Liquid Crystal Evanescent Field Tuning" Crystals 9, no. 5: 225. https://doi.org/10.3390/cryst9050225
APA StyleCaño-García, M., Poudereux, D., Gordo, F. J., Geday, M. A., Otón, J. M., & Quintana, X. (2019). Integrated Mach–Zehnder Interferometer Based on Liquid Crystal Evanescent Field Tuning. Crystals, 9(5), 225. https://doi.org/10.3390/cryst9050225