Minimizing Freshwater Consumption in the Wash-Off Step in Textile Reactive Dyeing by Catalytic Ozonation with Carbon Aerogel Hosted Bimetallic Catalyst
Abstract
:1. Introduction
2. Experimental
2.1. Materials and Chemicals
2.2. Preparation of the Catalyst Material
2.3. Experimental Set-Up and Procedure
2.3.1. Dyeing Procedure
2.3.2. Wash-Off Procedure
2.3.3. Reclamation of Dyeing Effluents by the Ozonation Treatment
2.4. Analytical Method
3. Results and Discussion
3.1. Characterization of Catalyst Materials
3.2. Catalytic Degradation of Residual Dyes in Waste Rinsing Effluents
3.2.1. Decolorization of the First Rinsing Effluent (Effluent 1)
3.2.2. COD Removal in the First Rinsing Effluent (Effluent 1)
3.2.3. Evolution of Water Quality of Effluents During Recycling
3.3. Color Quality of Fabrics
3.3.1. Color Reproducibility
3.3.2. Colorfastness
4. Conclusions
Author Contributions
Conflicts of Interest
References
- Parisi, M.L.; Fatarella, E.; Spinelli, D.; Pogni, R.; Basosi, R. Environmental impact assessment of an eco-efficient production for coloured textiles. J. Clean. Prod. 2015, 108, 514–524. [Google Scholar] [CrossRef]
- Asghar, A.; Abdul Raman, A.A.; Wan Daud, W.M.A. Advanced oxidation processes for in-situ production of hydrogen peroxide/hydroxyl radical for textile wastewater treatment: A review. J. Clean. Prod. 2015, 87, 826–838. [Google Scholar] [CrossRef]
- Zhang, X.Q.; Fang, K.J.; Zhang, J.F.; Shu, D.W.; Gong, J.X.; Liu, X.M. A vacuum-dehydration aided pad-steam process for improving reactive dyeing of cotton fabric. J. Clean. Prod. 2017, 168, 1193–1200. [Google Scholar] [CrossRef]
- Rosa, J.M.; Fileti, A.M.F.; Tambourgi, E.B.; Santana, J.C.C. Dyeing of cotton with reactive dyestuffs: The continuous reuse of textile wastewater effluent treated by ultraviolet/hydrogen peroxide homogeneous photocatalysis. J. Clean. Prod. 2015, 90, 60–65. [Google Scholar] [CrossRef]
- Van Aken, P.; Van den Broeck, R.; Degreve, J.; Dewil, R. A pilot-scale coupling of ozonation and biodegradation of 2,4-dichlorophenol-containing wastewater: The effect of biomass acclimation towards chlorophenol and intermediate ozonation products. J. Clean. Prod. 2017, 161, 1432–1441. [Google Scholar] [CrossRef]
- May-Lozano, M.; Mendoza-Escamilla, V.; Rojas-Garcia, E.; Lopez-Medina, R.; Rivadeneyra-Romero, G.; Martinez-Delgadillo, S.A. Sonophotocatalytic degradation of orange II dye using low cost photocatalyst. J. Clean. Prod. 2017, 148, 836–844. [Google Scholar] [CrossRef]
- Ozturk, E.; Koseoglu, H.; Karaboyaci, M.; Yigit, N.O.; Yetis, U.; Kitis, M. Minimization of water and chemical use in a cotton/polyester fabric dyeing textile mill. J. Clean. Prod. 2016, 130, 92–102. [Google Scholar] [CrossRef]
- Alkaya, E.; Demirer, G.N. Sustainable textile production: A case study from a woven fabric manufacturing mill in Turkey. J. Clean. Prod. 2014, 65, 595–603. [Google Scholar] [CrossRef]
- Li, B.; Dong, Y.C.; Ding, Z.Z.; Xu, Y.M.; Zou, C. Renovation and reuse of reactive dyeing effluent by a novel heterogeneous Fenton system based on metal modified PTFE fibrous catalyst/H2O2. Int. J. Photoenergy 2013, 10. [Google Scholar] [CrossRef]
- Li, B.; Dong, Y.C.; Ding, Z.Z. Recycling wool-dyeing effluents after renovation through photocatalysis with Cu-Fe bimetallic-grafted polytetrafluoroethylene fiber complex and H2O2. Fiber Polym. 2015, 16, 794–801. [Google Scholar] [CrossRef]
- Zheng, L.; Wang, X.J.; Wang, X.Z. Reuse of reverse osmosis concentrate in textile and dyeing industry by combined process of persulfate oxidation and lime-soda softening. J. Clean. Prod. 2015, 108, 525–533. [Google Scholar] [CrossRef]
- Bhuiyan, M.A.R.; Rahman, M.M.; Shaid, A.; Bashar, M.M.; Khan, M.A. Scope of reusing and recycling the textile wastewater after treatment with gamma radiation. J. Clean. Prod. 2016, 112, 3063–3071. [Google Scholar] [CrossRef]
- Li, C.H.; He, J.X. Adsorption of a spent reactive dyebath by a chitosan bed: Study of water reuse, bed regeneration, and uv/fenton oxidation. Color. Technol. 2014, 130, 93–101. [Google Scholar] [CrossRef]
- Hu, E.; Shang, S.; Tao, X.-M.; Jiang, S.; Chiu, K.-L. Regeneration and reuse of highly polluting textile dyeing effluents through catalytic ozonation with carbon aerogel catalysts. J. Clean. Prod. 2016, 137, 1055–1065. [Google Scholar] [CrossRef]
- Guyer, G.T.; Nadeem, K.; Dizge, N. Recycling of pad-batch washing textile wastewater through advanced oxidation processes and its reusability assessment for turkish textile industry. J. Clean. Prod. 2016, 139, 488–494. [Google Scholar] [CrossRef]
- Morali, E.K.; Uzal, N.; Yetis, U. Ozonation pre and post-treatment of denim textile mill effluents: Effect of cleaner production measures. J. Clean. Prod. 2016, 137, 1–9. [Google Scholar] [CrossRef]
- Hu, E.; Wu, X.; Shang, S.; Tao, X.-M.; Jiang, S.-X.; Gan, L. Catalytic ozonation of simulated textile dyeing wastewater using mesoporous carbon aerogel supported copper oxide catalyst. J. Clean. Prod. 2016, 112, 4710–4718. [Google Scholar] [CrossRef]
- Senthilkumar, M.; Muthukumar, M. Studies on the possibility of recycling reactive dye bath effluent after decolouration using ozone. Dyes Pigment 2007, 72, 251–255. [Google Scholar] [CrossRef]
- Sundrarajan, M.; Vishnu, G.; Joseph, K. Ozonation of light-shaded exhausted reactive dye bath for reuse. Dyes Pigment 2007, 75, 273–278. [Google Scholar] [CrossRef]
- Shang, S.M. Process control in dyeing of textiles. In Process Control in Textile Manufacturing; Majumdar, A., Das, A., Alagirusamy, R., Kothari, V.K., Eds.; Woodhead Publishing: Sawston, UK, 2013; pp. 300–338. [Google Scholar]
- Zhou, L.; Xu, K.; Cheng, X.; Xu, Y.Y.; Jia, Q.B. Study on optimizing production scheduling for water-saving in textile dyeing industry. J. Clean. Prod. 2017, 141, 721–727. [Google Scholar] [CrossRef]
- He, B.Y.; Wang, X.C.; Xue, H.Y. The performance of chitosan/gelatin composite microspheres in the wash-off procedure of reactive dyeing. Color. Technol. 2016, 132, 353–360. [Google Scholar] [CrossRef]
- Amin, M.N.; Blackburn, R.S. Sustainable chemistry method to improve the wash-off process of reactive dyes on cotton. ACS Sustain. Chem. Eng. 2015, 3, 725–732. [Google Scholar] [CrossRef]
- Zhang, Y.N.; Qin, N.; Li, J.Y.; Han, S.N.; Li, P.; Zhao, G.H. Facet exposure-dependent photoelectrocatalytic oxidation kinetics of bisphenol a on nanocrystalline {001} TiO2/carbon aerogel electrode. Appl. Catal. B Environ. 2017, 216, 30–40. [Google Scholar] [CrossRef]
- Fan, Z.Y.; Shi, H.J.; Zhao, H.Y.; Cai, J.Z.; Zhao, G.H. Application of carbon aerogel electrosorption for enhanced Bi2WO6 photoelectrocatalysis and elimination of trace nonylphenol. Carbon 2018, 126, 279–288. [Google Scholar] [CrossRef]
- Kwon, J.; Kim, J.-H.; Kang, S.-H.; Choi, C.-J.; Rajesh, J.A.; Ahn, K.-S. Facile hydrothermal synthesis of cubic spinel AB2O4 type MnFe2O4 nanocrystallites and their electrochemical performance. Appl. Surf. Sci. 2017, 413, 83–91. [Google Scholar] [CrossRef]
- Zhang, X.D.; Yang, Y.; Lv, X.T.; Wang, Y.X.; Cui, L.F. Effects of preparation method on the structure and catalytic activity of Ag–Fe2O3 catalysts derived from MOFs. Catalysts 2017, 7. [Google Scholar] [CrossRef]
- Liu, S.; Chen, Y.; Dong, L. Ag–Fe2O3 nanocomposites with enhanced catalytic activity for reduction of 4-nitrophenol. Mater. Res. Express 2016, 3, 075024. [Google Scholar] [CrossRef]
- Gundogan, S.; Eren, H.A. Practical realisation of ozone clearing after disperse dyeing of polyester. Color. Technol. 2014, 130, 357–362. [Google Scholar] [CrossRef]
- Jin, R.C.; Jiang, Y.T.; Li, G.H.; Meng, Y.F. Amorphous carbon coated multiwalled carbon nanotubes@transition metal sulfides composites as high performance anode materials for lithium ion batteries. Electrochim. Acta 2017, 257, 20–30. [Google Scholar] [CrossRef]
- Su, C.Y.; Liu, L.; Zhang, M.Y.; Zhang, Y.; Shao, C.L. Fabrication of Ag/TiO2 nanoheterostructures with visible light photocatalytic function via a solvothermal approach. Crystengcomm 2012, 14, 3989–3999. [Google Scholar] [CrossRef]
- Pan, H.; Jian, Y.F.; Chen, C.W.; He, C.; Hao, Z.P.; Shen, Z.X.; Liu, H.X. Sphere-shaped Mn3O4 catalyst with remarkable low-temperature activity for methyl-ethyl-ketone combustion. Environ. Sci. Technol. 2017, 51, 6288–6297. [Google Scholar] [CrossRef] [PubMed]
- Zhuo, H.; Hu, Y.J.; Tong, X.; Zhong, L.X.; Peng, X.W.; Sun, R.C. Sustainable hierarchical porous carbon aerogel from cellulose for high-performance supercapacitor and CO2 capture. Ind. Crops Prod. 2016, 87, 229–235. [Google Scholar] [CrossRef]
- Altmann, J.; Ruhl, A.S.; Zietzschmann, F.; Jekel, M. Direct comparison of ozonation and adsorption onto powdered activated carbon for micropollutant removal in advanced wastewater treatment. Water Res. 2014, 55, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.F.; Chang, C.Y. Magnetic mesoporous iron oxide/carbon aerogel photocatalysts with adsorption ability for organic dye removal. RSC Adv. 2014, 4, 28628–28631. [Google Scholar] [CrossRef]
- Qin, L.; Zhang, G.L.; Fan, Z.; Wu, Y.J.; Guo, X.W.; Liu, M. Templated fabrication of hierarchically porous Fe-Ti bimetallic solid superacid for efficient photochemical oxidation of azo dyes under visible light. Chem. Eng. J. 2014, 244, 296–306. [Google Scholar] [CrossRef]
- Vittenet, J.; Aboussaoud, W.; Mendret, J.; Pic, J.-S.; Debellefontaine, H.; Lesage, N.; Faucher, K.; Manero, M.-H.; Thibault-Starzyk, F.; Leclerc, H.; et al. Catalytic ozonation with γ-AL2O3 to enhance the degradation of refractory organics in water. Appl. Catal. A Gen. 2015, 504, 519–532. [Google Scholar] [CrossRef]
- Oulton, R.; Haase, J.P.; Kaalberg, S.; Redmond, C.T.; Nalbandian, M.J.; Cwiertny, D.M. Hydroxyl radical formation during ozonation of multiwalled carbon nanotubes: Performance optimization and demonstration of a reactive cnt filter. Environ. Sci. Technol. 2015, 49, 3687–3697. [Google Scholar] [CrossRef] [PubMed]
- Nawrocki, J.; Kasprzyk-Hordern, B. The efficiency and mechanisms of catalytic ozonation. Appl. Catal. B Environ. 2010, 99, 27–42. [Google Scholar] [CrossRef]
- Hu, C.; Xing, S.T.; Qu, J.H.; He, H. Catalytic ozonation of herbicide 2,4-D over cobalt oxide supported on mesoporous zirconia. J. Phys. Chem. C 2008, 112, 5978–5983. [Google Scholar] [CrossRef]
- Wu, J.; Gao, H.; Yao, S.; Chen, L.; Gao, Y.W.; Zhang, H. Degradation of crystal violet by catalytic ozonation using Fe/activated carbon catalyst. Sep. Purif. Technol. 2015, 147, 179–185. [Google Scholar] [CrossRef]
- Xing, L.L.; Xie, Y.B.; Minakata, D.; Cao, H.B.; Xiao, J.D.; Zhang, Y.; Crittenden, J.C. Activated carbon enhanced ozonation of oxalate attributed to ho center dot oxidation in bulk solution and surface oxidation: Effect of activated carbon dosage and ph. J. Environ. Sci. China 2014, 26, 2095–2105. [Google Scholar] [CrossRef] [PubMed]
- Rosa, J.M.; Tambourgi, E.B.; Curvelo Santana, J.C.; Araujo, M.d.C.; Ming, W.C.; Trindade, N. Development of colors with sustainability: A comparative study between dyeing of cotton with reactive and vat dyestuffs. Text. Res. J. 2014, 84, 1009–1017. [Google Scholar] [CrossRef]
Materials | BET (m2/g) | Pore radius (nm) | Pore volume (cc/g) |
---|---|---|---|
CA | 586.7 | 8.77 | 1.07 |
Ag–Fe2O3@CA | 378.6 | 9.07 | 0.81 |
Fabric | L* | a* | b* | ΔL | Δa | Δb | ΔEcmc(2:1) |
---|---|---|---|---|---|---|---|
F5-r3 (ref.) | 30.66 | 45.40 | 9.27 | - | - | - | - |
F1-r3 | 27.80 | 46.93 | 11.59 | −2.86 | 1.53 | 2.32 | 2.37 |
F2-r3 | 28.12 | 46.59 | 10.72 | −2.54 | 1.19 | 1.45 | 1.90 |
F3-r3 | 30.19 | 45.71 | 9.76 | −0.47 | 0.31 | 0.49 | 0.43 |
F4-r3 | 30.13 | 45.66 | 9.39 | −0.53 | 0.26 | 0.12 | 0.35 |
Fabric Samples | Laundering | Crocking | ||
---|---|---|---|---|
Staining on Cotton | Color Change | Dry | Wet | |
F5-r3 (ref.) | 4.5 | 5 | 5 | 4.5 |
F0 | 3.5 | 3 | 4 | 3 |
F1-r3 | 3 | 3.5 | 4 | 3.5 |
F2-r3 | 4 | 4 | 4.5 | 4 |
F3-r3 | 4.5 | 4.5 | 4.5 | 4.5 |
F4-r3 | 4.5 | 5 | 5 | 4.5 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, E.; Shang, S.; Tao, X.; Jiang, S.; Chiu, K.-L. Minimizing Freshwater Consumption in the Wash-Off Step in Textile Reactive Dyeing by Catalytic Ozonation with Carbon Aerogel Hosted Bimetallic Catalyst. Polymers 2018, 10, 193. https://doi.org/10.3390/polym10020193
Hu E, Shang S, Tao X, Jiang S, Chiu K-L. Minimizing Freshwater Consumption in the Wash-Off Step in Textile Reactive Dyeing by Catalytic Ozonation with Carbon Aerogel Hosted Bimetallic Catalyst. Polymers. 2018; 10(2):193. https://doi.org/10.3390/polym10020193
Chicago/Turabian StyleHu, Enling, Songmin Shang, Xiaoming Tao, Shouxiang Jiang, and Ka-Lok Chiu. 2018. "Minimizing Freshwater Consumption in the Wash-Off Step in Textile Reactive Dyeing by Catalytic Ozonation with Carbon Aerogel Hosted Bimetallic Catalyst" Polymers 10, no. 2: 193. https://doi.org/10.3390/polym10020193
APA StyleHu, E., Shang, S., Tao, X., Jiang, S., & Chiu, K. -L. (2018). Minimizing Freshwater Consumption in the Wash-Off Step in Textile Reactive Dyeing by Catalytic Ozonation with Carbon Aerogel Hosted Bimetallic Catalyst. Polymers, 10(2), 193. https://doi.org/10.3390/polym10020193