Durability Issues and Challenges for Material Advancements in FRP Employed in the Construction Industry
Abstract
:1. Introduction
2. Components for FRP
2.1. Cold-Cured Thermosetting (Epoxy) Resins
2.2. Fibers and Configuration of FRP
3. Durability of FRPs in Common or Harsh Environments
4. Development of Improved Materials
5. Conclusions
Conflicts of Interest
References
- Motavalli, M.; Czaderski, C. FRP composites for retrofitting of existing civil structures in Europe: State-of-the-art review. In Composites & Polycon 2007; American Composites Manufacturers Association: Arlington, VA, USA, 2007; pp. 1–9. [Google Scholar]
- Bakis, C.E.; Bank, L.C.; Brown, V.L.; Cosenza, E.; Davalos, J.F.; Lesko, J.J.; Machida, A.; Rizkalla, S.H.; Triantafillou, T.C. Fiber-reinforced polymer composites for construction—State-of-the-art review. J. Compos. Constr. 2002, 6, 73–87. [Google Scholar] [CrossRef]
- Capozucca, R.; Ricci, V. Bond of GFRP strips on modern and historic brickwork masonry. Compos. Struct. 2016, 140, 540–555. [Google Scholar] [CrossRef]
- Karbhari, V.M. Durability of FRP composites for civil infrastructure—Myth, mystery and reality. Adv. Struct. Eng. 2003, 6, 243–255. [Google Scholar] [CrossRef]
- Djouani, F.; Chehimi, M.M.; Benzarti, K. Interactions of fully formulated epoxy with model cement hydrates. J. Adhes. Sci. Technol. 2013, 27, 469–489. [Google Scholar] [CrossRef]
- Tatar, J.; Brenkus, N.R.; Subhash, G.; Taylor, C.R.; Hamilton, H.R. Characterization of adhesive interphase between epoxy and cement paste via Raman spectroscopy and mercury intrusion porosimetry. Cem. Concr. Compos. 2018. [Google Scholar] [CrossRef]
- Shaw, I.; Andrawes, B. Repair of damaged end regions of PC beams using externally bonded FRP shear reinforcement. Constr. Build. Mater. 2017, 148, 184–194. [Google Scholar] [CrossRef]
- Maljaee, H.; Ghiassi, B.; Lourenço, P.B.; Oliveira, D.V. Moisture-induced degradation of interfacial bond in FRP-strengthened masonry. Compos. Part B Eng. 2016, 87, 47–58. [Google Scholar] [CrossRef] [Green Version]
- Amidi, S.; Wang, J. Subcritical debonding of FRP-to-concrete bonded interface under synergistic effect of load, moisture, and temperature. Mech. Mater. 2016, 92, 80–93. [Google Scholar] [CrossRef]
- Choi, S.; Maul, S.; Stewart, A.; Hamilton, H.R.; Douglas, E.P. Effect of silane coupling agent on the durability of epoxy adhesion for structural strengthening applications. Polym. Eng. Sci. 2013, 53, 283–294. [Google Scholar] [CrossRef]
- Stewart, A.; Schlosser, B.; Douglas, E.P. Surface Modification of Cured Cement Pastes by Silane Coupling Agents. ACS Appl. Mater. Interfaces 2013, 5, 1218–1225. [Google Scholar] [CrossRef] [PubMed]
- Tatar, J.; Torrence, C.E.; Mecholsky, J.; Taylor, C.; Hamilton, H. Improvement in Epoxy-Cement Paste Adhesive Bond Durability through Silane Surface Functionalization. In Proceedings of the Fifth International Conference on Durability of Fiber Reinforced Polymer (FRP) Composites for Construction and Rehabilitation of Structures, Sherbrooke, QC, Canada, 19–21 July 2017. [Google Scholar]
- Mays, G.C.; Hutchinson, A.R. Adhesives in Civil Engineering; Cambridge University Press: Cambridge, UK, 1992. [Google Scholar]
- Hollaway, L.C. A review of the present and future utilisation of FRP composites in the civil infrastructure with reference to their important in-service properties. Constr. Build. Mater. 2010, 24, 2419–2445. [Google Scholar] [CrossRef]
- Frigione, M.; Aiello, M.A.; Naddeo, C. Water effects on the bond strength of concrete/concrete adhesive joints. Constr. Build. Mater. 2006, 20, 957–970. [Google Scholar] [CrossRef]
- Frigione, M.E.; Lettieri, M.; Mecchi, A.M. Environmental effects on epoxy adhesives employed for restoration of historical buildings. J. Mater. Civ. Eng. 2006, 18, 715–722. [Google Scholar] [CrossRef]
- Frigione, M.; Lettieri, M. Procedures conditioning the absorption/desorption behavior of cold-cured epoxy resins. J. Polym. Sci. Part B Polym. Phys. 2008, 46, 1320–1336. [Google Scholar] [CrossRef]
- Sciolti, M.S.; Frigione, M.; Aiello, M.A. Wet lay-up manufactured FRPs for concrete and masonry repair: Influence of water on the properties of composites and on their epoxy components. J. Compos. Constr. 2010, 14, 823–833. [Google Scholar] [CrossRef]
- Michels, J.; Widmann, R.; Czaderski, C.; Allahvirdizadeh, R.; Motavalli, M. Glass transition evaluation of commercially available epoxy resins used for civil engineering applications. Compos. Part B Eng. 2015, 77, 484–493. [Google Scholar] [CrossRef]
- Savvilotidou, M.; Vassilopoulos, A.P.; Frigione, M.; Keller, T. Effects of aging in dry environment on physical and mechanical properties of a cold-curing structural epoxy adhesive for bridge construction. Constr. Build. Mater. 2017, 140, 552–561. [Google Scholar] [CrossRef]
- Moussa, O.; Vassilopoulos, A.P.; Castro, J.D.; Keller, T. Long-term development of thermophysical and mechanical properties of cold-curing structural adhesives due to post-curing. J. Appl. Polym. Sci. 2013, 127, 2490–2496. [Google Scholar] [CrossRef]
- Lettieri, M.; Frigione, M. Effects of humid environment on thermal and mechanical properties of a cold-curing structural epoxy adhesive. Constr. Build. Mater. 2012, 30, 753–760. [Google Scholar] [CrossRef]
- Blackburn, B.P.; Tatar, J.; Douglas, E.P.; Hamilton, H.R. Effects of hygrothermal conditioning on epoxy adhesives used in FRP composites. Constr. Build. Mater. 2015, 96, 679–689. [Google Scholar] [CrossRef]
- Silva, P.; Fernandes, P.; Sena-Cruz, J.; Xavier, J.; Castro, F.; Soares, D.; Carneiro, V. Effects of different environmental conditions on the mechanical characteristics of a structural epoxy. Compos. Part B Eng. 2016, 88, 55–63. [Google Scholar] [CrossRef] [Green Version]
- Czaderski, C.; Martinelli, E.; Michels, J.; Motavalli, M. Effect of curing conditions on strength development in an epoxy resin for structural strengthening. Compos. Part B Eng. 2012, 43, 398–410. [Google Scholar] [CrossRef]
- Savvilotidou, M.; Vassilopoulos, A.P.; Frigione, M.; Keller, T. Development of physical and mechanical properties of a cold-curing structural adhesive in a wet bridge environment. Constr. Build. Mater. 2017, 144, 115–124. [Google Scholar] [CrossRef]
- Aiello, M.A.; Frigione, M.; Acierno, D. Effects of environmental conditions on performance of polymeric adhesives for restoration of concrete structures. J. Mater. Civ. Eng. 2002, 14, 185–189. [Google Scholar] [CrossRef]
- Maljaee, H.; Ghiassi, B.; Lourenço, P.B.; Oliveira, D.V. FRP-brick masonry bond degradation under hygrothermal conditions. Compos. Struct. 2016, 147, 143–154. [Google Scholar] [CrossRef]
- Benedetti, A.; Fernandes, P.; Granja, J.L.; Sena-Cruz, J.; Azenha, M. Influence of temperature on the curing of an epoxy adhesive and its influence on bond behaviour of NSM-CFRP systems. Compos. Part B Eng. 2016, 89, 219–229. [Google Scholar] [CrossRef] [Green Version]
- Jiang, X.; Kolstein, H.; Bijlaard, F.; Qiang, X. Effects of hygrothermal aging on glass-fibre reinforced polymer laminates and adhesive of FRP composite bridge: Moisture diffusion characteristics. Compos. Part A Appl. Sci. Manuf. 2014, 57, 49–58. [Google Scholar] [CrossRef]
- Gallego, J.M.; Czaderski, C.; Breveglieri, M.; Michels, J. Fatigue behaviour at elevated temperature of RC slabs strengthened with EB CFRP strips. Compos. Part B Eng. 2018, 141, 37–49. [Google Scholar] [CrossRef]
- Tatar, J.; Hamilton, H.R. Implementation of Bond Durability in the Design of Flexural Members with Externally Bonded FRP. J. Compos. Constr. 2016, 20, 04015072. [Google Scholar] [CrossRef]
- Tatar, J.; Hamilton, H.R. Bond Durability Factor for Externally Bonded CFRP Systems in Concrete Structures. J. Compos. Constr. 2016, 20, 04015027. [Google Scholar] [CrossRef]
- Dai, J.-G.; Yokota, H.; Iwanami, M.; Kato, E. Experimental Investigation of the Influence of Moisture on the Bond Behavior of Fibre Reinforced Polymer (FRP) to Concrete Interfaces. J. Compos. Constr. 2010, 14, 834–844. [Google Scholar] [CrossRef]
- Ghiassi, B.; Oliveira, D.V.; Lourenço, P.B. Hygrothermal durability of bond in FRP-strengthened masonry. Mater. Struct. Constr. 2014, 47, 2039–2050. [Google Scholar] [CrossRef] [Green Version]
- Correia, L.; Sena-Cruz, J.; Michels, J.; França, P.; Pereira, E.; Escusa, G. Durability of RC slabs strengthened with prestressed CFRP laminate strips under different environmental and loading conditions. Compos. Part B Eng. 2017, 125, 71–88. [Google Scholar] [CrossRef]
- Harmanci, Y.E.; Michels, J.; Czaderski, C.; Loser, R.; Chatzi, E. Long-term residual anchorage resistance of gradient anchorages for prestressed CFRP strips. Compos. Part B Eng. 2018, 139, 171–184. [Google Scholar] [CrossRef]
- Nardone, F.; Di Ludovico, M.; De Caso, Y.; Basalo, F.J.; Prota, A.; Nanni, A. Tensile behavior of epoxy based FRP composites under extreme service conditions. Compos. Part B Eng. 2012, 43, 1468–1474. [Google Scholar] [CrossRef]
- Silva, M.A.G.; da Fonseca, B.S.; Biscaia, H. On estimates of durability of FRP based on accelerated tests. Compos. Struct. 2014, 116, 377–387. [Google Scholar] [CrossRef]
- Subhani, M.; Al-Ameri, R.; Al-Tamimi, A. Assessment of bond strength in CFRP retrofitted beams under marine environment. Compos. Struct. 2016, 140, 463–472. [Google Scholar] [CrossRef]
- Tatar, J.; Hamilton, H.R. Comparison of laboratory and field environmental conditioning on FRP-concrete bond durability. Constr. Build. Mater. 2016, 122, 525–536. [Google Scholar] [CrossRef]
- Klamer, E.; Tromp, L.; De Boer, A.; Nijssen, R. Long-term effects of wet and outdoor conditions on GFRP. In Proceedings of the IABSE Conference, Geneva 2015: Structural Engineering: Providing Solutions to Global Challenges—Report, Geneva, Switzerland, 23–25 September 2015; pp. 1591–1598. [Google Scholar]
- Al-Tamimi, A.K.; Hawileh, R.A.; Abdalla, J.A.; Rasheed, H.A.; Al-Mahaidi, R. Durability of the bond between CFRP plates and concrete exposed to harsh environments. J. Mater. Civ. Eng. 2015, 27. [Google Scholar] [CrossRef]
- Frigione, M.; Naddeo, C.; Acierno, D. Cold-Curing Epoxy Resins: Aging and Environmental Effects. I—Thermal Properties. J. Polym. Eng. 2001, 21, 23. [Google Scholar] [CrossRef]
- Frigione, M.; Naddeo, C.; Acierno, D. Cold-Curing Epoxy Resins: Aging and Environmental Effects. Part II—Mechanical Properties. J. Polym. Eng. 2001, 21, 349. [Google Scholar] [CrossRef]
- Lettieri, M.; Frigione, M. Natural and artificial weathering effects on cold-cured epoxy resins. J. Appl. Polym. Sci. 2011, 119, 1635–1645. [Google Scholar] [CrossRef]
- Sousa, J.M.; Correia, J.R.; Cabral-Fonseca, S. Durability of an epoxy adhesive used in civil structural applications. Constr. Build. Mater. 2018, 161, 618–633. [Google Scholar] [CrossRef]
- Zhang, J.; Karbhari, V.; Wu, L.; Reynaud, D. Field exposure based durability assessment of FRP column wrap systems. Compos. Part B Eng. 2003, 34, 41–50. [Google Scholar] [CrossRef]
- Silva, P.C.; Juvandes, F.L.P.; Figueiras, J.A. Behaviour of RC structures strengthened with CFRP systems under thermal effects. In Proceedings of the 3rd International Conference Composites in Constructions, Publisher: Université Lyon I, Laboratoire Mécanique Matériaux et Structures, Lyon, France, 11–13 July 2005; pp. 345–352. [Google Scholar]
- Juvandes, L.; Costeira Silva, P.; Figueiras, J. Behaviour of RC structures strengthened with CFRP under load test and thermal effects. In Proceedings of the International Symposium Polymers in Concrete, University of Minho, Department of Civil Engineering, Guimarães, Portugal, 2–4 April 2006; pp. 33–46. [Google Scholar]
- Plecnik, J.M.; Plecnik, J.M.; Fogarty, J.H.; Kurfees, J.R. Behavior of epoxy repaired beams under fire. J. Struct. Eng. 1986, 112, 906–922. [Google Scholar] [CrossRef]
- Frigione, M.; Maffezzoli, A.; Finocchiaro, P.; Failla, S. Cure Kinetics and Properties of Epoxy Resins Containing a Phosphorous-Based Flame Retardant. Adv. Polym. Technol. 2003, 22, 329–342. [Google Scholar] [CrossRef]
- Anbusagar, N.R.; Palanikumar, K. Nanoclay Addition and Core Materials Effect on Impact and Damage Tolerance Capability of Glass Fiber Skin Sandwich Laminates. Silicon 2017, 1–11. [Google Scholar] [CrossRef]
- Anbusagar, N.R.R.; Palanikumar, K.; Giridharan, P.K. Study of sandwich effect on nanoclay modified polyester resin GFR face sheet laminates. Compos. Struct. 2015, 125, 336–342. [Google Scholar] [CrossRef]
- Aboubakr, S.H.; Kandil, U.F.; Reda Taha, M. Creep of epoxy-clay nanocomposite adhesive at the FRP interface: A multi-scale investigation. Int. J. Adhes. Adhes. 2014, 54, 1–12. [Google Scholar] [CrossRef]
- Ji, G.; Li, G.; Alaywan, W. A new fire resistant FRP for externally bonded concrete repair. Constr. Build. Mater. 2013, 42, 87–96. [Google Scholar] [CrossRef]
- Irshidat, M.R.; Al-Saleh, M.H. Repair of heat-damaged RC columns using carbon nanotubes modified CFRP. Mater. Struct. Constr. 2017, 50. [Google Scholar] [CrossRef]
- Rathore, D.K.; Prusty, R.K.; Kumar, D.S.; Ray, B.C. Mechanical performance of CNT-filled glass fiber/epoxy composite in in-situ elevated temperature environments emphasizing the role of CNT content. Compos. Part Appl. Sci. Manuf. 2016, 84, 364–376. [Google Scholar] [CrossRef]
- Kumar Ghosh, S.; Prusty, R.K.; Rathore, D.K.; Ray, B.C. Creep behaviour of graphite oxide nanoplates embedded glass fiber/epoxy composites: Emphasizing the role of temperature and stress. Compos. Part Appl. Sci. Manuf. 2017, 102, 166–177. [Google Scholar] [CrossRef]
- Manjunatha, C.M.; Anil Chandra, A.R.; Jagannathan, N. Fracture and fatigue behavior of polymer nanocomposites—A review. J. Indian Inst. Sci. 2015, 95, 249–266. [Google Scholar]
- Scholz, S.; Kroll, L.; Schettler, F. Nanoparticle reinforced epoxy gelcoats for fiber-plastic composites under multiple load. Prog. Org. Coat. 2014, 77, 1129–1136. [Google Scholar] [CrossRef]
- Mittal, G.; Rhee, K.Y.; Mišković-Stanković, V.; Hui, D. Reinforcements in multi-scale polymer composites: Processing, properties, and applications. Compos. Part B Eng. 2018, 138, 122–139. [Google Scholar] [CrossRef]
- Silvestre, J.; Silvestre, N.; De Brito, J. Polymer nanocomposites for structural applications: Recent trends and new perspectives. Mech. Adv. Mater. Struct. 2016, 23, 1263–1277. [Google Scholar] [CrossRef]
- Li, Y.; Liu, X.; Li, J. Bond properties of FRP-concrete interface with nano-modified epoxy resin under wet-dry cycles. KSCE J. Civ. Eng. 2017, 21, 1379–1385. [Google Scholar] [CrossRef]
- Masghouni, N.; Al-Haik, M. Quasistatic and dynamic mechanical characterization of a woven carbon fiber-zinc oxide nanowires-epoxy composite. Polym. Compos. 2015, 36, 2184–2192. [Google Scholar] [CrossRef]
- Skandani, A.A.; Boroujeni, A.Y.; Al-Haik, M. Temperature dependent viscoelastic behavior of FRP/ZnO nano-rods hybrid nanocomposites. In Proceedings of the ASME International Mechanical Engineering Congress and Exposition, San Diego, CA, USA, 15–21 November 2013; Volume 9. [Google Scholar]
- Nayak, R.K.; Ray, B.C. Water absorption, residual mechanical and thermal properties of hydrothermally conditioned nano-Al2O3 enhanced glass fiber reinforced polymer composites. Polym. Bull. 2017, 74, 4175–4194. [Google Scholar] [CrossRef]
- Seshanandan, G.; Ravindran, D.; Sornakumar, T. Mechanical properties of nano titanium oxide particles-hybrid jute-glass FRP composites. Mater. Today Proc. 2016, 3, 1383–1388. [Google Scholar] [CrossRef]
- Shettar, M.; Kini, A.; Sharma, S.; Hiremath, P. FRP-Nanoclay hybrid composites: A review. Mater. Sci. Forum 2017, 904 MSF, 146–150. [Google Scholar] [CrossRef]
- Drescher, P.; Thomas, M.; Borris, J.; Riedel, U.; Arlt, C. Strengthening fibre/matrix interphase by fibre surface modification and nanoparticle incorporation into the matrix. Compos. Sci. Technol. 2013, 74, 60–66. [Google Scholar] [CrossRef]
- Tang, Y.; Ye, L.; Zhang, Z.; Friedrich, K. Interlaminar fracture toughness and CAI strength of fibre-reinforced composites with nanoparticles—A review. Compos. Sci. Technol. 2013, 86, 26–37. [Google Scholar] [CrossRef]
- Gauvin, F.; Robert, M. Durability study of vinylester/silicate nanocomposites for civil engineering applications. Polym. Degrad. Stab. 2015, 121, 359–368. [Google Scholar] [CrossRef]
- Prusty, R.K.; Rathore, D.K.; Ray, B.C. CNT/polymer interface in polymeric composites and its sensitivity study at different environments. Adv. Colloid Interface Sci. 2017, 240, 77–106. [Google Scholar] [CrossRef] [PubMed]
- Zeiler, R.; Khalid, U.; Kuttner, C.; Kothmann, M.; Dijkstra, D.J.; Fery, A.; Altstädt, V. Liquid composite molding-processing and characterization of fiber-reinforced composites modified with carbon nanotubes. In Proceedings of the 29th International Conference of the Polymer Processing Society, Nuremberg, Germany, 15–19 July 2013; Volume 1593, pp. 503–507. [Google Scholar]
- Brugo, T.M.; Minak, G.; Zucchelli, A.; Saghafi, H.; Fotouhi, M. An Investigation on the Fatigue based Delamination of Woven Carbon-epoxy Composite Laminates Reinforced with Polyamide Nanofibers. Procedia Eng. 2015, 109, 65–72. [Google Scholar] [CrossRef]
- Boroujeni, A.Y.; Tehrani, M.; Nelson, A.J.; Al-Haik, M. Hybrid carbon nanotube-carbon fiber composites with improved in-plane mechanical properties. Compos. Part B Eng. 2014, 66, 475–483. [Google Scholar] [CrossRef]
- Soltannia, B.; Haji Gholami, I.; Masajedian, S.; Mertiny, P.; Sameoto, D.; Taheri, F. Parametric Study of Strain Rate Effects on Nanoparticle-Reinforced Polymer Composites. J. Nanomater. 2016, 2016. [Google Scholar] [CrossRef]
- Lu, Y.; Shah, W.K.; Xu, J. Synthesis, Morphologies and Building Applications of Nanostructured Polymers. Polymers 2017, 9. [Google Scholar] [CrossRef]
- Mahato, K.K.; Dutta, K.; Ray, B.C. Static and Dynamic Behavior of Fibrous Polymeric Composite Materials at Different Environmental Conditions. J. Polym. Environ. 2017, 1–27. [Google Scholar] [CrossRef]
- Zainuddin, S.; Hosur, M.V.; Zhou, Y.; Kumar, A.; Jeelani, S. Durability study of neat/nanophased GFRP composites subjected to different environmental conditioning. Mater. Sci. Eng. A 2010, 527, 3091–3099. [Google Scholar] [CrossRef]
- Jagannathan, N.; Bojja, R.; Revathi, A.; Srihari, S.; Manjunatha, C.M. Mechanical Properties of a Hybrid Nanocomposite Under Room Temperature and Hot-Wet Environments. Trans. Indian Inst. Met. 2015, 68, 363–369. [Google Scholar] [CrossRef]
- Arao, Y. Flame Retardancy of Polymer Nanocomposite. In Flame Retardants: Polymer Blends, Composites and Nanocomposites; Visakh, P.M., Arao, Y., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 15–44. ISBN 978-3-319-03467-6. [Google Scholar]
- Monti, M.; Tsampas, S.A.; Fernberg, S.P.; Blomqvist, P.; Cuttica, F.; Fina, A.; Camino, G. Fire reaction of nanoclay-doped PA6 composites reinforced with continuous glass fibers and produced by commingling technique. Polym. Degrad. Stab. 2015, 121, 1–10. [Google Scholar] [CrossRef]
- Nguyen, Q.T.; Ngo, T.; Tran, P.; Mendis, P.; Zobec, M.; Aye, L. Fire performance of prefabricated modular units using organoclay/glass fibre reinforced polymer composite. Constr. Build. Mater. 2016, 129, 204–215. [Google Scholar] [CrossRef]
- Nguyen, Q.T.; Ngo, T.D.; Bai, Y.; Tran, P. Experimental and numerical investigations on the thermal response of multilayer glass fibre/unsaturated polyester/organoclay composite. Fire Mater. 2016, 40, 1047–1069. [Google Scholar] [CrossRef]
- Schuster, T.J.; Eibl, S.; Gudladt, H.-J. Influence of carbon nanotubes on thermal response and reaction to fire properties of carbon fibre-reinforced plastic material. J. Compos. Mater. 2017. [Google Scholar] [CrossRef]
- Zhuge, J.; Gou, J.; Chen, R.-H.; Gordon, A.; Kapat, J.; Hart, D.; Ibeh, C. Fire retardant evaluation of carbon nanofiber/graphite nanoplatelets nanopaper-based coating under different heat fluxes. Compos. Part B Eng. 2012, 43, 3293–3305. [Google Scholar] [CrossRef]
- Martins, M.S.S.; Schartel, B.; Magalhães, F.D.; Pereira, C.M.C. The effect of traditional flame retardants, nanoclays and carbon nanotubes in the fire performance of epoxy resin composites. Fire Mater. 2017, 41, 111–130. [Google Scholar] [CrossRef]
- Abdul Khalil, H.P.S.; Fizree, H.M.; Bhat, A.H.; Jawaid, M.; Abdullah, C.K. Development and characterization of epoxy nanocomposites based on nano-structured oil palm ash. Compos. Part B Eng. 2013, 53, 324–333. [Google Scholar] [CrossRef] [Green Version]
- Paluvai, N.R.; Mohanty, S.; Nayak, S.K. Synthesis and Modifications of Epoxy Resins and Their Composites: A Review. Polym. Plast. Technol. Eng. 2014, 53, 1723–1758. [Google Scholar] [CrossRef]
- Sen, T.; Paul, A. Confining concrete with sisal and jute FRP as alternatives for CFRP and GFRP. Int. J. Sustain. Built Environ. 2015, 4, 248–264. [Google Scholar] [CrossRef]
- Cholake, S.T.; Moran, G.; Bai, Y.; Raman, R.K.S.; Zhao, X.L.; RizKalla, S.; Bandyopadhyay, S. Physico-chemical characterization of novel epoxy matrix system reinforced with recycled short milled carbon fibre. J. Miner. Mater. Charact. Eng. 2015, 3, 373–389. [Google Scholar] [CrossRef]
- Agarwal, R.; Ramachandran, M.; Ratnam, S.J. Tensile properties of reinforced plastic material composites with natural fiber and filler material. ARPN J. Eng. Appl. Sci. 2015, 10, 2217–2220. [Google Scholar]
- Sajithkumar, K.J.; Visakh, P.M.; Ramasamy, E.V. Moringa oleifera (Drum Stick Vegetable Fibre) Based Nanocomposites with Natural Rubber: Preparation and Characterizations. Waste Biomass Valoriz. 2016, 7, 1227–1234. [Google Scholar] [CrossRef]
- Lionetto, F.; Frigione, M. Environmental effects on the adhesion properties of nanostructured epoxy-silica hybrids. J. Appl. Polym. Sci. 2015, 132. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frigione, M.; Lettieri, M. Durability Issues and Challenges for Material Advancements in FRP Employed in the Construction Industry. Polymers 2018, 10, 247. https://doi.org/10.3390/polym10030247
Frigione M, Lettieri M. Durability Issues and Challenges for Material Advancements in FRP Employed in the Construction Industry. Polymers. 2018; 10(3):247. https://doi.org/10.3390/polym10030247
Chicago/Turabian StyleFrigione, Mariaenrica, and Mariateresa Lettieri. 2018. "Durability Issues and Challenges for Material Advancements in FRP Employed in the Construction Industry" Polymers 10, no. 3: 247. https://doi.org/10.3390/polym10030247
APA StyleFrigione, M., & Lettieri, M. (2018). Durability Issues and Challenges for Material Advancements in FRP Employed in the Construction Industry. Polymers, 10(3), 247. https://doi.org/10.3390/polym10030247