Electrical Properties of Thiol-ene-based Shape Memory Polymers Intended for Flexible Electronics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Fabrication
2.2. Electrical Characterization
2.3. Kelvin Force Probe Characterization
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gutierrez-Heredia, G.; Maeng, J.; Conde, J.; Rodriguez-Lopez, O.; Voit, W.E. Effect of annealing atmosphere on IGZO thin film transistors on a deformable softening polymer substrate. Semicond. Sci. Technol. 2018, 33, 095001. [Google Scholar] [CrossRef]
- Gutierrez-Heredia, G.; Pineda-Leon, H.A.; Carrillo-Castillo, A.; Rodriguez-Lopez, O.; Tishechkin, M.; Ong, K.M.; Castillo, J.S.; Voit, W.E. Lifetime of hafnium oxide dielectric in thin-film devices fabricated on deformable softening polymer substrate. Mater. Sci. Semicond. Process. 2018, 88, 273–277. [Google Scholar] [CrossRef]
- Gutierrez-Heredia, G.; Rodriguez-Lopez, O.; Garcia-Sandoval, A.; Voit, W.E. Highly Stable Indium-Gallium-Zinc-Oxide Thin-Film Transistors on Deformable Softening Polymer Substrates. Adv. Electron. Mater. 2017, 3, 1700221. [Google Scholar] [CrossRef]
- Choi, S.; Fuentes-Hernandez, C.; Wang, C.-Y.; Wei, A.; Voit, W.; Zhang, Y.; Barlow, S.; Marder, S.R.; Kippelen, B. Top-gate organic field-effect transistors fabricated on shape-memory polymer substrates. Proc. SPIE 2015, 9568. [Google Scholar] [CrossRef]
- Reeder, J.; Kaltenbrunner, M.; Ware, T.; Arreaga-Salas, D.; Avendano-Bolivar, A.; Yokota, T.; Inoue, Y.; Sekino, M.; Voit, W.; Sekitani, T.; et al. Mechanically Adaptive Organic Transistors for Implantable Electronics. Adv. Mater. 2014, 26, 4967–4973. [Google Scholar] [CrossRef] [PubMed]
- Avendano-Bolivar, A.; Ware, T.; Arreaga-Salas, D.; Simon, D.; Voit, W. Mechanical Cycling Stability of Organic Thin Film Transistors on Shape Memory Polymers. Adv. Mater. 2013, 25, 3095–3099. [Google Scholar] [CrossRef] [PubMed]
- Ecker, M.; Joshi-Imre, A.; Modi, R.; Frewin, C.; Garcia Sandoval, A.; Maeng, J.; Gutierrez, G.; Pancrazio, J.; Voit, W. From Softening Polymers to Multi-Material Based Bioelectronic Devices. Multifunct. Mater. 2019, 2, 012001. [Google Scholar] [CrossRef]
- Stiller, A.M.; Usoro, J.; Frewin, C.L.; Danda, V.R.; Ecker, M.; Joshi-Imre, A.; Musselman, K.C.; Voit, W.; Modi, R.; Pancrazio, J.J.; et al. Chronic Intracortical Recording and Electrochemical Stability of Thiol-ene/Acrylate Shape Memory Polymer Electrode Arrays. Micromachines 2018, 9, 500. [Google Scholar] [CrossRef]
- González-González, M.A.; Kanneganti, A.; Joshi-Imre, A.; Hernandez-Reynoso, A.G.; Bendale, G.; Modi, R.; Ecker, M.; Khurram, A.; Cogan, S.F.; Voit, W.E.; et al. Thin Film Multi-Electrode Softening Cuffs for Selective Neuromodulation. Sci. Rep. 2018, 8, 16390. [Google Scholar] [CrossRef]
- Simon, D.M.; Charkhkar, H.; St. John, C.; Rajendran, S.; Kang, T.; Reit, R.; Arreaga-Salas, D.; McHail, D.G.; Knaack, G.L.; Sloan, A.; et al. Design and demonstration of an intracortical probe technology with tunable modulus. J. Biomed. Mater. Res. Part A 2017, 105, 159–168. [Google Scholar] [CrossRef]
- Ware, T.; Simon, D.; Hearon, K.; Kang, T.H.; Maitland, D.J.; Voit, W. Thiol-Click Chemistries for Responsive Neural Interfaces. Macromol. Biosci. 2013, 13, 1640–1647. [Google Scholar] [CrossRef]
- Ware, T.; Simon, D.; Hearon, K.; Liu, C.; Shah, S.; Reeder, J.; Khodaparast, N.; Kilgard, M.P.; Maitland, D.J.; Rennaker, R.L., II; et al. Three-Dimensional Flexible Electronics Enabled by Shape Memory Polymer Substrates for Responsive Neural Interfaces. Macromol. Mater. Eng. 2012, 297, 1193–1202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sokolowski, W.; Metcalfe, A.; Hayashi, S.; Yahia, L.; Raymond, J. Medical applications of shape memory polymers. Biomed. Mater. 2007, 2, 23–27. [Google Scholar] [CrossRef]
- Small, W.; Singhal, P.; Wilson, T.S.; Maitland, D.J. Biomedical applications of thermally activated shape memory polymers. J. Mater. Chem. 2010, 20, 3356–3366. [Google Scholar] [CrossRef] [PubMed]
- Yakacki, C.M.; Gall, K. Shape-Memory Polymers for Biomedical Applications. Adv. Polym. Sci. 2010, 226, 147–175. [Google Scholar]
- Serrano, M.C.; Ameer, G.A. Recent Insights Into the Biomedical Applications of Shape-memory Polymers. Macromol. Biosci. 2012, 12, 1156–1171. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Strandman, S.; Zhu, X.X. A mini review: Shape memory polymers for biomedical applications. Front. Chem. Sci. Eng. 2017, 11, 143–153. [Google Scholar] [CrossRef]
- Do, D.-H.; Ecker, M.; Voit, W.E. Characterization of a Thiol-Ene/Acrylate-Based Polymer for Neuroprosthetic Implants. ACS Omega 2017, 2, 4604–4611. [Google Scholar] [CrossRef] [PubMed]
- Nomura, K.; Takagi, A.; Kamiya, T.; Ohta, H.; Hirano, M.; Hosono, H. Amorphous Oxide Semiconductors for High-Performance Flexible Thin-Film Transistors. Jpn. J. Appl. Phys. 2006, 45, 4303–4308. [Google Scholar] [CrossRef]
- Nomura, K.; Ohta, H.; Takagi, A.; Kamiya, T.; Hirano, M.; Hosono, H. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 2004, 432, 488. [Google Scholar] [CrossRef]
- Ware, T.; Simon, D.; Liu, C.; Musa, T.; Vasudevan, S.; Sloan, A.; Keefer, E.W.; Rennaker, R.L.; Voit, W. Thiol-ene/acrylate substrates for softening intracortical electrodes. J. Biomed. Mater. Res. Part B Appl. Biomater. 2014, 102, 1–11. [Google Scholar] [CrossRef]
- Arreaga-Salas, D.E.; Avendaño-Bolívar, A.; Simon, D.; Reit, R.; Garcia-Sandoval, A.; Rennaker, R.L.; Voit, W. Integration of High-Charge-Injection-Capacity Electrodes onto Polymer Softening Neural Interfaces. ACS Appl. Mater. Interfaces 2015, 7, 26614–26623. [Google Scholar] [CrossRef]
- Ecker, M.; Danda, V.; Shoffstall, A.J.; Mahmood, S.F.; Joshi-Imre, A.; Frewin, C.L.; Ware, T.H.; Capadona, J.R.; Pancrazio, J.J.; Voit, W.E. Sterilization of Thiol-ene/Acrylate Based Shape Memory Polymers for Biomedical Applications. Macromol. Mater. Eng. 2017, 302, 1600331. [Google Scholar] [CrossRef]
- Reit, R.; Zamorano, D.; Parker, S.; Simon, D.; Lund, B.; Voit, W.; Ware, T.H. Hydrolytically Stable Thiol–ene Networks for Flexible Bioelectronics. ACS Appl. Mater. Interfaces 2015, 7, 28673–28681. [Google Scholar] [CrossRef]
- Ware, T.; Hearon, K.; Lonnecker, A.; Wooley, K.L.; Maitland, D.J.; Voit, W. Triple-Shape Memory Polymers Based on Self-Complementary Hydrogen Bonding. Macromolecules 2012, 45, 1062–1069. [Google Scholar] [CrossRef] [Green Version]
- Crampon, M.A.; Sawan, M.; Brailovski, V.; Trochu, F. New nerve cuff electrode based on a shape memory alloy armature. In Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Hong Kong, China, 1 November 1998; Volume 20. [Google Scholar]
- Hardy, J.G.; Palma, M.; Wind, S.J.; Biggs, M.J. Responsive Biomaterials: Advances in Materials Based on Shape-Memory Polymers. Adv. Mater. 2016, 28, 5717–5724. [Google Scholar] [CrossRef]
- Gilletti, A.; Muthuswamy, J. Brain micromotion around implants in the rodent somatosensory cortex. J. Neural Eng. 2006, 3, 189. [Google Scholar] [CrossRef]
- Elias, C.N.; Lima, J.H.C.; Valiev, R.; Meyers, M.A. Biomedical applications of titanium and its alloys. JOM 2008, 60, 46–49. [Google Scholar] [CrossRef]
- Helton, K.L.; Ratner, B.D.; Wisniewski, N.A. Biomechanics of the sensor-tissue interface-effects of motion, pressure, and design on sensor performance and foreign body response-part II: Examples and application. J. Diabetes Sci. Technol. 2011, 5, 647–656. [Google Scholar] [CrossRef]
- Lendlein, A.; Langer, R. Biodegradable, Elastic Shape-Memory Polymers for Potential Biomedical Applications. Science 2002, 296, 1673–1676. [Google Scholar] [CrossRef]
- El Feninat, F.; Laroche, G.; Fiset, M.; Mantovani, D. Shape Memory Materials for Biomedical Applications. Adv. Eng. Mater. 2002, 4, 91–104. [Google Scholar] [CrossRef]
- Lendlein, A.; Behl, M.; Hiebl, B.; Wischke, C. Shape-memory polymers as a technology platform for biomedical applications. Expert Rev. Med. Devices 2010, 7, 357–379. [Google Scholar] [CrossRef] [Green Version]
- Hearon, K.; Wierzbicki, M.A.; Nash, L.D.; Landsman, T.L.; Laramy, C.; Lonnecker, A.T.; Gibbons, M.C.; Ur, S.; Cardinal, K.O.; Wilson, T.S.; et al. A Processable Shape Memory Polymer System for Biomedical Applications. Adv. Healthc. Mater. 2015, 4, 1386–1398. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, Z. Polymer Dielectric Materials. In Dielectric Material; Silaghi, M.A., Ed.; InTechOpen: London, UK, 2012. [Google Scholar] [CrossRef] [Green Version]
- Farrell, R.; Goshal, T.; Cvelbar, U.; Petkov, N.; Morris, M.A. Advances in Ultra Low Dielectric Constant Ordered Porous Materials. Electrochem. Soc. Interface 2011, 20, 39–46. [Google Scholar] [CrossRef] [Green Version]
- Scholvin, J.; Kinney, J.P.; Bernstein, J.G.; Moore-Kochlacs, C.; Kopell, N.J.; Fonstad, C.G.; Boyden, E.S. Heterogeneous neural amplifier integration for scalable extracellular microelectrodes. In Proceedings of the 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016; pp. 2789–2793. [Google Scholar]
- Black, B.J.; Ecker, M.; Stiller, A.; Rihani, R.; Danda, V.R.; Reed, I.; Voit, W.E.; Pancrazio, J.J. In vitro compatibility testing of thiol-ene/acrylate-based shape memory polymers for use in implantable neural interfaces. J. Biomed. Mater. Res. Part A 2018, 106, 2891–2898. [Google Scholar] [CrossRef]
- ASTM. Standard Test Methods for DC Resistance or Conductance of Insulating Materials; D257-14; ASTM International: West Conshohocken, PA, USA, 2014; Volume D257-14. [Google Scholar]
- ASTM. Standard Test Methods for AC Loss Characteristics and Permittivity (Dielectric Constant) of Solid Electrical Insulation; D150-11; ASTM International: West Conshohocken, PA, USA, 2011; Volume D150-11. [Google Scholar]
- IPC. Permittivity (Dielectric Constant) and Loss Tangent (Dissipation Factor) if Insulating Material a 1 MHz (Contacting Electrode Systems); IPC-TM-650; Institute for Inteerconnecting and Packaging ELectronic Circuits: Bannockburn, IL, USA, 1986; Volume 2.5.5.1, p. 5. [Google Scholar]
- Findlay, A.; Marinskiy, D.; Edelman, P.; Wilson, M.; Savtchouk, A.; Lagowski, J. Non-Visual Defect Monitoring with Surface Voltage Mapping. ECS J. Solid State Sci. Technol. 2016, 5, P3087–P3095. [Google Scholar] [CrossRef]
- Hoff, A.M.; Esry, T.C.; Nauka, K. Monitoring Plasma Damage: A Real-time, Non-contact Approach. Solid State Technol. 1996, 39, 139–152. [Google Scholar]
- Lagowski, J.; Hofl, A.; Jastrzebski, L.; Edelman, P.; Esry, T. A Novel Method For Studying Degradation Related To Plasma Processing Of Silicon Wafers. MRS Proc. 2011, 428, 437. [Google Scholar] [CrossRef]
- Marinskiy, D.; Lagowski, J.; Wilson, M.; Findlay, A.; Almeida, C.; Edelman, P. New Approach to Surface Voltage Based Non-Visual Defect Inspection. ECS Trans. 2014, 60, 917–922. [Google Scholar] [CrossRef]
- Vassilikou-Dova, A.; Kalogeras, I.M. Dielectric analysis (DEA). In Thermal Analysis of Polymers: Fundamentals and Applications; Menczel, J.D., Prime, R.B., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2008; pp. 497–613. [Google Scholar] [CrossRef]
- Bocharova, V.; Wojnarowska, Z.; Cao, P.-F.; Fu, Y.; Kumar, R.; Li, B.; Novikov, V.N.; Zhao, S.; Kisliuk, A.; Saito, T.; et al. Influence of Chain Rigidity and Dielectric Constant on the Glass Transition Temperature in Polymerized Ionic Liquids. J. Phys. Chem. B 2017, 121, 11511–11519. [Google Scholar] [CrossRef]
- Biron, M. 1—Thermoplastic Material Selection: Some Ways of Thinking for a Systematic Approach. In Material Selection for Thermoplastic Parts; Biron, M., Ed.; William Andrew Publishing: Oxford, UK, 2016; pp. 1–38. [Google Scholar] [CrossRef]
- Biron, M. Chapter 3—Basic criteria for the selection of thermosets. In Thermosets and Composites; Biron, M., Ed.; Elsevier Science: Oxford, UK, 2004; pp. 145–181. [Google Scholar] [CrossRef]
- Laby, K.A. Electrical Insulating Materials. Available online: http://www.kayelaby.npl.co.uk/general_physics/2_6/2_6_3.html (accessed on 4 December 2019).
- Hassler, C.; von Metzen, R.; Stieglitz, T. Deposition Parameters Determining Insulation Resistance and Crystallinity of Parylene C in Neural Implant Encapsulation. In 4th European Conference of the International Federation for Medical and Biological Engineering; Springer: Berlin/Heidelberg, Germany, 2009; pp. 2439–2442. [Google Scholar]
- DUPONT™ KAPTON® Summary Of Properties; DuPond: Wilmington, DE, USA, 2017.
Material | Surface Resistivity (Ω/sq) | Volume Resistivity (Ω·cm) | ||
---|---|---|---|---|
Mean ± SD | 10th Percentile | Mean ± SD | 10th Percentile | |
2 h cure glassy | 1.47 × 1014 ± 5.60 × 1013 | 7.58 × 1013 | 4.55 × 1014 ± 3.83 × 1014 | 2.03 × 1012 |
2 h cure rubbery | 1.20 × 1013 ± 2.01 × 1013 | 2.41 × 1013 | 4.75 × 1013 ± 7.99 × 1013 | 1.09 × 1011 |
3 min cure glassy | 1.25 × 1014 ± 1.35 × 1014 | 1.23 × 1013 | 8.13 × 1014 ± 9.24 × 1014 | 1.33 × 1012 |
3 min cure rubbery | 2.50 × 1012 ± 2.72 × 1012 | 2.44 × 1011 | 3.37 × 1013 ± 3.87 × 1013 | 3.22 × 109 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frewin, C.L.; Ecker, M.; Joshi-Imre, A.; Kamgue, J.; Waddell, J.; Danda, V.R.; Stiller, A.M.; Voit, W.E.; Pancrazio, J.J. Electrical Properties of Thiol-ene-based Shape Memory Polymers Intended for Flexible Electronics. Polymers 2019, 11, 902. https://doi.org/10.3390/polym11050902
Frewin CL, Ecker M, Joshi-Imre A, Kamgue J, Waddell J, Danda VR, Stiller AM, Voit WE, Pancrazio JJ. Electrical Properties of Thiol-ene-based Shape Memory Polymers Intended for Flexible Electronics. Polymers. 2019; 11(5):902. https://doi.org/10.3390/polym11050902
Chicago/Turabian StyleFrewin, Christopher L., Melanie Ecker, Alexandra Joshi-Imre, Jonathan Kamgue, Jeanneane Waddell, Vindhya Reddy Danda, Allison M. Stiller, Walter E. Voit, and Joseph J. Pancrazio. 2019. "Electrical Properties of Thiol-ene-based Shape Memory Polymers Intended for Flexible Electronics" Polymers 11, no. 5: 902. https://doi.org/10.3390/polym11050902
APA StyleFrewin, C. L., Ecker, M., Joshi-Imre, A., Kamgue, J., Waddell, J., Danda, V. R., Stiller, A. M., Voit, W. E., & Pancrazio, J. J. (2019). Electrical Properties of Thiol-ene-based Shape Memory Polymers Intended for Flexible Electronics. Polymers, 11(5), 902. https://doi.org/10.3390/polym11050902