Preparation and Thermal Evaluation of Novel Polyimide Protective Coatings for Quartz Capillary Chromatographic Columns Operated over 320 °C for High-Temperature Gas Chromatography Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Polyimide Coatings and CC Fabrication
2.3. Characterization Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Dorman, F.L.; Whiting, J.J.; Cochran, J.W.; Gardea-Torresdey, J. Gas chromatography. Anal. Chem. 2010, 82, 4775–4785. [Google Scholar] [CrossRef]
- Flanagan, G.; Andrianova, A.A.; Casey, J.; Hellrung, E.; Diep, B.A.; Seames, W.S.; Kubatova, A. Simultaneous high-temperature gas chromatography with flame ionization and mass spectrometric analysis of monocarboxylic acids and acylglycerols in biofuels and biofuel intermediate. J. Chromatography A 2019, 1584, 165–178. [Google Scholar] [CrossRef]
- Mayer, B.X.; Lorbeer, E. Triacylglycerol mixture for testing capillary columns for high temperature gas chromatography. J. Chromatography A 1997, 758, 235–242. [Google Scholar] [CrossRef]
- Barry, E.F.; Grob, R.L. Columns for Gas Chromatography: Performance and Selection, 1st ed.; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2007; pp. 1–14. [Google Scholar]
- Tranchida, P.Q.; Mondello, L. Current-day employment of the micro-bore open-tubular capillary column in the gas chromatography field. J. Chromatography A 2012, 1261, 23–36. [Google Scholar] [CrossRef] [PubMed]
- Thewalim, Y.; Sadiktsis, I.; Colmsjo, A. Comparing columns for gas chromatography with the two parameter model for retention prediction. J. Chromatography A 2011, 1218, 5305–5310. [Google Scholar] [CrossRef] [PubMed]
- Yusuf, K.; Aqel, A.; Alothman, Z.; Badjah-Hadj-Ahmed, A.Y. Preparation and characterization of alkyl methacrylate-based monolithic columns for capillary gas chromatography applications. J. Chromatography A 2013, 1301, 200–208. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.M.; El-aty, A.M.A.; Choi, J.H.; Shin, H.C.; Shin, S.C.; Shim, J.H. Basic overview on gas chromatography columns. In Analytical Separation Science, 1st ed.; Anderson, J.L., Berthod, A., Estevez, V.P., Stalcup, A.M., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2015; Chapter 3; pp. 823–834. [Google Scholar]
- Liaw, D.J.; Wang, K.L.; Huang, Y.C.; Lee, K.R.; Lai, J.Y.; Ha, C.S. Advanced polyimide materials: Syntheses, physical properties and applications. Prog. Polym. Sci. 2012, 37, 907–974. [Google Scholar] [CrossRef]
- Zhang, Y.; Ou, H.J.; Liu, H.X.; Ke, Y.L.; Zhang, W.J.; Liao, G.Y.; Wang, D.S. Polyimide-based carbon nanofibers: A versatile adsorbent for highly efficient removals of chlorophenols, dyes and antibiotics. Colloids Surf. A 2018, 537, 92–101. [Google Scholar] [CrossRef]
- He, S.Q.; Zhang, S.C.; Lu, C.X.; Wu, G.P.; Yang, Y.; An, F.; Guo, J.H.; Li, H. Polyimide nano-coating on carbon fibers by electrophoretic deposition. Colloids Surf. A 2011, 381, 118–122. [Google Scholar] [CrossRef]
- Liu, K.; Mu, H.F.; Shua, M.Z.; Li, H.; Gao, Y. Improved adhesion between SnO2/SiO2 coating and polyimide film and its applications to atomic oxygen protection. Colloids Surf. A 2017, 529, 356–362. [Google Scholar] [CrossRef]
- Feng, L.Q.; Iroh, J.O. Corrosion resistance and lifetime of polyimide-b-polyurea novel copolymer coatings. Prog. Org. Coat. 2016, 77, 590–599. [Google Scholar] [CrossRef]
- Nakagami, K.; Sumiya, O.; Tazawa, T.; Monobe, T.; Watanabe, M.; Ueta, I.; Saito, Y. Polyimide filaments as a novel stationary phase in packed-capillary gas chromatography. Chromatography 2018, 39, 91–96. [Google Scholar] [CrossRef]
- Webster, J.G.; Marine, S.S.; Danielson, N.D. Polyimide polymer glass-free capillary columns for gas chromatography. J. Chromatographic Sci. 2011, 49, 447–456. [Google Scholar] [CrossRef]
- Balla, J.; Balint, M. Polyimide capillary column for gas-liquid chromatography. J. Chromatography A 1984, 299, 139–149. [Google Scholar] [CrossRef]
- Baeumi, F.; Welsch, T. Improvement of the long-term stability of polyimide-coated fused silica capillaries used in capillary electrophoresis and capillary electro chromatography. J. Chromatography A 2002, 961, 35–44. [Google Scholar] [CrossRef]
- Goyal, S.; Park, H.H.; Lee, S.H.; Savoy, E.; McKenzie, M.E.; Rammohan, A.R.; Mauro, J.C.; Kim, H.; Min, K.; Cho, E. Characterizing the fundamental adhesion of polyimide monomers on crystalline and glassy silica surfaces: A molecular dynamics study. J. Phys. Chem. C 2016, 120, 23631–23639. [Google Scholar] [CrossRef]
- Min, K.; Rammohan, A.R.; Lee, H.S.; Shin, J.; Lee, S.H.; Goyal, S.; Park, H.; Mauro, J.C.; Stewart, R.; Botu, V.; Kim, H.; Cho, E. Computational approaches for investigating interfacial adhesion phenomena of polyimide on silica glass. Sci. Rep. 2017, 7, 10475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.H.; Stewart, R.J.; Park, H.; Goyal, S.; Botu, V.; Kim, H.; Min, K.; Cho, E.; Rammohan, A.R.; Mauro, J.C. Effect of nanoscale roughness on adhesion between glassy silica and polyimides: A molecular dynamics study. J. Phys. Chem. C 2017, 121, 24648–24656. [Google Scholar] [CrossRef]
- Chang, C.C.; Chen, W.C. Synthesis and optical properties of polyimide-silica hybrid thin films. Chem. Mater. 2002, 14, 4242–4248. [Google Scholar] [CrossRef]
- Min, K.; Kim, Y.; Goyal, S.; Lee, S.H.; Mckenzie, M.; Park, H.; Savoy, E.S.; Rammohan, A.R.; Mauro, J.C.; Kim, H.; Chae, K.; Lee, H.S.; Shin, J.; Cho, E. Interfacial adhesion behavior of polyimides on silica glass: A molecular dynamics study. Polymer 2016, 98, 1–10. [Google Scholar] [CrossRef]
- Feng, L.Q.; Iroh, J.O. Polyimide-b-polysiloxane copolymers: Synthesis and properties. J. Inorg. Org. Polym. Mater. 2013, 23, 477–488. [Google Scholar] [CrossRef]
- Kosolapov, A.F.; Plastinin, E.A.; Semjonov, S.L.; Bayminov, B.A.; Sapozhnikov, D.A.; Alekseeva, D.D.; Vygodskii, Y.S. Advanced polyimide varnish for optical fiber coating fabrication. Bull. Lebedev Phys. Institute 2017, 44, 159–162. [Google Scholar] [CrossRef]
- Dishit, A.K. Continuous flow of polyimide coating on silica optical fibre and its characterization. Int. J. Plast. Technol. 2016, 20, 401–423. [Google Scholar] [CrossRef]
- Jewell, J.M. Thermooptic coefficients of some standard reference material glassed. J. Am. Ceram. Soc. 1991, 74, 1689–1691. [Google Scholar] [CrossRef]
- Zhang, P.; Chen, Y.; Li, G.Q.; Luo, L.B.; Pang, Y.W.; Wang, X.; Peng, C.R.; Liu, X.Y. Enhancement of properties of polyimide/silica hybrid nancomposites by benzimidazole formed hydrogen bond. Polym. Adv. Technol. 2011, 23, 1362–1368. [Google Scholar] [CrossRef]
- Chung, I.S.; Park, C.E.; Ree, M.; Kim, S.Y. Polyimides containing benzimidazole rings for interlevel dielectrics. Chem. Mater. 2001, 13, 2801–2806. [Google Scholar] [CrossRef]
- Song, G.L.; Zhang, Y.; Wang, D.M.; Chen, C.H.; Zhou, H.W.; Zhao, X.G.; Dang, G.D. Intermolecular interactions of polyimides containing benzimidazole and benzoxazole moieties. Polymer 2013, 54, 2335–2340. [Google Scholar] [CrossRef]
- Lee, K.W.; Viehbeck, A.; Walker, G.F.; Cohen, S.; Zucco, P.; Chen, R.; Ree, M. Adhesion of poly(arylene ether benzimidazole) to copper and polyimides. J. Adhesion Sci. Technol. 1996, 10, 807–821. [Google Scholar] [CrossRef]
- Wang, S.; Zhou, H.W.; Dang, G.D.; Chen, C.H. Synthesis and characterization of thermally stable, high-modulus polyimides containing benzimidazole moieties. J. Polym. Sci. Part A Polym. Chem. 2009, 47, 2024–2031. [Google Scholar] [CrossRef]
- Song, G.L.; Zhang, X.D.; Wang, D.M.; Zhao, X.G.; Zhou, H.W.; Chen, C.H.; Dang, G.D. Negative in-plane CTE of benzimidazole-based polyimide film and its thermal expansion behavior. Polymer 2014, 55, 3242–3246. [Google Scholar] [CrossRef]
- Zhuang, Y.B.; Liu, X.Y.; Gu, Y. Molecular packing and properties of poly(benzoxazole- benzimidazole-imide) copolymers. Polym. Chem. 2012, 3, 1517–1525. [Google Scholar]
PAA | [ƞ]inh a (dL/g) | PI | Film Quality | TSc (MPa) | TMc (GPa) | Ebc (%) |
---|---|---|---|---|---|---|
PAA-1 | 1.18 | PI-1 | F&T b | 109.3 | 2.9 | 5.0 |
PAA-2 | 1.06 | PI-2 | F&T | 121.0 | 3.5 | 9.6 |
PAA-3 | 1.02 | PI-3 | F&T | 133.9 | 4.0 | 16.5 |
PAA-4 | 0.99 | PI-4 | F&T | 141.2 | 4.4 | 16.9 |
PAA-5 | 0.92 | PI-5 | F&T | 137.4 | 4.7 | 14.8 |
PI | Tga (°C) | Tgb (°C) | T5%c (°C) | T10%d (°C) | CTE (10−6/K) e (50–300 °C) |
---|---|---|---|---|---|
PI-1 | 278.8 | 278.3 | 542.1 | 576.2 | 62.3 |
PI-2 | 308.4 | 299.2 | 542.6 | 574.9 | 58.4 |
PI-3 | 326.3 | 319.6 | 551.5 | 577.0 | 40.3 |
PI-4 | 331.3 | 322.6 | 552.4 | 579.3 | 31.3 |
PI-5 | 346.9 | 340.1 | 553.0 | 584.9 | 24.6 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huangfu, M.-g.; Zhang, Y.; Zhang, X.-l.; Liu, J.-g.; Liu, Y.-c.; Guo, Y.-d.; Huang, Q.-y.; Zhang, X.-m. Preparation and Thermal Evaluation of Novel Polyimide Protective Coatings for Quartz Capillary Chromatographic Columns Operated over 320 °C for High-Temperature Gas Chromatography Analysis. Polymers 2019, 11, 946. https://doi.org/10.3390/polym11060946
Huangfu M-g, Zhang Y, Zhang X-l, Liu J-g, Liu Y-c, Guo Y-d, Huang Q-y, Zhang X-m. Preparation and Thermal Evaluation of Novel Polyimide Protective Coatings for Quartz Capillary Chromatographic Columns Operated over 320 °C for High-Temperature Gas Chromatography Analysis. Polymers. 2019; 11(6):946. https://doi.org/10.3390/polym11060946
Chicago/Turabian StyleHuangfu, Meng-ge, Yan Zhang, Xin-ling Zhang, Jin-gang Liu, Ying-cong Liu, Yi-dan Guo, Qing-yuan Huang, and Xiu-min Zhang. 2019. "Preparation and Thermal Evaluation of Novel Polyimide Protective Coatings for Quartz Capillary Chromatographic Columns Operated over 320 °C for High-Temperature Gas Chromatography Analysis" Polymers 11, no. 6: 946. https://doi.org/10.3390/polym11060946
APA StyleHuangfu, M. -g., Zhang, Y., Zhang, X. -l., Liu, J. -g., Liu, Y. -c., Guo, Y. -d., Huang, Q. -y., & Zhang, X. -m. (2019). Preparation and Thermal Evaluation of Novel Polyimide Protective Coatings for Quartz Capillary Chromatographic Columns Operated over 320 °C for High-Temperature Gas Chromatography Analysis. Polymers, 11(6), 946. https://doi.org/10.3390/polym11060946