Degradation of Metal-Organic Framework Materials as Controlled-Release Fertilizers in Crop Fields
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of MOF
2.2. Powder X-ray Diffraction (PXRD) Characterization of MOF
2.3. Experiment Design
2.4. Attenuated Total Reflection-Fourier Transform Infrared (ATR-FTIR) Spectroscopy Characterization
2.5. Laser Induced Breakdown Spectroscopy (LIBS) Characterization
2.6. Scanning Electron Microscopy (SEM) Characterization
2.7. Powder X-ray Diffraction (PXRD) Characterization of MOF Samples
2.8. Determination of Soil Nutrient
3. Results
3.1. PXRD Characterization of MOF
3.2. ATR-FTIR Characterization
3.3. LIBS Characterization
3.4. SEM Characterization
3.5. PXRD Characterization of MOF Samples
3.6. Nutrient Release Status of the MOF
3.7. Effects of Soil Temperature and Soil Water Content on the Degradation of the MOF
4. Discussion
4.1. Mechanism of Degradation of the MOF
4.2. MOFs as Controlled-Release Fertilizer
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Stewart, W.M.; Dibb, D.W.; Johnston, A.E.; Smyth, T.J. The contribution of commercial fertilizer nutrients to food production. Agron. J. 2005, 97, 1–6. [Google Scholar] [CrossRef]
- Gerbens-Leenes, P.W.; Nonhebel, S.; Ivens, W.P.M.F. A method to determine land requirements relating to food consumption patterns. Agric. Ecosyst. Environ. 2002, 90, 47–58. [Google Scholar] [CrossRef]
- Brown, M.E.; Hintermann, B.; Higgins, N. Markets, climate change, and food security in West Africa. Environ. Sci. Technol. 2009, 43, 8016–8020. [Google Scholar] [CrossRef] [PubMed]
- William, R.R.; Gordon, V.J. Improving nitrogen use efficiency for cereal production. Agron. J. 1999, 91, 357–363. [Google Scholar]
- Tilman, D.; Cassman, K.G.; Matson, P.A.; Naylor, R.; Polasky, S. Agricultural sustainability and intensive production practices. Nature 2002, 418, 671–677. [Google Scholar] [CrossRef] [PubMed]
- Tilman, D.; Fargione, J.; Wolff, B.; D’Antonio, C.; Dobson, A.; Howarth, R.; Schindler, D.; Schlesinger, W.H.; Simberloff, D.; Swackhamer, D. Forecasting agriculturally driven global environmental change. Science 2001, 292, 281–284. [Google Scholar] [CrossRef] [PubMed]
- Kowalenko, C.G. The fate of applied nitrogen in a Fraser valley soil using 15N in field microplots. Can. J. Soil Sci. 1989, 69, 825–833. [Google Scholar] [CrossRef]
- Davidson, E.A. The contribution of manure and fertilizer nitrogen to atmospheric nitrous oxide since 1860. Nat. Geosci. 2009, 2, 659–662. [Google Scholar] [CrossRef]
- Reay, D.S.; Davidson, E.A.; Smith, K.A.; Crutzen, P.J. Global agriculture and nitrous oxide emissions. Nat. Clim. Chang. 2012, 2, 410–416. [Google Scholar] [CrossRef]
- Sutton, M.A.; Howard, C.M.; Erisman, J.W. The European Nitrogen Assessment Sources, Effects and Policy Perspective; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Shen, J.; Li, R.; Zhang, F.; Tang, C.; Rengel, Z. Crop yields, soil fertility and phosphorus fractions in response to long-term fertilization under the rice monoculture system on a calcareous soil. Field Crops Res. 2004, 86, 225–238. [Google Scholar] [CrossRef]
- Sharpley, A.; Beegle, D.; Bolster, C.; Good, L.; Joern, B.; Ketterings, Q.; Lory, J.; Mikkelsen, R.; Osmond, D.; Vadas, P. Phosphorus indices: Why we need to take stock of how we are doing. J. Environ. Qual. 2012, 41, 1711–1719. [Google Scholar] [CrossRef]
- Haden, V.; Ketterings, Q.M.; Kahabka, J.E. Factors affecting change in soil test phosphorus following manure and fertilizer application. Soil Sci. Soc. Am. J. 2007, 71, 1225–1232. [Google Scholar] [CrossRef]
- Eddaoudi, M.; Hailian, L.; Yaghi, O.M. Highly porous and stable metal−organic frameworks: Structure design and sorption properties. J. Am. Chem. Soc. 2000, 122, 1391–1397. [Google Scholar] [CrossRef]
- Kitagawa, S.; Kitaura, R.; Noro, S. Functional porous coordination polymers. Angew. Chem. Int. Ed. Engl. 2004, 43, 2334–2375. [Google Scholar] [CrossRef] [PubMed]
- Murray, L.J.; Dinca, M.; Long, J.R. Hydrogen storage in metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1294–1314. [Google Scholar] [CrossRef] [PubMed]
- Farrusseng, D.; Aguado, S.; Pinel, C. Metal-organic frameworks: Opportunities for catalysis. Angew. Chem. Int. Ed. Engl. 2009, 48, 7502–7513. [Google Scholar] [CrossRef]
- Janiak, C. Engineering coordination polymers towards applications. Dalton Trans. 2003, 14, 2781–2804. [Google Scholar] [CrossRef]
- Mueller, U.; Schubert, M.; Teich, F.; Puetter, H.; Schierle-Arndt, K.; Pastre, J. Metal-organic frameworks-prospective industrial applications. J. Mater. Chem. 2006, 16, 626–636. [Google Scholar] [CrossRef]
- McKinlay, A.C.; Morris, R.E.; Horcajada, P.; Férey, G.; Gref, R.; Couvreur, P.; Serre, C. Bio-MOFs: Metal-organic frameworks for biological and medical applications. Angew. Chem. Int. Ed. 2010, 49, 6260–6266. [Google Scholar] [CrossRef]
- Anstoetz, M.; Sharma, N.; Clark, M.; Yee, L.H. Characterization of an oxalate-phosphate-amine metal–organic framework (OPA-MOF) exhibiting properties suited for innovative applications in agriculture. J. Mater. Sci. 2016, 51, 9239–9252. [Google Scholar] [CrossRef]
- Anstoetz, M.; Rose, T.J.; Clark, M.W.; Yee, L.H.; Raymond, C.A.; Vancov, T. Novel applications for oxalate-phosphate-amine metal-organic-frameworks (OPA-MOFs): Can an iron-based opa-mof be used as slow-release fertilizer? PLoS ONE 2015, 10, e0144169. [Google Scholar] [CrossRef]
- Abdelhameed, R.M.; Abdelhameed, R.E.; Kamel, H.A. Iron-based metal-organic-frameworks as fertilizers for hydroponically grown Phaseolus vulgaris. Mater. Lett. 2019, 237, 72–79. [Google Scholar] [CrossRef]
- Kizewski, F.R.; Boyle, P.; Hesterberg, D.; Martin, J.D. Mixed anion (phosphate/oxalate) bondingo iron(III) materials. J. Am. Chem. Soc. 2010, 132, 2301–2308. [Google Scholar] [CrossRef] [PubMed]
- Rajic, N.; Stojakovic, D.; Hanzel, D.; Logar, N.Z.; Kaucic, V. Preparation and characterization of iron(III) phosphate–oxalate using 1,2-diaminopropane as the structure-directing agent. Micropor. Mesopor. Mater. 2002, 55, 313–319. [Google Scholar] [CrossRef]
- Yang, X.; Li, J.; Hou, Y.; Shi, S.; Shan, Y. K2Fe(C2O4)(HPO4)(OH2)H2O: A layered oxalatophosphate hybrid material. Inorg. Chim. Acta 2008, 361, 1510–1514. [Google Scholar] [CrossRef]
- Choudhury, A.; Natarajan, S. A hybrid open-framework structure: Synthesis and structure of an iron phosphateoxalate, [C10N4H28 Fe-2(HPO4)(C2O4)]. J. Am. Chem. 1999, 9, 3113–3117. [Google Scholar] [CrossRef]
- Certini, G.; Corti, G.; Ugolini, F.C. Vertical trends of oxalate concentration in two soils under Abies alba from Tuscany (Italy). J. Plant Nutr. Soil Sci. 2000, 163, 173–177. [Google Scholar] [CrossRef]
- Cailleau, G.; Braissant, O.; Verrecchia, E.P. Turning sunlight into stone: The oxalate-carbonate pathway in a tropical tree ecosystem. Biogeosciences 2011, 8, 1755–1767. [Google Scholar] [CrossRef]
- Cailleau, G.; Mota, M.; Bindschedler, S.; Junier, P.; Verrecchia, E.P. Detection of active oxalate-carbonate pathway ecosystems in the Amazon Basin: Global implications of a natural potential C sink. Catena 2014, 116, 132–141. [Google Scholar] [CrossRef]
- Natarajan, S.; Mandal, S.; Mahata, P.; Ramya, K.V. The use of hydrothermal methods in the synthesis of novel open framework materials. J. Chem. Sci. 2006, 118, 525–536. [Google Scholar] [CrossRef]
- Huang, T.; Vanchura, B.A.; Shan, Y.; Huang, S.D. Na(H3NCH2CH2NH3)0.5[CO(C2O4)(HPO4)]: A novel phosphoxalate open-framework compound incorporating both analkali cation and an organic template in the structural tunnels. J. Solid. State Chem. 2007, 180, 2110–2115. [Google Scholar] [CrossRef]
- Bagtache, R.; Abdmeziem, K.; Boutamine, S.; Meklati, M.H.; Vittori, O. Effect of the nature of the organic template andmetal cation on the phase composition of metal-phosphates. Synth. React. Inorg. Met. Org. Nano Met. Chem. 2009, 39, 467–474. [Google Scholar]
- Rajic, N.; Stojakovic, D.R.; Hanzel, D.; Kaucic, V. The structure directing role of 1,3-diaminopropane in the hydrothermal synthesis of iron(III) phosphate. J. Serb. Chem. Soc. 2004, 69, 179–185. [Google Scholar] [CrossRef]
- Oburger, E.; Jones, D.; Wenzel, W. Phosphorus saturation and pH differentially regulate the efficiency of organic acid anion-mediated P solubilization mechanisms in soil. Plant Soil 2011, 341, 363–382. [Google Scholar] [CrossRef]
- Richardson, A.E.; Hocking, P.J.; Simpson, R.J.; George, T.S. Plant mechanisms to optimize access to soil phosphorus. Crop Pasture Sci. 2009, 60, 124–143. [Google Scholar] [CrossRef]
- Martin, G.; Guggiari, M.; Bravo, D.; Zopfi, J.; Cailleau, G.; Aragno, M.; Job, D.; Verrecchia, E.; Junier, P. Fungi, bacteria and soil pH: The oxalate-carbonate pathway as a model for metabolic interaction. Environ. Microbiol. 2012, 14, 2960–2970. [Google Scholar] [CrossRef]
- Aragno, A.; Verrecchia, E.P.; Job, D.; Cailleau, G.; Braissant, O.; Khammar, N.; Ferro, K.; Mota, M.; Guggiari, M.; Martin, G. Calcium carbonate biomineralization in ferralitic, tropical soils through theoxalate-carbonate pathway. BGS Bull. 2010, 30, 127–130. [Google Scholar]
- Stumm, W.; Morgan, J.J. Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters, 3rd ed.; John Wiley and Sons: Weinheim, Germany, 1995. [Google Scholar]
Parameters | pH | Organic Matter (g/kg) | Total-N (g/kg) | NH4+-N (mg/kg) | NO3−-N (mg/kg) | Available P (mg/kg) | Available K (mg/kg) | Available Fe (mg/kg) |
---|---|---|---|---|---|---|---|---|
Value | 6.72 | 18.23 | 1.48 | 25.36 | 32.26 | 22.25 | 182.5 | 6.48 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, K.; Du, C.; Ma, F.; Shen, Y.; Liang, D.; Zhou, J. Degradation of Metal-Organic Framework Materials as Controlled-Release Fertilizers in Crop Fields. Polymers 2019, 11, 947. https://doi.org/10.3390/polym11060947
Wu K, Du C, Ma F, Shen Y, Liang D, Zhou J. Degradation of Metal-Organic Framework Materials as Controlled-Release Fertilizers in Crop Fields. Polymers. 2019; 11(6):947. https://doi.org/10.3390/polym11060947
Chicago/Turabian StyleWu, Ke, Changwen Du, Fei Ma, Yazhen Shen, Dong Liang, and Jianmin Zhou. 2019. "Degradation of Metal-Organic Framework Materials as Controlled-Release Fertilizers in Crop Fields" Polymers 11, no. 6: 947. https://doi.org/10.3390/polym11060947
APA StyleWu, K., Du, C., Ma, F., Shen, Y., Liang, D., & Zhou, J. (2019). Degradation of Metal-Organic Framework Materials as Controlled-Release Fertilizers in Crop Fields. Polymers, 11(6), 947. https://doi.org/10.3390/polym11060947