Isocyanate Modified GO Shape-Memory Polyurethane Composite
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of the SMP Composites
2.3. Characterization of the SMPU Composites
2.4. Finite Element Analysis
2.5. Statistical Analysis
3. Results and Discussion
3.1. Structures, Morphologies and Thermal Properties
3.2. Mechanical Properties
3.3. Shape-Memory Effects
3.4. FEA for the Recovery Process
3.5. Structural Models
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Hu, J.L.; Zhu, Y.; Huang, H.H.; Lu, J. Recent advances in shape-memory polymers: Structure, mechanism, functionality, modeling and applications. Prog. Polym. Sci. 2012, 37, 1720–1763. [Google Scholar] [CrossRef]
- Wang, Z.L. Functional and Smart Materials; Wiley Online Library: New York, NY, USA, 1998. [Google Scholar]
- Hu, J.L.; Ji, F.L.; Wong, Y.W. Dependency of the shape memory properties of a polyurethane upon thermomechanical cyclic conditions. Polym. Int. 2005, 54, 600–605. [Google Scholar] [CrossRef]
- Lendlein, A.; Jiang, H.Y.; Junger, O.; Langer, R. Light-induced shape-memory polymers. Nature 2005, 434, 879–882. [Google Scholar] [CrossRef] [PubMed]
- Meng, Q.H.; Hu, J.L.; Yeung, L. An electro-active shape memory fibre by incorporating multi-walled carbon nanotubes. Smart Mater. Struct. 2007, 16, 830–836. [Google Scholar] [CrossRef]
- Chen, S.J.; Hu, J.L.; Yuen, C.W.M.; Chan, L.K. Novel moisture-sensitive shape memory polyurethanes containing pyridine moieties. Polymer 2009, 50, 4424–4428. [Google Scholar] [CrossRef]
- Du, H.Y.; Zhang, J.H. Solvent induced shape recovery of shape memory polymer based on chemically cross-linked poly(vinyl alcohol). Soft Matter 2010, 6, 3370–3376. [Google Scholar] [CrossRef]
- Yuanchi, Z.; Jinlian, H.; Xin, Z.; Ruiqi, X.; Tingwu, Q.; Fenglong, J. Mechanically robust shape memory polyurethane nanocomposites for minimally invasive bone repair. ACS Appl. Bio Mater. 2019, 2, 1056–1065. [Google Scholar]
- Zhang, S.; Yu, Z.; Govender, T.; Luo, H.; Li, B. A novel supramolecular shape memory material based on partial α-cd–peg inclusion complex. Polymer 2008, 49, 3205–3210. [Google Scholar] [CrossRef]
- Zhu, Y.; Hu, J.L.; Luo, H.S.; Young, R.J.; Deng, L.B.; Zhang, S.; Fan, Y.; Ye, G.D. Rapidly switchable water-sensitive shape-memory cellulose/elastomer nano-composites. Soft Matter 2012, 8, 2509–2517. [Google Scholar] [CrossRef]
- Lendlein, A.; Langer, R. Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science 2002, 296, 1673–1676. [Google Scholar] [CrossRef]
- Montgomery, M.; Ahadian, S.; Huyer, L.D.; Rito, M.L.; Civitarese, R.A.; Vanderlaan, R.D.; Wu, J.; Reis, L.A.; Momen, A.; Akbari, S.; et al. Flexible shape-memory scaffold for minimally invasive delivery of functional tissues. Nat. Mater. 2017, 16, 1038. [Google Scholar] [CrossRef] [PubMed]
- Boire, T.C.; Gupta, M.K.; Zachman, A.L.; Lee, S.H.; Balikov, D.A.; Kim, K.; Bellan, L.M.; Sung, H.J. Pendant allyl crosslinking as a tunable shape memory actuator for vascular applications. Acta Biomater. 2015, 24, 53–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C.; Hu, J.L.; Huang, H.H.; Zhu, Y.; Qin, T.W. Design of a smart nerve conduit based on a shape-memory polymer. Adv. Mater. Technol. 2016, 1. [Google Scholar] [CrossRef]
- Zhu, S.; Hu, J. A titin inspired stress-memory polymer acts as a muscle. Mater. Chem. Front. 2019, 3, 2461–2473. [Google Scholar] [CrossRef]
- Chen, J.; Hu, J.; Leung, A.K.; Chen, C.; Zhang, J.; Zhang, Y.; Zhu, Y.; Han, J. Shape memory ankle-foot orthoses. ACS Appl. Mater. Interfaces 2018, 10, 32935–32941. [Google Scholar] [CrossRef] [PubMed]
- Xie, R.Q.; Hu, J.L.; Guo, X.; Ng, F.; Qin, T.W. Topographical control of preosteoblast culture by shape memory foams. Adv. Eng. Mater. 2017, 19. [Google Scholar] [CrossRef] [Green Version]
- Montufar, E.; Casas-Luna, M.; Horynová, M.; Tkachenko, S.; Fohlerová, Z.; Diaz-de-la-Torre, S.; Dvořák, K.; Čelko, L.; Kaiser, J. High strength, biodegradable and cytocompatible alpha tricalcium phosphate-iron composites for temporal reduction of bone fractures. Acta Biomater. 2018, 70, 293–303. [Google Scholar] [CrossRef]
- Mano, J.F.; Sousa, R.A.; Boesel, L.F.; Neves, N.M.; Reis, R.L. Bioinert, biodegradable and injectable polymeric matrix composites for hard tissue replacement: State of the art and recent developments. Compos. Sci. Technol. 2004, 64, 789–817. [Google Scholar] [CrossRef] [Green Version]
- Xie, R.; Hu, J.; Ng, F.; Tan, L.; Qin, T.; Zhang, M.; Guo, X. High performance shape memory foams with isocyanate-modified hydroxyapatite nanoparticles for minimally invasive bone regeneration. Ceram. Int. 2017, 43, 4794–4802. [Google Scholar] [CrossRef]
- Feng, X.; Zhang, G.; Zhuo, S.; Jiang, H.; Shi, J.; Li, F.; Li, H. Dual responsive shape memory polymer/clay nanocomposites. Compos. Sci. Technol. 2016, 129, 53–60. [Google Scholar] [CrossRef]
- Li, J.; Cheng, Y.; Zhang, S.Y.; Li, Y.J.; Sun, J.; Qin, C.X.; Wang, J.J.; Dai, L.X. Modification of go based on click reaction and its composite fibers with poly(vinyl alcohol). Compos. Part A Appl. Sci. Manuf. 2017, 101, 115–122. [Google Scholar] [CrossRef]
- Cai, Z.Q.; Meng, X.Y.; Han, Y.S.; Ye, H.M.; Cui, L.S.; Zhou, Q. Reinforcing polyamide 1212 with graphene oxide via a two-step melt compounding process. Compos. Part A Appl. Sci. Manuf. 2015, 69, 115–123. [Google Scholar] [CrossRef]
- Pokharel, P.; Choi, S.; Lee, D.S. The effect of hard segment length on the thermal and mechanical properties of polyurethane/graphene oxide nanocomposites. Compos. Part A Appl. Sci. Manuf. 2015, 69, 168–177. [Google Scholar] [CrossRef]
- Thakur, S.; Karak, N. Multi-stimuli responsive smart elastomeric hyperbranched polyurethane/reduced graphene oxide nanocomposites. J. Mater. Chem. A 2014, 2, 14867–14875. [Google Scholar] [CrossRef]
- Pasricha, R.; Gupta, S.; Srivastava, A.K. A facile and novel synthesis of ag–graphene-based nanocomposites. Small 2009, 5, 2253–2259. [Google Scholar] [CrossRef]
- Meng, Q.; Hu, J.; Zhu, Y. Shape-memory polyurethane/multiwalled carbon nanotube fibers. J. Appl. Polym. Sci. 2007, 106, 837–848. [Google Scholar] [CrossRef]
- Shibata, M.; Ito, T. Metallization of cross-linked polyurethane resins by reduction of polymer-incorporated metal ion. Polymer 2003, 44, 5617–5623. [Google Scholar] [CrossRef]
- Kitamura, E.; Stegaroiu, R.; Nomura, S.; Miyakawa, O. Biomechanical aspects of marginal bone resorption around osseointegrated implants: considerations based on a three-dimensional finite element analysis. Clin. Oral Implants Res. 2004, 15, 401–412. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, J.; Zhu, S.; Qin, T.; Ji, F. A “trampoline” nanocomposite: uning the interlayer spacing in graphene oxide/polyurethane to achieve coalesced mechanical and memory. Compos. Sci. Technol. 2019, 180, 14–22. [Google Scholar] [CrossRef]
- Wang, R.; Wang, X.; Chen, S.; Jiang, G. In situ polymerization approach to poly(ε-caprolactone)-graphene oxide composites. Des. Monomers Polym. 2012, 15, 303–310. [Google Scholar] [CrossRef] [Green Version]
- Yoo, H.J.; Mahapatra, S.S.; Cho, J.W. High-speed actuation and mechanical properties of graphene-incorporated shape memory polyurethane nanofibers. J. Phys. Chem. C 2014, 118, 10408–10415. [Google Scholar] [CrossRef]
- Tan, L.; Gan, L.; Hu, J.L.; Zhu, Y.; Han, J.P. Functional shape memory composite nanofibers with graphene oxide filler. Compos. Part. A Appl. S 2015, 76, 115–123. [Google Scholar] [CrossRef]
- Kudin, K.N.; Ozbas, B.; Schniepp, H.C.; Prud’Homme, R.K.; Aksay, I.A.; Car, R. Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett. 2008, 8, 36–41. [Google Scholar] [CrossRef] [PubMed]
- Tian, K.; Su, Z.; Wang, H.; Tian, X.; Huang, W.; Xiao, C. N-doped reduced graphene oxide/waterborne polyurethane composites prepared by in situ chemical reduction of graphene oxide. Compos. Part A Appl. Sci. Manuf. 2017, 94, 41–49. [Google Scholar] [CrossRef]
- Wu, G.; Xu, X.; He, X.; Yan, Y. Preparation and characterization of graphene oxide-modified sapium sebiferum oil-based polyurethane composites with improved thermal and mechanical properties. Polymers 2018, 10, 133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tien, Y.I.; Wei, K.H. The effect of nano-sized silicate layers from montmorillonite on glass transition, dynamic mechanical, and thermal degradation properties of segmented polyurethane. J. Appl. Polym. Sci. 2002, 86, 1741–1748. [Google Scholar] [CrossRef]
- Powell, C.A.; Smiley, B.L.; Mills, J.; Vandenburgh, H.H. Mechanical stimulation improves tissue-engineered human skeletal muscle. Am. J. Physiol. Cell Physiol. 2002, 283, C1557–C1565. [Google Scholar] [CrossRef]
- Fahy, N.; Alini, M.; Stoddart, M.J. Mechanical stimulation of mesenchymal stem cells: Implications for cartilage tissue engineering. J. Orthop. Res. 2018, 36, 52–63. [Google Scholar] [CrossRef] [Green Version]
- Wieding, J.; Souffrant, R.; Fritsche, A.; Mittelmeier, W.; Bader, R. Finite element analysis of osteosynthesis screw fixation in the bone stock: an appropriate method for automatic screw modelling. PLoS ONE 2012, 7, e33776. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Hu, J. Isocyanate Modified GO Shape-Memory Polyurethane Composite. Polymers 2020, 12, 118. https://doi.org/10.3390/polym12010118
Zhang Y, Hu J. Isocyanate Modified GO Shape-Memory Polyurethane Composite. Polymers. 2020; 12(1):118. https://doi.org/10.3390/polym12010118
Chicago/Turabian StyleZhang, Yuanchi, and Jinlian Hu. 2020. "Isocyanate Modified GO Shape-Memory Polyurethane Composite" Polymers 12, no. 1: 118. https://doi.org/10.3390/polym12010118
APA StyleZhang, Y., & Hu, J. (2020). Isocyanate Modified GO Shape-Memory Polyurethane Composite. Polymers, 12(1), 118. https://doi.org/10.3390/polym12010118