Development of Biodegradable Flame-Retardant Bamboo Charcoal Composites, Part II: Thermal Degradation, Gas Phase, and Elemental Analyses
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Crystallization Proprties
3.2. Thermal Degradation Properties of Constituent Materials and Composite Mixes
3.3. Elemental Analysis of Thermal Degradation Products
3.4. TG-FTIR for Gas Phase Pyrolysis Products
4. Discussion—Theoretical Model for Flame-Retardant Mechanism
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Doan, L.; Lu, Y.; Karatela, M.; Phan, V.; Jeffryes, C.; Benson, T.; Wujcik, E.K. Surface modifications of superparamagnetic iron oxide nanoparticles with polylactic acid-polyethylene glycol diblock copolymer and graphene oxide for a protein delivery vehicle. Eng. Sci. 2019, 7, 10–16. [Google Scholar] [CrossRef] [Green Version]
- Dmytrów, I.; Szczepanik, G.; Kryża, K.; Mituniewicz-Małek, A.; Lisiecki, S. Impact of polylactic acid packaging on the organoleptic and physicochemical properties of tvarog during storage. Int. J. Dairy Technol. 2011, 64, 569–577. [Google Scholar] [CrossRef]
- Li, N.; Li, Y.; Liu, S. Rapid prototyping of continuous carbon fiber reinforced polylactic acid composites by 3D printing. J. Mater. Process. Technol. 2016, 238, 218–225. [Google Scholar] [CrossRef]
- Gu, L.; Qiu, J.; Qiu, C.; Yao, Y.; Sakai, E.; Yang, L. Mechanical properties and degrading behaviors of aluminum Hypophosphite-Poly(Lactic Acid) (PLA) nanocomposites. Polym. Technol. Mater. 2018, 58, 126–138. [Google Scholar] [CrossRef]
- Lou, C.-W.; Lin, C.-W.; Lei, C.-H.; Su, K.-H.; Hsu, C.-H.; Liu, Z.-H.; Lin, J.-H. PET/PP blend with bamboo charcoal to produce functional composites. J. Mater. Process. Technol. 2007, 192, 428–433. [Google Scholar] [CrossRef]
- Ho, M.-P.; Lau, K.-T. Enhancement of impact resistance of biodegradable polymer using bamboo charcoal particles. Mater. Lett. 2014, 136, 122–125. [Google Scholar] [CrossRef]
- Ho, M.-P.; Lau, K.-T.; Wang, H.; Hui, D. Improvement on the properties of polylactic acid (PLA) using bamboo charcoal particles. Compos. Part B Eng. 2015, 81, 14–25. [Google Scholar] [CrossRef]
- Wang, S.S.; Zhang, L.; Semple, K.; Zhang, M.; Zhang, W.B.; Dai, C. Development of Biodegradable Flame-Retardant Bamboo Charcoal Composites, Part I: Thermal and Elemental Analyses. Polymers 2020, 12, 2217. [Google Scholar] [CrossRef]
- Qian, S.; Sheng, K.; Yao, W.; Yu, H. Poly(lactic acid) biocomposites reinforced with ultrafine bamboo-char: Morphology, mechanical, thermal, and water absorption properties. J. Appl. Polym. Sci. 2016, 133, 43425–43434. [Google Scholar] [CrossRef]
- Liu, C.Y.; Fang, W.; Qian, K.; Liu, X.Q.; Liu, J.Y. Study on flame retardant system of polylactic acid / aluminum hypophosphite / silica husk. Plast. Ind. 2016, 44, 72–75. (In Chinese) [Google Scholar] [CrossRef]
- Brown, M.E. Introduction to Thermal Analysis[M]: Techniques and Applications; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1988. [Google Scholar]
- Simis, K.S.; Bistolfi, A.; Bellare, A.; Pruitt, L.A. The combined effects of crosslinking and high crystallinity on the microstructural and mechanical properties of ultra high molecular weight polyethylene. Biomaterials 2006, 27, 1688–1694. [Google Scholar] [CrossRef] [PubMed]
- Xuan, S.; Wang, X.; Song, L.; Xing, W.; Lu, H.; Hu, Y. Study on flame-retardancy and thermal degradation behaviors of intumescent flame-retardant polylactide systems. Polym. Int. 2011, 60, 1541–1547. [Google Scholar] [CrossRef]
- Tang, G.; Zhang, R.; Wang, X.; Wang, B.; Song, L.; Hu, Y.; Gong, X. Enhancement of flame retardant performance of bio-based polylactic acid composites with the incorporation of aluminum hypophosphite and expanded graphite. J. Macromol. Sci. Part A 2013, 50, 255–269. [Google Scholar] [CrossRef]
- Tang, G.; Wang, X.; Xing, W.; Zhang, P.; Wang, B.; Hong, N.; Yang, W.; Hu, Y.; Song, L. Thermal degradation and flame retardance of biobased polylactide composites based on aluminum hypophosphite. Ind. Eng. Chem. Res. 2012, 51, 12009–12016. [Google Scholar] [CrossRef]
- Wu, K.; Song, L.; Wang, Z.Z.; Hu, Y.; Kandare, E.; Kandola, B.K. Preparation and characterization of core/shell-like intumescent flame retardant and its application in polypropylene. J. Macromol. Sci. Part A 2009, 46, 837–846. [Google Scholar] [CrossRef]
- Chen, L.; Song, L.; Lv, P.; Jie, G.; Tai, Q.; Xing, W.; Hu, Y. A new intumescent flame retardant containing phosphorus and nitrogen: Preparation, thermal properties and application to UV curable coating. Prog. Org. Coat. 2011, 70, 59–66. [Google Scholar] [CrossRef]
- Yoshida, Y.; Inoue, K.; Kyritsakas, N.; Kurmoo, M. Syntheses, structures and magnetic properties of zig-zag chains of transition metals with O–P–O bridges. Inorg. Chim. Acta 2009, 362, 1428–1434. [Google Scholar] [CrossRef]
- Xu, B.-R.; Deng, C.; Li, Y.-M.; Lu, P.; Zhao, P.-P.; Wang, Y.-Z. Novel amino glycerin decorated ammonium polyphosphate for the highly-efficient intumescent flame retardance of wood flour/polypropylene composite via simultaneous interfacial and bulk charring. Compos. Part B Eng. 2019, 172, 636–648. [Google Scholar] [CrossRef]
- Qin, L.; Huang, Z.; Zhang, L.; Wang, Y. Flame-retardant mechanism of magnesium oxychloride in epoxy resin. J. Wuhan Univ. Technol. Sci. Ed. 2009, 24, 127–131. [Google Scholar] [CrossRef]
- Wang, P.; Yang, F.; Li, L.; Cai, Z. Flame-retardant properties and mechanisms of epoxy thermosets modified with two phosphorus-containing phenolic amines. J. Appl. Polym. Sci. 2016, 133. [Google Scholar] [CrossRef]
- Mihai, M.; Huneault, M.A.; Favis, B.D.; Li, H. Extrusion foaming of semi-crystalline PLA and PLA/Thermoplastic starch blends. Macromol. Biosci. 2007, 7, 907–920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qi, Y.; Wu, W.; Liu, X.; Qu, H.; Xu, J. Preparation and characterization of aluminum hypophosphite/reduced graphene oxide hybrid material as a flame retardant additive for PBT. Fire Mater. 2016, 41, 195–208. [Google Scholar] [CrossRef]
- Li, L.; Qian, Y.; Jiao, C. Synergistic flame retardant effects of ammonium polyphosphate in ethylene-vinyl acetate/layered double hydroxides composites. Polym. Eng. Sci. 2013, 54, 766–776. [Google Scholar] [CrossRef]
- Wu, K.; Hu, Y.; Song, L.; Lu, H.; Wang, Z. Flame retardancy and thermal degradation of intumescent flame retardant starch-based biodegradable composites. Ind. Eng. Chem. Res. 2009, 48, 3150–3157. [Google Scholar] [CrossRef]
- Wang, X.; Hu, Y.; Song, L.; Xuan, S.; Xing, W.; Bai, Z.; Lu, H. Flame retardancy and thermal degradation of intumescent flame retardant Poly(lactic acid)/Starch biocomposites. Ind. Eng. Chem. Res. 2011, 50, 713–720. [Google Scholar] [CrossRef]
- Undri, A.; Rosi, L.; Frediani, M.; Frediani, P. Conversion of poly(lactic acid) to lactide via microwave assisted pyrolysis. J. Anal. Appl. Pyrolysis 2014, 110, 55–65. [Google Scholar] [CrossRef]
- Asada, T.; Ishihara, S.; Yamane, T.; Toba, A.; Yamada, A.; Oikawa, K. Science of bamboo charcoal: Study on carbonizing temperature of bamboo charcoal and removal capability of harmful gases. J. Health Sci. 2002, 48, 473–479. [Google Scholar] [CrossRef] [Green Version]
- Morin, M.; Pecate, S.; Hémati, M. Kinetic study of biomass char combustion in a low temperature fluidized bed reactor. Chem. Eng. J. 2018, 331, 265–277. [Google Scholar] [CrossRef] [Green Version]
- Du, Z.; Sarofim, A.F.; Longwell, J.P.; Mims, C.A. Kinetic measurement and modeling of carbon oxidation. Energy Fuels 1991, 5, 214–221. [Google Scholar] [CrossRef]
- Laoutid, F.; Bonnaud, L.; Alexandre, M.; Lopez-Cuesta, J.; Dubois, P. New prospects in flame retardant polymer materials: From fundamentals to nanocomposites. Mater. Sci. Eng. R Rep. 2009, 63, 100–125. [Google Scholar] [CrossRef]
- Tkáč, A. Radical processes in polymer burning and its retardation. I. ESR methods for studying the thermal decomposition of polymers in the preflame and flame zones. J. Polym. Sci. Polym. Chem. Ed. 1981, 19, 1475–1493. [Google Scholar] [CrossRef]
- Dasari, A.; Yu, Z.-Z.; Cai, G.-P.; Mai, Y.-W. Recent developments in the fire retardancy of polymeric materials. Prog. Polym. Sci. 2013, 38, 1357–1387. [Google Scholar] [CrossRef]
- Morgan, A.B.; Gilman, J.W. An overview of flame retardancy of polymeric materials: Application, technology, and future directions. Fire Mater. 2012, 37, 259–279. [Google Scholar] [CrossRef] [Green Version]
- Takagi, H.; Kako, S.; Kusano, K.; Ousaka, A. Thermal conductivity of PLA-bamboo fiber composites. Adv. Compos. Mater. 2007, 16, 377–384. [Google Scholar] [CrossRef]
- Lin, H.; Pei, L.-X.; Zhang, L. Enhanced thermal conductivity of PLA-based nanocomposites by incorporation of graphite nanoplatelets functionalized by tannic acid. J. Appl. Polym. Sci. 2018, 135, 46397. [Google Scholar] [CrossRef]
- Chiang, T.H.; Tsai, M.H.; Syu, J.Y. Polyol process synthesis of copper particles onto bamboo charcoal and the composite’s thermal conductivity characteristics. J. Inorg. Organomet. Polym. Mater. 2013, 23, 712–718. [Google Scholar] [CrossRef]
- Staggs, J. Estimating the thermal conductivity of chars and porous residues using thermal resistor networks. Fire Saf. J. 2002, 37, 107–119. [Google Scholar] [CrossRef]
- Verma, R.; Nagendra, H.; Kasthurirengan, S.; Shivaprakash, N.; Behera, U. Thermal conductivity studies on activated carbon based cryopanel. IOP Conf. Ser. Mater. Sci. Eng. 2019, 502, 012197. [Google Scholar] [CrossRef]
- Wang, D.K.; He, H.; Yu, P. Flame-retardant and thermal degradation mechanism of low-density polyethylene modified with aluminum hypophosphite and microencapsulated red phosphorus. J. Appl. Polym. Sci. 2015, 133. [Google Scholar] [CrossRef]
- Liu, G.; Gao, S. Synergistic effect between aluminum hypophosphite and a new intumescent flame retardant system in poly(lactic acid). J. Appl. Polym. Sci. 2018, 135, 46359–46368. [Google Scholar] [CrossRef]
- Wu, W.; Lv, S.; Liu, X.; Qu, H.; Zhang, H.; Xu, J. Using TG–FTIR and TG–MS to study thermal degradation of metal hypophosphites. J. Therm. Anal. Calorim. 2014, 118, 1569–1575. [Google Scholar] [CrossRef]
- Yan, Y.-W.; Huang, J.-Q.; Guan, Y.-H.; Shang, K.; Jian, R.-K.; Wang, Y.-Z. Flame retardance and thermal degradation mechanism of polystyrene modified with aluminum hypophosphite. Polym. Degrad. Stab. 2014, 99, 35–42. [Google Scholar] [CrossRef]
Sample | Tg(°C) | Tcc(°C) | ΔHc(J/g) | Xc(%) | Tm1(°C) | Tm2(°C) | ΔHm(J/g) |
---|---|---|---|---|---|---|---|
PLA | 54.59 | 118.00 | 10.51 | 11.23 | 147.13 | - | 13.45 |
BC/PLA/AHP (5/95/00) | 57.28 | 111.35 | 21.18 | 23.82 | 145.19 | 151.96 | 20.09 |
BC/PLA/AHP (15/85/00) | 56.89 | 107.93 | 19.89 | 25.00 | 142.89 | 150.77 | 24.55 |
BC/PLA/AHP (25/75/00) | 55.13 | 105.54 | 19.59 | 27.91 | 139.95 | 148.16 | 21.41 |
BC/PLA/AHP (35/65/00) | - | 86.72 | 1.58 | 2.60 | 97.83 | 108.76 | 1.42 |
BC/PLA/AHP (25/60/15) | 59.40 | 124.92 | 10.63 | 17.81 | 149.55 | - | 10.24 |
BC/PLA/AHP (25/55/20) | 59.28 | 129.28 | 3.22 | 5.73 | 150.62 | - | 4.48 |
BC/PLA/AHP (25/50/25) | 58.90 | 129.17 | 2.14 | 4.07 | 150.63 | - | 3.33 |
BC/PLA/AHP (25/50/30) | 59.21 | 127.02 | 6.50 | 13.23 | - | 149.36 | 6.36 |
Sample | T−5% (°C) | R1peak/T1max (%·min−1/°C) | R2peak/T2max (%·min−1/°C) | Carbon Residue Rate/% |
---|---|---|---|---|
800 (°C) | ||||
BC | - | 0.2/649 | - | 91.4 |
AHP | 320 | 7.5/331 | 1.6/433 | 65.5 |
BC/AHP | 327 | 3.5/330 | 0.6/431 | 81.1 |
Sample | T−5% (°C) | Rpeak/Tmax (%·min−1/°C) | Carbon Residue Rate/% | ||
---|---|---|---|---|---|
400 °C | 500 °C | 600 °C | |||
PLA | 331 | 27.5/365 | 1.5 | 1.1 | 0.9 |
BC/PLA (5/95) | 310 | 32.4/359 | 7.1 | 6.9 | 6.9 |
BC/PLA (15/85) | 291 | 27.4/341 | 15.0 | 14.7 | 14.5 |
BC/PLA (25/75) | 283 | 26.3/328 | 25.4 | 25.1 | 24.9 |
BC/PLA (35/65) | 259 | 23.4/304 | 36.2 | 35.8 | 35.6 |
BC/PLA (45/55) | 250 | 26.8/295 | 44.8 | 44.3 | 44.1 |
BC/PLA (55/45) | 247 | 22.4/284 | 54.5 | 54.0 | 53.6 |
BC/PLA (65/35) | 234 | 15.7/267 | 64.3 | 63.6 | 63.1 |
Sample | T−5% (°C) | Rpeak/Tmax (%·min−1/°C) | Carbon Residue Rate/% | ||
---|---|---|---|---|---|
400 °C | 500 °C | 600 °C | |||
PLA | 331 | 27.5/365 | 1.5 | 1.1 | 0.9 |
BC/PLA (25/75) | 283 | 26.3/328 | 25.4 | 25.1 | 24.9 |
BC/PLA/AHP (25/55/20) | 312 | 12.3/363 | 39.2 | 38.1 | 37.5 |
BC/PLA/AHP (25/50/25) | 321 | 12.6/366 | 38.4 | 37.3 | 36.7 |
BC/PLA/AHP (25/45/30) | 317 | 11.5/366 | 42.1 | 40.9 | 40.3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Zhang, L.; Semple, K.; Zhang, M.; Zhang, W.; Dai, C. Development of Biodegradable Flame-Retardant Bamboo Charcoal Composites, Part II: Thermal Degradation, Gas Phase, and Elemental Analyses. Polymers 2020, 12, 2238. https://doi.org/10.3390/polym12102238
Wang S, Zhang L, Semple K, Zhang M, Zhang W, Dai C. Development of Biodegradable Flame-Retardant Bamboo Charcoal Composites, Part II: Thermal Degradation, Gas Phase, and Elemental Analyses. Polymers. 2020; 12(10):2238. https://doi.org/10.3390/polym12102238
Chicago/Turabian StyleWang, Shanshan, Liang Zhang, Kate Semple, Min Zhang, Wenbiao Zhang, and Chunping Dai. 2020. "Development of Biodegradable Flame-Retardant Bamboo Charcoal Composites, Part II: Thermal Degradation, Gas Phase, and Elemental Analyses" Polymers 12, no. 10: 2238. https://doi.org/10.3390/polym12102238
APA StyleWang, S., Zhang, L., Semple, K., Zhang, M., Zhang, W., & Dai, C. (2020). Development of Biodegradable Flame-Retardant Bamboo Charcoal Composites, Part II: Thermal Degradation, Gas Phase, and Elemental Analyses. Polymers, 12(10), 2238. https://doi.org/10.3390/polym12102238