Highly Scattering Hierarchical Porous Polymer Microspheres with a High-Refractive Index Inorganic Surface for a Soft-Focus Effect
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Oranic-Inorganic Hybrid Polymer Particles
2.3. Preparation of Polymer Thin Films Containing Organic-Inorganic Hybrid Particles
2.4. Characterization
3. Results and Discussion
3.1. Structural Characterization of Hierarchical Organic-Inorganic Hybrid Polymer Microspheres
3.2. Optical Properties of Hierarchical Organic-Inorganic Hybrid Polymer Microspheres
3.3. Soft-Focus Properties of Hierarchical Organic-Inorganic Hybrid Polymer Microspheres
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sanchez, C.; Lebeau, B. Design and Properties of Hybrid Organic-inorganic Nanocomposites for Photonics. MRS Bull. 2001, 26, 377–387. [Google Scholar] [CrossRef]
- Chujo, Y.; Saegusa, T. Organic Polymer Hybrids with Silica Gel Formed by Means of the Sol-gel Method. Adv. Polym. Sci. 1992, 100, 11–29. [Google Scholar]
- Ananikov, V.P. Organic-Inorganic Hybrid Nanomaterials. Nanomaterials 2019, 9, 1197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pardo, R.; Zayat, M.; Levy, D. Photochromic Organic-inorganic Hybrid Materials. Chem. Soc. Rev. 2011, 40, 672–687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanchez, C.; Julián, B.; Belleville, P.; Popall, M. Applications of Hybrid Organic-inorganic Nanocomposites. J. Mater. Chem. 2005, 15, 3559–3592. [Google Scholar] [CrossRef]
- Mei, S.; Pan, M.; Wang, J.; Zhang, X.; Song, S.; Li, C.; Liu, G. Self-Assembly of Strawberry-Like Organic-inorganic Hybrid Particle Clusters with Directionally Distributed Bimetal and Facile Transformation of the Core and Corona. Polym. Chem. 2020, 11, 3136–3151. [Google Scholar] [CrossRef]
- Yu, Y.; Chen, C.; Chen, W. Synthesis and Characterization of Organic-inorganic Hybrid Thin Films from Poly (Acrylic) and Monodispersed Colloidal Silica. Polymer 2003, 44, 593–601. [Google Scholar] [CrossRef]
- Ogoshi, T.; Itoh, H.; Kim, K.; Chujo, Y. Synthesis of Organic-Inorganic Polymer Hybrids having Interpenetrating Polymer Network Structure by Formation of Ruthenium-Bipyridyl Complex. Macromolecules 2002, 35, 334–338. [Google Scholar] [CrossRef]
- Saveleva, M.S.; Eftekhari, K.; Abalymov, A.; Douglas, T.E.; Volodkin, D.; Parakhonskiy, B.V.; Skirtach, A.G. Hierarchy of Hybrid materials—The Place of Inorganics-in-Organics in it, Their Composition and Applications. Front. Chem. 2019, 7, 179. [Google Scholar] [CrossRef] [Green Version]
- Kickelbick, G. Concepts for the Incorporation of Inorganic Building Blocks into Organic Polymers on a Nanoscale. Prog. Polym. Sci. 2003, 28, 83–114. [Google Scholar] [CrossRef]
- Judeinstein, P.; Sanchez, C. Hybrid organic-inorganic Materials: A Land of Multidisciplinarity. J. Mater. Chem. 1996, 6, 511–525. [Google Scholar] [CrossRef]
- Chen, W.; Lee, S.; Lee, L.; Lin, J. Synthesis and Characterization of Trialkoxysilane-Capped Poly (Methyl Methacrylate)-titania Hybrid Optical Thin Films. J. Mater. Chem. 1999, 9, 2999–3003. [Google Scholar] [CrossRef]
- Huynh, W.U.; Dittmer, J.J.; Alivisatos, A.P. Hybrid Nanorod-Polymer Solar Cells. Science 2002, 295, 2425–2427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biteau, J.; Chaput, F.; Lahlil, K.; Boilot, J.; Tsivgoulis, G.M.; Lehn, J.; Darracq, B.; Marois, C.; Lévy, Y. Large and Stable Refractive Index Change in Photochromic Hybrid Materials. Chem. Mat. 1998, 10, 1945–1950. [Google Scholar] [CrossRef]
- Wakiya, T.; Morisaki, T.; Ishibashi, N.; Nishimura, S.; Takafuji, M.; Nagaoka, S.; Yamada, Y.; Nozato, S.; Ihara, H. Preparation of multilayered organic–inorganic hybrid core–shell particles by stepwise surface formation. Mater. Lett. 2011, 65, 1407–1409. [Google Scholar] [CrossRef]
- Huang, W.; Ho, S.; Kwei, T.; Okamoto, Y. Photoluminescence Behavior of Poly(Quinoline)s in Silica Glasses Via the sol-gel Process. Appl. Phys. Lett. 2002, 80, 1162–1164. [Google Scholar] [CrossRef]
- Lee, T.; Park, O.O.; Yoon, J.; Kim, J. Polymer-layered Silicate Nanocomposite light-emitting Devices. Adv. Mater. 2001, 13, 211–213. [Google Scholar] [CrossRef]
- Xu, C.; Eldada, L.; Wu, C.; Norwood, R.A.; Shacklette, L.W.; Yardley, J.T.; Wei, Y. Photoimageable, Low Shrinkage Organic− Inorganic Hybrid Materials for Practical Multimode Channel Waveguides. Chem. Mat. 1996, 8, 2701–2703. [Google Scholar] [CrossRef]
- Kagan, C.R.; Mitzi, D.B.; Dimitrakopoulos, C.D. Organic-Inorganic Hybrid Materials as Semiconducting Channels in Thin-Film Field-Effect Transistors. Science 1999, 286, 945–947. [Google Scholar] [CrossRef]
- Coltrain, B.K.; Landry, C.J.; O’Reilly, J.M.; Chamberlain, A.M.; Rakes, G.A.; Sedita, J.S.; Kelts, L.W.; Landry, M.R.; Long, V.K. Role of Trialkoxysilane Functionalization in the Preparation of Organic-Inorganic Composites. Chem. Mat. 1993, 5, 1445–1455. [Google Scholar] [CrossRef]
- Yoshida, M.; Prasad, P.N. Sol− Gel-Processed SiO2/TiO2/poly (Vinylpyrrolidone) Composite Materials for Optical Waveguides. Chem. Mat. 1996, 8, 235–241. [Google Scholar] [CrossRef]
- Wang, B.; Wilkes, G.; Hedrick, J.; Liptak, S.; McGrath, J. New High-Refractive-Index organic/inorganic Hybrid Materials from Sol-Gel Processing. Macromolecules 1991, 24, 3449–3450. [Google Scholar] [CrossRef]
- Katagiri, K.; Koumoto, K.; Iseya, S.; Sakai, M.; Matsuda, A.; Caruso, F. Tunable UV-Responsive Organic− Inorganic Hybrid Capsules. Chem. Mat. 2009, 21, 195–197. [Google Scholar] [CrossRef]
- Guo, R.; Du, X.; Zhang, R.; Deng, L.; Dong, A.; Zhang, J. Bioadhesive Film Formed from a Novel organic-inorganic Hybrid Gel for Transdermal Drug Delivery System. Eur. J. Pharm. Biopharm. 2011, 79, 574–583. [Google Scholar] [CrossRef]
- Tang, J.; Wang, C.; Wang, Y.; Sun, J.; Yang, B. An Oligo-Phenylenevinylene Derivative Encapsulatedin sol-gel Silica Matrix. J. Mater. Chem. 2001, 11, 1370–1373. [Google Scholar] [CrossRef]
- Lee, L.; Chen, W. High-Refractive-Index Thin Films Prepared from Trialkoxysilane-Capped Poly (Methyl Methacrylate)− Titania Materials. Chem. Mat. 2001, 13, 1137–1142. [Google Scholar] [CrossRef]
- Draxl, C.; Nabok, D.; Hannewald, K. Organic/inorganic Hybrid Materials: Challenges for Ab Initio Methodology. Acc. Chem. Res. 2014, 47, 3225–3232. [Google Scholar] [CrossRef]
- Chang, C.; Chen, W. High-refractive-index Thin Films Prepared from Aminoalkoxysilane-capped Pyromellitic dianhydride-titania Hybrid Materials. J. Polym. Sci. A Polym. Chem. 2001, 39, 3419–3427. [Google Scholar] [CrossRef]
- Lü, C.; Guan, C.; Liu, Y.; Cheng, Y.; Yang, B. PbS/polymer Nanocomposite Optical Materials with High Refractive Index. Chem. Mat. 2005, 17, 2448–2454. [Google Scholar] [CrossRef]
- Mimura, S.; Naito, H.; Kanemitsu, Y.; Matsukawa, K.; Inoue, H. Optical Properties of organic-inorganic Hybrid Thin Films Containing Polysilane Segments Prepared from polysilane-methacrylate Copolymers. J. Organomet. Chem. 2000, 611, 40–44. [Google Scholar] [CrossRef]
- Su, C.; Tang, H.; Zhu, G.; Li, C.; Lin, C. The Optical Properties and Sunscreen Application of Spherical h-BN-TiO2/mica Composite Powder. Ceram. Int. 2014, 40, 4691–4696. [Google Scholar] [CrossRef]
- Okamoto, T.; Kumagawa, T.; Motoda, M.; Igarashi, T.; Nakao, K. Monte Carlo Simulation of Light Reflection from Cosmetic Powder Particles Near the Human Skin Surface. J. Biomed. Opt. 2013, 18, 061232. [Google Scholar] [CrossRef] [Green Version]
- Igarashi, T.; Nishino, K.; Nayar, S.K. The Appearance of Human Skin: A Survey. Found. Trends Comput. Graph. Vis. 2007, 3, 1–95. [Google Scholar] [CrossRef]
- Welcomme, E.; Walter, P.; Van Elslande, E.; Tsoucaris, G. Investigation of White Pigments used as make-Up during the Greco-Roman Period. Appl. Phys. A 2006, 83, 551–556. [Google Scholar] [CrossRef]
- Anderson, R.R.; Parrish, J.A. The Optics of Human Skin. J. Investig. Dermatol. 1981, 77, 13–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dréno, B.; Alexis, A.; Chuberre, B.; Marinovich, M. Safety of Titanium Dioxide Nanoparticles in Cosmetics. J. Eur. Acad. Dermatol. Venereol. 2019, 33, 34–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almusallam, A.S.; Abdulraheem, Y.M.; Shahat, M.; Korah, P. Aggregation Behavior of Titanium Dioxide Nanoparticles in Aqueous Environments. J. Dispers. Sci. Technol. 2012, 33, 728–738. [Google Scholar] [CrossRef]
- Okuda-Shimazaki, J.; Takaku, S.; Kanehira, K.; Sonezaki, S.; Taniguchi, A. Effects of Titanium Dioxide Nanoparticle Aggregate Size on Gene Expression. Int. J. Mol. Sci. 2010, 11, 2383–2392. [Google Scholar] [CrossRef] [Green Version]
- Domingos, R.F.; Peyrot, C.; Wilkinson, K.J. Aggregation of Titanium Dioxide Nanoparticles: Role of Calcium and Phosphate. Environ. Chem. 2010, 7, 61–66. [Google Scholar] [CrossRef]
- Bishop, M.T.; Langley, K.H.; Karasz, F.E. Dynamic Light-Scattering Studies of Polymer Diffusion in Porous Materials: Linear Polystyrene in Porous Glass. Macromolecules 1989, 22, 1220–1231. [Google Scholar] [CrossRef]
- Bishop, M.; Langley, K.; Karasz, F. Diffusion of a Flexible Polymer in a Random Porous Material. Phys. Rev. Lett. 1986, 57, 1741. [Google Scholar] [CrossRef] [PubMed]
- Elson, J. Theory of Light Scattering from a Rough Surface with an Inhomogeneous Dielectric Permittivity. Phys. Rev. B 1984, 30, 5460. [Google Scholar] [CrossRef]
- Knotts, M.; Michel, T.; O’Donnell, K. Comparisons of Theory and Experiment in Light Scattering from a Randomly Rough Surface. J. Opt. Soc. Am. A 1993, 10, 928–941. [Google Scholar] [CrossRef]
- Marvin, A.; Toigo, F.; Celli, V. Light Scattering from Rough Surfaces: General Incidence Angle and Polarization. Phys. Rev. B 1975, 11, 2777. [Google Scholar] [CrossRef]
- Prajzler, V.; Klapuch, J.; Lyutakov, O.; Hüttel, I.; Špirková, J.; Nekvindová, P.; Jeřábek, V. Design, Fabrication and Properties of Rib Poly (Methylmethacrylimide) Optical Waveguides. Radioengineering 2011, 20, 479–485. [Google Scholar]
- Beadie, G.; Brindza, M.; Flynn, R.A.; Rosenberg, A.; Shirk, J.S. Refractive Index Measurements of Poly (methyl methacrylate)(PMMA) from 0.4–1.6 μm. Appl. Opt. 2015, 54, F139–F143. [Google Scholar] [CrossRef] [PubMed]
- Paulsen, M.; Neustock, L.T.; Jahns, S.; Adam, J.; Gerken, M. Simulation Methods for Multiperiodic and Aperiodic Nanostructured Dielectric Waveguides. Opt. Quant. Electron. 2017, 49, 107. [Google Scholar] [CrossRef] [Green Version]
- Haque, F.Z.; Nandanwar, R.; Singh, P. Evaluating Photodegradation Properties of Anatase and Rutile TiO2 Nanoparticles for Organic Compounds. Optik 2017, 128, 191–200. [Google Scholar] [CrossRef]
- Chiu, W.; Chen, Y.; Tsai, P.; Wu, J. Preparation and Characterization of Poly(Methyl Methacrylate) Microbeads by Dispersion Polymerization: Effects of the Medium Composition, Monomer Concentration, Thermal, and Optical Properties. Polym. Plast. Tech. Eng. 2016, 55, 1679–1682. [Google Scholar] [CrossRef]
- Kim, D.; Lee, D.Y.; Lee, K.; Choe, S. Effect of Crosslinking Agents on the Morphology of Polymer Particles Produced by One-Step Seeded Polymerization. Macromol. Res. 2009, 17, 250–258. [Google Scholar] [CrossRef]
- Chatterjee, A. Properties Improvement of PMMA Using Nano TiO2. J. Appl. Polym. Sci. 2010, 118, 2890–2897. [Google Scholar] [CrossRef]
- Hafizah, N.N.; Mamat, M.H.; Abidin, M.H.; Said, C.M.S.; Rusop, M. Bonding and Mechanical Properties of PMMA/TiO2 Nanocomposites. Adv. Mater. Res. 2014, 832, 700–705. [Google Scholar] [CrossRef]
- Gad, M.M.; Abualsaud, R. Behavior of PMMA Denture Base Materials Containing Titanium Dioxide Nanoparticles: A Literature Review. Int. J. Biomater. 2019, 6190610. [Google Scholar] [CrossRef] [PubMed]
- Nasikhudin Ismaya, E.P.; Diantoro, M.; Kusumaatmaja, A.; Triyana, K. Preparation of PVA/TiO2 Composites Nanofibers by using Electrospinning Method for Photocatalytic Degradation. IOP Conf. Ser. Mater. Sci. Eng. 2017, 202, 012011. [Google Scholar] [CrossRef]
- Mohan, K.; Dolui, S.; Nath, B.C.; Bora, A.; Sharma, S.; Dolui, S.K. A Highly Stable and Efficient Quasi Solid State Dye Sensitized Solar Cell Based on Polymethyl Methacrylate (PMMA)/Carbon Black (CB) Polymer Gel Electrolyte with Improved Open Circuit Voltage. Electrochim. Acta 2017, 247, 216–228. [Google Scholar] [CrossRef]
- Tsai, L.; Yang, P.N.; Shih, Y.; Lin, K.; Wu, C.; Lin, H.Y. Size-Dependent Multiple-Scattering Effects of Mesoporous TiO2 Beads Distinguished by Optical Coherence Tomography. IEEE Photonics J. 2017, 9, 1–10. [Google Scholar] [CrossRef]
- Son, I.; Lee, J.H. Highly Transparent and Wide Viewing Optical Films Using Embedded Hierarchical Double-Shell Layered Nanoparticles with Gradient Refractive Index Surface. ACS Appl. Mater. Interfaces 2020, 12, 30862–30870. [Google Scholar] [CrossRef]
- Osiris, W.; Mohamed, S.; El-Zaher, N. Macrostructure and Optical Study of PMMA/TiO2 Nanopartcles Composites. Nano Sci. Nano Technol. Indian J. 2013, 7, 60–65. [Google Scholar]
- Choi, Y.; Choi, J.; Kim, H. Shape Control of Silica-Polymethylsilsesquioxane (PMSQ) Composites by Varying Ratios of Precursors. J. Soc. Cosmet. Korea 2019, 45, 409–414. [Google Scholar]
- Becker, M.; Schmidt, C.; Hochstein, V.; Petsitis, X. A Novel Method to Measure and Pre-select Functional Filler Pigments. Cosmet. Toilet. 2012, 127, 390–396. [Google Scholar]
No. | Code | Material | Average Particle Size | Average Pore Size | Pore Uniformity |
---|---|---|---|---|---|
1 | NPP | PMMA | 9 μm | non-porous | - |
2 | PP1 | PMMA | 12 μm | 400 nm | uniform |
3 | PP2 | PMMA | 11 μm | 300 nm | nonuniform |
4 | PP3 | PMMA | 13 μm | 200 nm | uniform |
5 | T1 | TiO2 | 20 nm | non-porous | - |
6 | T2 | TiO2 | 250 nm | non-porous | - |
Materials | Pure Film | NPP | PP1 | PP2 | PP3 | T1 | T2 |
---|---|---|---|---|---|---|---|
Reflectance (%) | 10.0 ± 0.4 | 12.7 ± 0.3 | 12.7 ± 0.1 | 12.6 ± 0.3 | 12.7 ± 0.2 | 39.1 ± 0.6 | 56.6 ± 0.8 |
Materials | NPP@T1 | NPP@T2 | PP1@T1 | PP1@T2 | PP2@T1 | PP2@T2 | PP3@T1 | PP3@T2 |
---|---|---|---|---|---|---|---|---|
Reflectance (%) | 42.2 ± 0.7 | 55.8 ± 0.2 | 46.6 ± 0.5 | 59.1 ± 0.8 | 48.0 ± 0.3 | 58.4 ± 0.7 | 47.6 ± 0.4 | 62.0 ± 1.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoon, J.; Lee, J.H.; Lee, J.B.; Lee, J.H. Highly Scattering Hierarchical Porous Polymer Microspheres with a High-Refractive Index Inorganic Surface for a Soft-Focus Effect. Polymers 2020, 12, 2418. https://doi.org/10.3390/polym12102418
Yoon J, Lee JH, Lee JB, Lee JH. Highly Scattering Hierarchical Porous Polymer Microspheres with a High-Refractive Index Inorganic Surface for a Soft-Focus Effect. Polymers. 2020; 12(10):2418. https://doi.org/10.3390/polym12102418
Chicago/Turabian StyleYoon, Joonsik, Ji Hyun Lee, Jun Bae Lee, and Jun Hyup Lee. 2020. "Highly Scattering Hierarchical Porous Polymer Microspheres with a High-Refractive Index Inorganic Surface for a Soft-Focus Effect" Polymers 12, no. 10: 2418. https://doi.org/10.3390/polym12102418
APA StyleYoon, J., Lee, J. H., Lee, J. B., & Lee, J. H. (2020). Highly Scattering Hierarchical Porous Polymer Microspheres with a High-Refractive Index Inorganic Surface for a Soft-Focus Effect. Polymers, 12(10), 2418. https://doi.org/10.3390/polym12102418