Optical and Nonlinear Properties of Photonic Polymer Nanocomposites and Holographic Gratings Modified with Noble Metal Nanoparticles
Abstract
:1. Introduction
2. Experimental Methods
2.1. Sample Preparation and Holographic Transmission Setup
2.2. Measurement of Nonlinear Optical Performances
2.3. Other Measurement Methods
3. Results and Discussion
3.1. Nanocomposites with Au NPs
3.1.1. Development of the Nanocomposites with Au NPs and Their Properties
3.1.2. Formation of Volume Periodic Structures Using the Au NPs Containing Composites
3.1.3. Influence of the Au NPs on the Photopolymerization Process
3.2. Nanocomposite with Ag NPs
3.2.1. Choice of the Composition Components and the Nanocomposite Fabrication
3.2.2. Recording Mechanism and Properties of Periodic Structures
3.3. Nonlinear Properties of Noble Metal NPs Gratings
3.3.1. Nonlinear Characteristics of the Polymer Matrix with Au NPs
3.3.2. Nonlinear Characteristics of the Polymer Matrix with Ag NPs
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Kreibig, U.; Vollmer, M. Optical Properties of Metal Clusters; Springer Series in Materials Science; Springer: Berlin/Heidelberg, Germnay, 2013. [Google Scholar]
- Nicolais, L.; Carotenuto, G. Metal-Polymer Nanocomposites; Wiley: Hoboken, NJ, USA, 2004. [Google Scholar]
- Gonella, F.; Mazzoldi, P. Chapter 2—Metal nanocluster composite glasses. In Handbook of Nanostructured Materials and Nanotechnology; Nalwa, H.S., Ed.; Academic Press: Burlington, ON, Canada, 2000; pp. 81–158. [Google Scholar]
- Shalaev, V.; Kawata, S. (Eds.) Nanophotonics with Surface Plasmons; Advances in Nano-Optics and Nano-Photonics; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Zhang, Y.; Wang, Y. Nonlinear optical properties of metal nanoparticles: A review. RSC Adv. 2017, 7, 45129–45144. [Google Scholar] [CrossRef] [Green Version]
- Nair, R.V.; Vijaya, R. Photonic crystal sensors: An overview. Prog. Quantum Electron. 2010, 34, 89–134. [Google Scholar] [CrossRef]
- Puiu, M.; Bala, C. SPR and SPR imaging: Recent trends in developing nanodevices for detection and real-time monitoring of biomolecular events. Sensors 2016, 16, 870. [Google Scholar] [CrossRef] [PubMed]
- Homola, J. Surface plasmon resonance sensors for detection of chemical and biological species. Chem. Rev. 2008, 108, 462–493. [Google Scholar] [CrossRef] [PubMed]
- Kelly, K.L.; Coronado, E.; Zhao, L.L.; Schatz, G.C. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J. Phys. Chem. 2003, 107, 668–677. [Google Scholar] [CrossRef]
- Bigot, J.Y.; Halté, V.; Merle, J.C.; Daunois, A. Electron dynamics in metallic nanoparticles. Chem. Phys. 2000, 251, 181–203. [Google Scholar] [CrossRef]
- Link, S.; El-Sayed, M.A. Optical properties and ultrafast dynamics of metallic nanocrystals. Annu. Rev. Phys. Chem. 2003, 54, 331–366. [Google Scholar] [CrossRef] [Green Version]
- Eah, S.K.; Jaeger, H.M.; Scherer, N.F.; Lin, X.M.; Wiederrecht, G.P. Femtosecond transient absorption dynamics of close-packed gold nanocrystal monolayer arrays. Chem. Phys. Lett. 2004, 386, 390–395. [Google Scholar] [CrossRef]
- Sönnichsen, C.; Franzl, T.; Wilk, T.; von Plessen, G.; Feldmann, J.; Wilson, O.; Mulvaney, P. Drastic reduction of plasmon damping in gold nanorods. Phys. Rev. Lett. 2002, 88, 077402. [Google Scholar] [CrossRef]
- Blonskyy, I.V. Femtooptics of films and nanoparticles of noble metals. Ukr. J. Phys. Rev. 2009, 5, 170–202. [Google Scholar]
- Lamprecht, B.; Schider, G.; Lechner, R.T.; Ditlbacher, H.; Krenn, J.R.; Leitner, A.; Aussenegg, F.R. Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance. Phys. Rev. Lett. 2000, 84, 4721–4724. [Google Scholar] [CrossRef] [PubMed]
- Ponyavina, A.N.; Kachan, S.M. Plasmonic spectroscopy of 2D densely packed and layered metallic nanostructures. In Polarimetric Detection, Characterization and Remote Sensing; Mishchenko, M.I., Yatskiv, Y.S., Rosenbush, V.K., Videen, G., Eds.; Springer: Dordrecht, The Netherlands, 2011; pp. 383–408. [Google Scholar]
- Dyachenko, P.N.; Miklyaev, Y.V. One-dimensional photonic crystal based on nanocomposite of metal nanoparticles and dielectric. Opt. Mem. Neural Netw. 2007, 16, 198–203. [Google Scholar] [CrossRef]
- Ditlbacher, H.; Krenn, J.R.; Schider, G.; Leitner, A.; Aussenegg, F.R. Two-dimensional optics with surface plasmon polaritons. Appl. Phys. Lett. 2002, 81, 1762–1764. [Google Scholar] [CrossRef]
- Mikhailov, V.; Wurtz, G.A.; Elliott, J.; Bayvel, P.; Zayats, A.V. Dispersing light with surface plasmon polaritonic crystals. Phys. Rev. Lett. 2007, 99, 083901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stehr, J.; Crewett, J.; Schindler, F.; Sperling, R.; von Plessen, G.; Lemmer, U.; Lupton, J.; Klar, T.; Feldmann, J.; Holleitner, A.; et al. A low threshold polymer laser based on metallic nanoparticle gratings. Adv. Mater. 2003, 15, 1726–1729. [Google Scholar] [CrossRef]
- Hanisch, C.; Kulkarni, A.; Zaporojtchenko, V.; Faupel, F. Polymer-metal nanocomposites with 2-dimensional Au nanoparticle arrays for sensoric applications. J. Phys. Conf. Ser. 2008, 100, 052043. [Google Scholar] [CrossRef]
- Yoon, K.H.; Shuler, M.L.; Kim, S.J. Design optimization of nano-grating surface plasmon resonance sensors. Opt. Express 2006, 14, 4842–4849. [Google Scholar] [CrossRef]
- Tomita, Y.; Hata, E.; Momose, K.; Takayama, S.; Liu, X.; Chikama, K.; Klepp, J.; Pruner, C.; Fally, M. Photopolymerizable nanocomposite photonic materials and their holographic applications in light and neutron optics. J. Mod. Opt. 2016, 63, S1–S31. [Google Scholar] [CrossRef] [Green Version]
- Kogelnik, H. Coupled wave theory for thick hologram gratings. Bell Syst. Tech. J. 1969, 48, 2909–2947. [Google Scholar] [CrossRef]
- Smirnova, T.N.; Kokhtich, L.M.; Sakhno, O.V.; Stumpe, J. Holographic nanocomposites for recording polymer-nanoparticle periodic structures: II. Mechanism of formation of polymer-nanoparticle bulk periodic structure and effect of parameters of forming field on structure efficiency. Opt. Spectrosc. 2011, 110, 137–144. [Google Scholar] [CrossRef]
- Tomlinson, W.J.; Chandross, E.A.; Weber, H.P.; Aumiller, G.D. Multicomponent photopolymer systems for volume phase holograms and grating devices. Appl. Opt. 1976, 15, 534–541. [Google Scholar] [CrossRef] [PubMed]
- Vaia, R.A.; Dennis, C.L.; Natarajan, L.V.; Tondiglia, V.P.; Tomlin, D.W.; Bunning, T.J. One-step, micrometer-scale organization of nano- and mesoparticles using holographic photopolymerization: A generic technique. Adv. Mater. 2001, 13, 1570–1574. [Google Scholar] [CrossRef]
- Goldenberg, L.M.; Sakhno, O.V.; Smirnova, T.N.; Helliwell, P.; Chechik, V.; Stumpe, J. Holographic composites with gold nanoparticles: Nanoparticles promote polymer segregation. Chem. Mater. 2008, 20, 4619–4627. [Google Scholar] [CrossRef]
- Sánchez, C.; Escuti, M.J.; van Heesch, C.; Bastiaansen, C.W.M.; Broer, D.J.; Loos, J.; Nussbaumer, R. TiO2 nanoparticle-photopolymer composites for volume holographic recording. Adv. Funct. Mater. 2005, 15, 1623–1629. [Google Scholar] [CrossRef]
- Sakhno, O.V.; Smirnova, T.N.; Goldenberg, L.M.; Stumpe, J. Holographic patterning of luminescent photopolymer nanocomposites. Mater. Sci. Eng. C 2008, 28, 28–35. [Google Scholar] [CrossRef]
- Sakhno, O.V.; Goldenberg, L.M.; Stumpe, J.; Smirnova, T.N. Effective volume holographic structures based on organic–inorganic photopolymer nanocomposites. J. Opt. Pure Appl. Opt. 2009, 11, 024013. [Google Scholar] [CrossRef]
- Karpov, G.M.; Obukhovskii, V.V.; Smirnova, T.N.; Sarbaev, T.A. Theory of hologram formation in photopolymer materials with a polymerization diffusive recording mechanism: II. Regularities of the process and criterion of holographic recording efficiency. Opt. Spectrosc. 1997, 82, 131–137. [Google Scholar]
- Caseri, W. Nanocomposites of polymers and metals or semiconductors: Historical background and optical properties. Macromol. Rapid Commun. 2000, 21, 705–722. [Google Scholar] [CrossRef]
- Karpov, G.M.; Obukhovsky, V.V.; Smirnova, T.N.; Lemeshko, V.V. Spatial transfer of matter as a method of holographic recording in photoformers. Opt. Commun. 2000, 174, 391–404. [Google Scholar] [CrossRef]
- Smirnova, T.N.; Kokhtych, L.M.; Kutsenko, A.S.; Sakhno, O.V.; Stumpe, J. The fabrication of periodic polymer/silver nanoparticle structures: In situ reduction of silver nanoparticles from precursor spatially distributed in polymer using holographic exposure. Nanotechnology 2009, 20, 405301. [Google Scholar] [CrossRef]
- Smirnova, T.N. Self-developing polymer compositions for holography. SPIE Newsl. Opt. Inf. Syst. 2004, 15, 9. [Google Scholar]
- Krutyakov, Y.A.; Kudrinskiy, A.A.; Olenin, A.Y.; Lisichkin, G.V. Synthesis and properties of silver nanoparticles: Advances and prospects. Russ. Chem. Rev. 2008, 77, 233–257. [Google Scholar] [CrossRef]
- Abid, J.P.; Wark, A.W.; Brevet, P.F.; Girault, H.H. Preparation of silver nanoparticles in solution from a silver salt by laser irradiation. Chem. Commun. 2002, 7, 792–793. [Google Scholar] [CrossRef] [PubMed]
- Inouye, H.; Tanaka, K.; Tanahashi, I.; Hattori, T.; Nakatsuka, H. Ultrafast optical switching in a silver nanoparticle system. Jpn. J. Appl. Phys. 2000, 39, 5132–5133. [Google Scholar] [CrossRef]
- Porel, S.; Venkatram, N.; Rao, D.N.; Radhakrishnan, T.P. Optical power limiting in the femtosecond regime by silver nanoparticle-embedded polymer film. J. Appl. Phys. 2007, 102, 033107. [Google Scholar] [CrossRef] [Green Version]
- Qu, S.; Gao, Y.; Jiang, X.; Zeng, H.; Song, Y.; Qiu, J.; Zhu, C.; Hirao, K. Nonlinear absorption and optical limiting in gold-precipitated glasses induced by a femtosecond laser. Opt. Commun. 2003, 224, 321–327. [Google Scholar] [CrossRef]
- Mai, H.H.; Kaydashev, V.E.; Tikhomirov, V.K.; Janssens, E.; Shestakov, M.V.; Meledina, M.; Turner, S.; Van Tendeloo, G.; Moshchalkov, V.V.; Lievens, P. Nonlinear optical properties of Ag nanoclusters and nanoparticles dispersed in a glass host. J. Phys. Chem. C 2014, 118, 15995–16002. [Google Scholar] [CrossRef]
- Ryasnyanskiy, A.I.; Palpant, B.; Debrus, S.; Pal, U.; Stepanov, A.L. Nonlinear optical properties of gold nanoparticles dispersed in different optically transparent matrices. Phys. Solid State 2009, 51, 55–60. [Google Scholar] [CrossRef]
- Nie, W.J.; Zhang, Y.X.; Yu, H.H.; Li, R.; He, R.Y.; Dong, N.N.; Wang, J.; Hübner, R.; Böttger, R.; Zhou, S.Q.; et al. Plasmonic nanoparticles embedded in single crystals synthesized by gold ion implantation for enhanced optical nonlinearity and efficient Q-switched lasing. Nanoscale 2018, 10, 4228–4236. [Google Scholar] [CrossRef] [Green Version]
- Podoliak, N.; Bartczak, D.; Buchnev, O.; Kanaras, A.G.; Kaczmarek, M. High optical nonlinearity of nematic liquid crystals doped with gold nanoparticles. J. Phys. Chem. C 2012, 116, 12934–12939. [Google Scholar] [CrossRef]
- Borshch, A.A.; Brodin, M.S.; Volkov, V.I.; Lyakhovetskii, V.P.; Fedorovich, R.D. Giant nonlinear refraction in gold island films. JETP Lett. 2006, 84, 214–216. [Google Scholar] [CrossRef]
- Shahriari, E.; Yunus, W.M.; Saion, E. Effect of particle size on nonlinear refractive index of Au nanoparticle in PVA solution. Braz. J. Phys. 2010, 40, 256–260. [Google Scholar] [CrossRef]
- Philip, R.; Chantharasupawong, P.; Qian, H.; Jin, R.; Thomas, J. Evolution of nonlinear optical properties: From gold atomic clusters to plasmonic nanocrystals. Nano Lett. 2012, 12, 4661–4667. [Google Scholar] [CrossRef] [PubMed]
- Hache, F.; Ricard, D.; Flytzanis, C.; Kreibig, U. The optical Kerr effect in small metal particles and metal colloids: the case of gold. Appl. Phys. A 1988, 47, 347–357. [Google Scholar] [CrossRef]
- Smirnova, T.N.; Rudenko, V.I.; Hryn, V.O. Nonlinear optical properties of polymer nanocomposites with a random and periodic distribution of silver nanoparticles. In Nanochemistry, Biotechnology, Nanomaterials, and Their Applications; Fesenko, O., Yatsenko, L., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 333–344. [Google Scholar]
- Sheik-Bahae, M.; Said, A.A.; Wei, T.H.; Hagan, D.J.; Van Stryland, E.W. Sensitive measurement of optical nonlinearities using a single beam. IEEE J. Quantum Electron. 1990, 26, 760–769. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.Q.; Liu, Z.B.; Zang, W.P.; Tian, J.G.; Zhou, W.Y.; Song, F.; Zhang, C.P. Study on Z-scan characteristics for a large nonlinear phase shift. J. Opt. Soc. Am. B 2005, 22, 1911–1916. [Google Scholar] [CrossRef]
- Rosei, R.; Escuti, M.J.; van Heesch, C.; Bastiaansen, C.W.M.; Broer, D.J.; Loos, J.; Nussbaumer, R. Temperature modulation of the optical transitions involving the Fermi surface in Ag: Experimental. Phys. Rev. B 1974, 10, 484–489. [Google Scholar] [CrossRef]
Model | Experiment | |||
---|---|---|---|---|
Description | n1 | n1 | ||
Polymer P1 (EBPDA) is fully localized in the | 0.0157 | 100% | 0.0027 | 17% |
illuminated areas (composite without NPs) | ||||
Polymer P1 (EBPDA) is fully localized in the | ||||
illuminated areas | 0.0167 | 100% | ||
NPs are fully localized in the dark areas | 0.0073 Au1 | 38% | ||
The modulation of P1 (EBPDA) concentration | 0.0084 Au2 | 42% | ||
is the same as in a composite without NPs | 0.0037 | 17% | ||
NPs are fully localized in the dark areas | ||||
The modulation of P1 (EBPDA) concentration | ||||
is absent | 0.001 | 0% | ||
NPs are fully localized in the dark areas |
, cm2/W | , cm/W | Re, esu | Im, esu | , esu |
---|---|---|---|---|
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sakhno, O.; Yezhov, P.; Hryn, V.; Rudenko, V.; Smirnova, T. Optical and Nonlinear Properties of Photonic Polymer Nanocomposites and Holographic Gratings Modified with Noble Metal Nanoparticles. Polymers 2020, 12, 480. https://doi.org/10.3390/polym12020480
Sakhno O, Yezhov P, Hryn V, Rudenko V, Smirnova T. Optical and Nonlinear Properties of Photonic Polymer Nanocomposites and Holographic Gratings Modified with Noble Metal Nanoparticles. Polymers. 2020; 12(2):480. https://doi.org/10.3390/polym12020480
Chicago/Turabian StyleSakhno, Oksana, Pavel Yezhov, Volodymyr Hryn, Valentyn Rudenko, and Tatiana Smirnova. 2020. "Optical and Nonlinear Properties of Photonic Polymer Nanocomposites and Holographic Gratings Modified with Noble Metal Nanoparticles" Polymers 12, no. 2: 480. https://doi.org/10.3390/polym12020480
APA StyleSakhno, O., Yezhov, P., Hryn, V., Rudenko, V., & Smirnova, T. (2020). Optical and Nonlinear Properties of Photonic Polymer Nanocomposites and Holographic Gratings Modified with Noble Metal Nanoparticles. Polymers, 12(2), 480. https://doi.org/10.3390/polym12020480