Creation of a PDMS Polymer Brush on SiO2-Based Nanoparticles by Surface-Initiated Ring-Opening Polymerization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Instrumentation
2.3. Synthetic Procedures
2.3.1. ROP of M4 Initiated by NeOH
2.3.2. Synthesis of SiO2 Nanoparticles
2.3.3. Synthesis of SiO2@Fe2O3 Spindle-Shaped Nanoparticles
2.3.4. SI–ROP of M4
3. Results
3.1. Parameter Evaluation in Model Solution-Based Polymerization
3.1.1. Ring–Chain Equilibrium
3.1.2. Molar Mass Control
3.2. Surface-Initiated Ring-Opening Polymerization
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mefford, O.T.; Vadala, M.L.; Goff, J.D.; Carroll, M.R.J.; Mejia-ariza, R.; Caba, B.L.; Pierre, T.G.S.; Woodward, R.C.; Davis, R.M.; Riffle, J.S.; et al. Stability of Polydimethylsiloxane-Magnetite Nanoparticle Dispersions Against Flocculation: Interparticle Interactions of Polydisperse Materials. Langmuir 2008, 24, 5060–5069. [Google Scholar] [CrossRef] [PubMed]
- Möller, M.; Nederberg, F.; Lim, L.S.; Kånge, R.; Hawker, C.J.; Mo, M.; Hedrick, J.L.; Gu, Y.; Shah, R.; Abbott, N.L. Stannous (II) Trifluoromethane Sulfonate: A Versatile Catalyst for the Controlled Ring-Opening Polymerization of Lactides: Formation of Stereoregular Surfaces from Polylactide “Brushes”. J. Polym. Sci. Part A Polym. Chem. 2001, 39, 3529–3538. [Google Scholar] [CrossRef]
- Alexander, S. Adsorption of chain polymers with a polar head: A scaling description. J. Phys. 1977, 38, 983–987. [Google Scholar] [CrossRef]
- De Gennes, P.G.G. Conformations of Polymers Attached to Interface. Macromolecules 1980, 13, 1069–1075. [Google Scholar] [CrossRef]
- Thünemann, A.F.; Schütt, D.; Kaufner, L.; Pison, U.; Möhwald, H. Maghemite Nanoparticles Protectively Coated with Poly(ethylene imine) and Poly(ethylene oxide)-bloc-poly(glutamic acid). Langmuir 2006, 15, 2351–2357. [Google Scholar] [CrossRef]
- Si, S.; Kotal, A.; Mandal, T.K.; Giri, S.; Nakamura, H.; Kohara, T. Size-Controlled Synthesis of Magnetite Nanoparticles in the Presence of Polyelectrolytes. Chem. Mater. 2004, 16, 3489–3496. [Google Scholar] [CrossRef]
- Mcewan, M.; Green, D. Rheological impacts of particle softness on wetted polymer-grafted silica nanoparticles in polymer melts. Soft Matter 2009, 5, 1705–1716. [Google Scholar] [CrossRef]
- Yoon, K.R.; Chi, S.; Lee, K.; Lee, J.K.; Kim, J.; Koh, Y.; Joo, S.; Yun, S.; Choi, I.S. Surface-initiated ring-opening polymerization of p-dioxane from gold and silicon oxide surfaces. J. Mater. Chem. 2003, 13, 2910–2914. [Google Scholar] [CrossRef]
- Dai, Q.; Lam, M.; Swanson, S.; Yu, R.H.R.; Milliron, D.J.; Topuria, T.; Jubert, P.O.; Nelson, A. Monodisperse cobalt ferrite nanomagnets with uniform silica coatings. Langmuir 2010, 26, 17546–17551. [Google Scholar] [CrossRef]
- Schmidt, A.M. The synthesis of magnetic core-shell nanoparticles by surface-initiated ring-opening polymerization of ε-caprolactone. Macromol. Rapid Commun. 2005, 26, 93–97. [Google Scholar] [CrossRef]
- Green, D.L.; Mewis, J.; Engineering, C.; Uni, V.; Way, E.; Charlottes, V. Connecting the Wetting and Rheological Behaviors of Poly(dimethylsiloxane)-Grafted Silica Spheres in Poly(dimethylsiloxane) Melts. Langmuir 2006, 22, 9546–9553. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.K.; Park, E.J.; Kim, Y.D. Removal of oil by gelation using hydrophobic silica nanoparticles. J. Ind. Eng. Chem. 2014, 20, 1231–1235. [Google Scholar] [CrossRef]
- Mouhli, A.; Ayeb, H.; Othman, T.; Fresnais, J.; Dupuis, V.; Nemitz, I.R.; Pendery, J.S.; Rosenblatt, C.; Sandre, O.; Lacaze, E. Influence of a dispersion of magnetic and nonmagnetic nanoparticles on the magnetic Fredericksz transition of the liquid crystal 5CB. Phys. Rev. E 2017, 96, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brillouin, L.L.; Saclay, C.E.N.; Sur, G.; Cedex, Y. Building of Grafted Layer. 1. Role of the Concentration of Free Polymers in the Reaction Bath. Macromolecules 1991, 24, 5158–5166. [Google Scholar]
- Prucker, O.; Rühe, J. Mechanism of Radical Chain Polymerizations Initiated by Azo Compounds Covalently Bound to the Surface of Spherical Particles. Macromolecules 1998, 31, 602–613. [Google Scholar] [CrossRef]
- Shah, R.R.; Merreceyes, D.; Husemann, M.; Rees, I.; Abbott, N.L.; Hawker, C.J.; Hedrick, J.L. Using Atom Transfer Radical Polymerization To Amplify Monolayers of Initiators Patterned by Microcontact Printing into Polymer Brushes for Pattern Transfer. Macromolecules 2000, 33, 597–605. [Google Scholar] [CrossRef]
- Joubert, M.; Delaite, C.; Bourgeat-lami, E.; Dumas, P. Ring-Opening Polymerization of e-Caprolactone and L-Lactide from Silica Nanoparticles Surface. J. Polym. Sci. Part A Polym. Chem. 2003, 42, 1976–1984. [Google Scholar] [CrossRef]
- Lahann, J.; Langer, R. Surface-Initiated Ring-Opening Polymerization of e-Caprolactone from a Patterned Poly (hydroxymethyl-p-xylylene). Macromol. Rapid Commun. 2001, 22, 968–971. [Google Scholar] [CrossRef]
- Kaiser, A.; Dutz, S.; Schmidt, A.M. Kinetic Studies of Surface-Initiated Atom Transfer Radical Polymerization in the Synthesis of Magnetic Fluids. J. Polym. Sci. Part A Polym. Chem. 2009, 47, 7012–7020. [Google Scholar] [CrossRef]
- Choi, I.S.; Langer, R. Surface-Initiated Polymerization of l-Lactide: Coating of Solid Substrates with a Biodegradable Polymer. Macromolecules 2001, 34, 5361–5363. [Google Scholar] [CrossRef]
- Clarson, S.J.; Semlyen, J.A. Siloxane Polymers; Prentice Hall: Englewood Cliffs, NJ, USA, 1993. [Google Scholar]
- Mark, J.E. Overview of Siloxane Polymers. In Am. Chem. Soc.; ACS Symposium Series: Singapore, 2000; pp. 1–10. ISBN 9780841236134. [Google Scholar]
- Normand, F.; He, X.W.; Widmaier, J.M.; Meyer, G.C. Linear polycondensation of a,w-dihydroxy polydimethylsiloxane, catalyzed by stannous octoate. Eur. Pol. J. 1989, 25, 371–374. [Google Scholar] [CrossRef]
- He, X.; Lappa, A.; Herz, J. Chain branching of poly(dimethylsiloxane): A competitive side reaction of the hydrosilylation reaction. Makromol. Chem. 1988, 189, 1061–1075. [Google Scholar] [CrossRef]
- Wilczek, L.; Rubinsztajn, S.; Chojnowski, J. Comparison of the cationic polymerization of octamethylcyclotetrasiloxane and hexamethylcyclotrisiloxane. Makromol. Chem. 1986, 187, 39–51. [Google Scholar] [CrossRef]
- Dubois, P.; Coulembier, O.; Raquez, J.-M. Handbook of Ring-Opening; Wiley-VCH Verlag GmbH & Co. KgaA: Weinheim, Germany, 2009; ISBN 9783527317103. [Google Scholar]
- Hurd, D.T. On the Mechanism of the Acid-catalyzed Rearrangement of Siloxane Linkages in Organopolysiloxanes. J. Am. Chem. Soc. 1955, 77, 2998–3001. [Google Scholar] [CrossRef]
- Polymerisation, T.A. The Acid-catalysed Polymerisation of Cyclosiloxanes. Part I. The Kinetics of the Polymerization of Octamethylcycloterasiloxane Catalyzed by anhydrous Ferric Chloride-Hydrogen Chloride. J. Chem. Soc. 1965, 1205, 2027–2035. [Google Scholar]
- Bi, C.; Xiaoii, Z.; Lingmint, Y.I.; Fengqiu, C. Cationic Ring Opening Polymerization of Octamethylcyclotetrailoxane Initiated by Acid Treated Bentonite. Chin. J. Polym. Sci. 2007, 15, 661–665. [Google Scholar]
- Wilczek, L.; Chojnowski, J. Acidolytic Ring Opening of Cyclic Siloxane and Acetal Monomers. Role of Hydrogen Bonding in Cationic Polymerization Initiated with Protonic Acids. Macromolecules 1981, 14, 9–17. [Google Scholar] [CrossRef]
- Chojnowski, J. Kinetieally Controlled Siloxane Ring-Opening Polymerization. J. Inorg. Organomet. Polym. 1991, 1, 299–322. [Google Scholar] [CrossRef]
- Grzelka, A.; Chojnowski, J.; Fortuniak, W.; Richard, G.; Hupfield, P.C. Kinetics of the Anionic Ring Opening Polymerization of Cyclosiloxanes Initiated with a Superbase. J. Inorg. Organomet. Polym. 2004, 14, 85–99. [Google Scholar] [CrossRef]
- Semlyen, J.A. Ring-Chain Equilibria and the Conformations of Polymer Chains. Adv. Pol. Sci. 1976, 21, 41–75. [Google Scholar]
- Hurd, B.D.T.; Osthoff, R.C.; Corrin, M.L.; Si, S.O.; Osthoff, C. The Mechanism of the Base-catalyzed Rearrangement of Organopolysiloxanes. J. Am. Chem. Soc. 1954, 76, 249–252. [Google Scholar] [CrossRef]
- Chojnowski, J.; Rubinsztajn, S.; Fortuniak, W.; Kurjata, J. Oligomer and polymer formation in hexamethylcyclotrisiloxane (D 3)-Hydrosilane systems under catalysis by tris(pentafluorophenyl) borane. J. Inorg. Organomet. Polym. 2007, 17, 173–187. [Google Scholar] [CrossRef]
- Fuchise, K.; Sato, K.; Shimada, S.; Igarashi, M.; Sato, K.; Shimada, S. Organocatalytic controlled/living ring-opening polymerization of cyclotrisiloxanes initiated by water with strong organic base catalysts†. R. Soc. Chem. 2018, 9, 2879–2891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molenberg, A.; Moller, M. Polymerization of cyclotrisiloxanes by organolithium compounds and P2-Et base. Macromol. Chem. Phys. 1997, 198, 717–726. [Google Scholar] [CrossRef]
- Hupfield, P.C.; Taylor, R.G. Ring-Opening Polymerization of Siloxanes Using Phosphazene Base Catalysts. J. Inorg. Organomet. Polym. 1999, 9, 17–34. [Google Scholar] [CrossRef]
- Molenberg, A.; Moller, M. A fast catalyst system for the ring-opening polymerization of cyclosiloxanes. Macromol. Rapid Commun. 1995, 16, 449–453. [Google Scholar] [CrossRef]
- Esswein, B.; Molenberg, A.; Möller, M. Use of polyiminophosphazene bases for ring-opening polymerizations. Macromol. Symp. 1996, 107, 331–340. [Google Scholar] [CrossRef]
- Schwesinger, R.; Schlemper, H. Peralkylated Polyaminophosphazenes-Extremely Strong, Neutral Nitrogen Bases. Angew. Chem. Int. Ed. 1987, 26, 1167–1169. [Google Scholar] [CrossRef]
- Schwesinger, B.R.; Mij, M.; Peters, K.; Von Schnering, H.G. Novel, Very Strongly Basic, Pentacyclic “Proton Sponges” with Vinamidine Structure**. Angew. Chem. Int. Ed. 1987, 80, 1165–1167. [Google Scholar] [CrossRef]
- Esswein, B.; Möller, M. Polymerization of Ethylene Oxide with Alkyllithium Compounds and the Phosphazene Base “tBu-P4”. Angew. Chem. Int. Ed. 1996, 35, 623–625. [Google Scholar] [CrossRef]
- Wagner, H.L. The Mark-Houwink-Sakurada Equation for the Viscosity of Atactic Polystyrene. J. Phys. Chem. Ref. Data 1985, 14, 1101–1106. [Google Scholar] [CrossRef] [Green Version]
- Mark James, E. Polymer Data Handbook; Oxford University Press: New York, NY, USA, 1999. [Google Scholar]
- Hartlen, K.D.; Athanasopoulos, A.P.T.; Kitaev, V. Facile Preparation of Highly Monodisperse Small Silica Spheres (15 to >200 nm ) Suitable for Colloidal Templating and Formation of Ordered Arrays. Langmuir 2008, 24, 1714–1720. [Google Scholar] [CrossRef] [PubMed]
- Ozaki, M.; Kratohvil, S.; Matjevic, E.; Matijević, E. Formation of Monodispersed Spindle-Type Hematite Particles 1. J. Colloid Interface Sci. 1984, 102, 146–151. [Google Scholar] [CrossRef]
- Wagner, J.; Autenrieth, T.; Hempelmann, R. Core shell particles consisting of cobalt ferrite and silica as model ferrofluids [CoFe2O4-SiO2 core shell particles]. J. Magn. Magn. Mater. 2002, 252, 4–6. [Google Scholar] [CrossRef]
- Van Ewijk, G.A.; Vroege, G.J.; Philipse, A.P. Convenient preparation methods for magnetic colloids. J. Magn. Magn. Mater. 1999, 201, 31–33. [Google Scholar] [CrossRef]
- Van Dyke, M.E.; Clarson, S.J. Reaction Kinetics for the Anionic Ring-Opening Polymerization of Tetraphenyltetramethylcyclotetrasiloxane Using a Fast Initiator System. J. Inorg. Organomet. Polym. 1998, 8, 111–117. [Google Scholar] [CrossRef]
- Zhao, J.; Hadjichristidis, N.; Schlaad, H. Polymerization Using Phosphazene Bases. In Anionic Polymerization; Springer: Tokyo, Japan, 2015; pp. 429–449. ISBN 9784431541868. [Google Scholar]
- Jacobson, H.; Stockmayer, W.H. Intramolecular Reaction in Polycondensations. I. The Theory of Linear Systems. J. Chem. Phys. 1950, 18, 1600–1606. [Google Scholar] [CrossRef]
- Flory, P.J.; Semlyen, J.A. Macrocyclization Equilibrium Constants and the Statistical Configuration of Poly(dimethylsiloxane) Chains. J. Am. Chem. Soc. 1966, 88, 3209–3212. [Google Scholar] [CrossRef]
- Hubert, S.; Hemery, P.; Boileau, S. Anionic polymerization of cyclosiloxanes with cryptates as counterions: New results. In Makromolekulare Chemie. Macromolecular Symposia; Hüthig & Wepf: Basel, Switzerland, 1986; Volume 252, pp. 247–252. [Google Scholar]
- Hinman, J.G.; Lough, A.J.; Morris, R.H. Properties of the Polyhydride Anions [WH5(PMe2Ph)3] and [ReH4(PMePh2)3] and Periodic Trends in the Acidity of Polyhydride Complexes. Inorg. Chem. 2007, 46, 4392–4401. [Google Scholar] [CrossRef]
- Pibre, G.; Chaumont, P.; Fleury, E.; Cassagnau, P. Ring-opening polymerization of decamethylcyclopentasiloxane initiated by a superbase: Kinetics and rheology. Polymer 2008, 49, 234–240. [Google Scholar] [CrossRef]
- Ek, S.; Root, A.; Peussa, M.; Niinistö, L. Determination of the hydroxyl group content in silica by thermogravimetry and a comparison with 1H MAS NMR results. Thermochim. Acta 2001, 379, 201–212. [Google Scholar] [CrossRef]
SiO2 | |||||||||||
Series 3 | Series 5 | ||||||||||
mol∙L−1 | /υp mmol∙mg−1 | mPDMS/Ap mg∙m−2 | Mn,free g∙mol−1 | PDI | mol∙L−1 | /υp mmol∙mg−1 | mPDMS/Ap mg∙m−2 | Mn,free g∙mol−1 | PDI | ||
0.57 | 0.045 | 0.371 | 4.44 | 23252 | 1.72 | 0.57 | 0.011 | 0.069 | 0.96 | 15802 | 2.09 |
0.72 | 0.045 | 0.395 | 4.65 | 24586 | 1.85 | 0.97 | 0.023 | 0.129 | 1.42 | 29864 | 2.04 |
0.96 | 0.045 | 0.413 | 4.57 | 20174 | 1.68 | 1.49 | 0.045 | 0.402 | 4.44 | 30593 | 1.97 |
1.17 | 0.024 | 0.421 | 4.36 | 25967 | 2.02 | 2.04 | 0.090 | 0.403 | 4.45 | 35748 | 2.15 |
1.49 | 0.024 | 0.402 | 4.08 | 30593 | 1.97 | 2.57 | 0.180 | 0.37 | 4.09 | 35521 | 2.04 |
SiO2@Fe2O3 | |||||||||||
Series 4 | Series 6 | ||||||||||
mol∙L−1 | /υp mmol∙mg−1 | mPDMS/Ap mg∙m−2 | Mn,free g∙mol−1 | PDI | mol∙L−1 | /υp mmol∙mg−1 | mPDMS/Ap mg∙m−2 | Mn,free g∙mol−1 | PDI | ||
0.57 | 0.013 | 0.056 | 3.73 | 20493 | 2.74 | 0.57 | 0.003 | 0.073 | 4.73 | 19420 | 1.67 |
0.72 | 0.013 | 0.083 | 5.54 | 25428 | 1.67 | 0.97 | 0.006 | 0.130 | 8.64 | 23907 | 1.73 |
0.96 | 0.013 | 0.138 | 9.12 | 21355 | 2.31 | 1.49 | 0.013 | 0.091 | 4.57 | 35289 | 1.87 |
1.17 | 0.013 | 0.139 | 9.21 | 26830 | 1.71 | 2.04 | 0.026 | 0.083 | 5.53 | 37084 | 1.79 |
1.49 | 0.013 | 0.091 | 6.05 | 35289 | 1.87 | 2.57 | 0.052 | 0.082 | 3.73 | 34168 | 1.84 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koch, K.; Geller, S.; Acar, K.; Bach, P.; Tsarenko, E.; Schmidt, A. Creation of a PDMS Polymer Brush on SiO2-Based Nanoparticles by Surface-Initiated Ring-Opening Polymerization. Polymers 2020, 12, 787. https://doi.org/10.3390/polym12040787
Koch K, Geller S, Acar K, Bach P, Tsarenko E, Schmidt A. Creation of a PDMS Polymer Brush on SiO2-Based Nanoparticles by Surface-Initiated Ring-Opening Polymerization. Polymers. 2020; 12(4):787. https://doi.org/10.3390/polym12040787
Chicago/Turabian StyleKoch, Karin, Sven Geller, Kubilay Acar, Patricia Bach, Ekaterina Tsarenko, and Annette Schmidt. 2020. "Creation of a PDMS Polymer Brush on SiO2-Based Nanoparticles by Surface-Initiated Ring-Opening Polymerization" Polymers 12, no. 4: 787. https://doi.org/10.3390/polym12040787
APA StyleKoch, K., Geller, S., Acar, K., Bach, P., Tsarenko, E., & Schmidt, A. (2020). Creation of a PDMS Polymer Brush on SiO2-Based Nanoparticles by Surface-Initiated Ring-Opening Polymerization. Polymers, 12(4), 787. https://doi.org/10.3390/polym12040787