Ageing of Dental Composites Based on Methacrylate Resins—A Critical Review of the Causes and Method of Assessment
Abstract
:1. Introduction
- outstanding aesthetic properties
- strength and toughness, comparable to dental amalgams and porcelain (flexural, compression and tensile strength)
- ease of use and modelling.
2. Materials and Methods
3. Oral Environment Characteristics
3.1. Biological Factors
3.2. Chemical Factors
3.3. Physical Factors
3.4. Mechanical Factors
4. Degradation of Resins
5. Degradation of Filler and Filler-Matrix Interface
6. In Vitro Ageing
7. Summary
- The hydrolysis of dimethacrylate resins proceeds relatively slowly in neutral pH; however, enzymes and acids accelerate this process. The most susceptible bonds for nucleophilic attack are ester bonds.
- The bonds formed between a coupling agent and an inorganic filler are highly vulnerable to hydrolysis due to their significant ionic character. This process can be accelerated, especially under cyclic loading, by additional substances (acids, enzymes). Therefore, the hydrolytic stability of coupling agent remains a great concern among researchers.
- Other aqueous ageing solvents (artificial saliva, ethanol, or NaOH solution) can be more aggressive than water alone. Given the very complex chemical composition of the oral environment, ageing tests that use water can only marginally help predict the clinical performance of biomaterials.
- Systems able to reproduce dynamic changes of stresses (thermal cycling, fatigue tests) better mimic clinical conditions and could be extremely valuable in predicting dental composite clinical performance.
- Determining ageing procedure and tests of dental materials is essential.
Author Contributions
Funding
Conflicts of Interest
References
- Maxwell, A.S.; Broughton, W.R.; Dean, G.; Sims, G.D. Review of Accelerated Ageing Methods and Lifetime Prediction Techniques for Polymeric Materials Engineering and Process Control Division; National Physical Laboratory: Teddington, UK, 2005; ISSN 1744-0270. [Google Scholar]
- Gates, T. The physical and chemical ageing of polymeric composites. In Ageing of Composites; Woodhead Publishing: Cambridge, UK, 2008; pp. 3–33. ISBN 9781845693527. [Google Scholar]
- Ferracane, J.L. Resin composite—State of the art. Dent. Mater. 2011, 27, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Thome, T.; Carolina, M.; Erhardt, G.; Leme-kraus, A.A. Advanced Polymers in Medicine; Springer: Cham, Switzerland, 2015; ISBN 9783319124773. [Google Scholar]
- Chladek, G.; Basa, K.; Żmudzki, J.; Malara, P.; Nowak, A.J.; Kasperski, J. Influence of aging solutions on wear resistance and hardness of selected resin-based dental composites. Acta Bioeng. Biomech. 2016, 18, 43–52. [Google Scholar] [PubMed]
- Khurshid, Z.; Zafar, M.; Qasim, S.; Shahab, S.; Naseem, M.; AbuReqaiba, A. Advances in nanotechnology for restorative dentistry. Materials (Basel) 2015, 8, 717–731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zafar, M.S.; Khurshid, Z.; Najeeb, S.; Zohaib, S.; Rehman, I.U. Therapeutic applications of nanotechnology in dentistry. In Nanostructures for Oral Medicine; Andronescu, E., Grumezescu, A.M., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2017; pp. 833–862. ISBN 978-0-323-47720-8. [Google Scholar]
- Forss, H.; Widström, E. Reasons for restorative therapy and the longevity of restorations in adults. Acta Odontol. Scand. 2004, 62, 82–86. [Google Scholar] [CrossRef] [PubMed]
- Brunthaler, A.; König, F.; Lucas, T.; Sperr, W.; Schedle, A. Longevity of direct resin composite restorations in posterior teeth. Clin. Oral Investig. 2003, 7, 63–70. [Google Scholar] [CrossRef]
- Bogucki, R.; Hunt, R.; del Aguila, M.; Smith, W. Survival analysis of posterior restorations using an insurance claims database. Oper. Dent. 2002, 27, 488–492. [Google Scholar]
- Raskin, A.; Michotte-Theall, B.; Vreven, J.; Wilson, N.H.F. Clinical evaluation of a posterior composite 10-year report. J. Dent. 1999, 27, 13–19. [Google Scholar] [CrossRef]
- Gaengler, P.; Hoyer, I.; Montag, R. Clinical evaluation of posterior composite restorations: The 10-year raport. J. Adhes. Dentirtry 2001, 3, 185–194. [Google Scholar]
- Loguércio, A.D.; Demarco, F.F.; da Rosa Rodolpho, P.A.; Cenci, M.S.; Donassollo, T.A. A clinical evaluation of posterior composite restorations: 17-year findings. J. Dent. 2005, 34, 427–435. [Google Scholar]
- Leinfelder, K.F.; May, K.N.; Wilder, A.D.; Bayne, S.C.; Taylor, D.F. Seventeen-Year Clinical Study of Ultraviolet-Cured Posterior Composite Class I and II Restorations. J. Esthet. Restor. Dent. 2007, 11, 135–142. [Google Scholar]
- Da Rosa Rodolpho, P.A.; Donassollo, T.A.; Cenci, M.S.; Loguércio, A.D.; Moraes, R.R.; Bronkhorst, E.M.; Opdam, N.J.M.; Demarco, F.F. 22-Year clinical evaluation of the performance of two posterior composites with different filler characteristics. Dent. Mater. 2011, 27, 955–963. [Google Scholar] [CrossRef]
- Jokstad, A.; Mjör, I.A.; Qvist, V. The age of restorations in situ. Acta Odontol. Scand. 1994, 52, 234–242. [Google Scholar] [CrossRef]
- Naasan, M.A.; Watson, T.F. Conventional glass ionomers as posterior restorations: A status report for the American Journal of Dentistry. Am. J. Dent. 1998, 11, 36–45. [Google Scholar]
- Ferracane, J.L. Resin-based composite performance: Are there some things we can’t predict? Dent. Mater. 2013, 29, 51–58. [Google Scholar] [CrossRef] [Green Version]
- Preetha, A.; Banerjee, R. Comparison of artificial saliva substitutes. Trends Biomater. Artif. Organs 2005, 18, 178–186. [Google Scholar]
- Pytko-Polonczyk, J.; Jakubik, A.; Przeklasa-Bierowiec, A.; Muszynska, B. Artificial saliva and its use in biological experiments. J. Physiol. Pharmacol. 2017, 68, 807–813. [Google Scholar]
- Hannig, C.; Hannig, M.; Attin, T. Enzymes in the acquired enamel pellicle. Eur. J. Oral Sci. 2005, 113, 2–13. [Google Scholar] [CrossRef]
- Huang, R.; Li, M.; Gregory, R.L. Bacterial interactions in dental biofilm. Virulence 2011, 2, 435–444. [Google Scholar] [CrossRef]
- Featherstone, J.D.B. Dental caries: A dynamic disease process. Aust. Dent. J. 2008, 53, 286–291. [Google Scholar] [CrossRef]
- Cavadini, C.; Cavadini, C. US adolescent food intake trends from 1965 to 1996. Arch. Dis. Child. 2000, 173, 378–383. [Google Scholar]
- Gleason, P.; Suitor, C. Children’s Diets in the Mid-1990s: Dietary Intake and Its Relationship with School Meal Participation; U.S. Department of Agriculture, Food and Nutrition Service, Office of Analysis, Nutrition and Evaluation: Washington, DC, USA, 2001. [Google Scholar]
- Vieira, A.R.; Silva, M.B.; Souza, K.K.A.; Filho, A.V.A.; Rosenblatt, A.; Modesto, A. A pragmatic study shows failure of dental composite fillings is genetically determined: A contribution to the discussion on dental amalgams. Front. Med. 2017, 4, 186. [Google Scholar] [CrossRef] [Green Version]
- Surdacka, A.; Strzykała, K.; Rydzewska, A. Changeability of Oral Cavity Environment. Eur. J. Dent. 2007, 1, 14–17. [Google Scholar] [CrossRef] [Green Version]
- Baliga, S.; Muglikar, S.; Kale, R. Salivary pH: A diagnostic biomarker. J. Indian Soc. Periodontol. 2013, 17, 461–465. [Google Scholar] [CrossRef]
- Moore, R.J.; Watts, J.T.F.; Hood, J.A.A.; Burritt, D.J. Intra-oral temperature variation over 24 h. Eur. J. Orthod. 1999, 21, 249–261. [Google Scholar] [CrossRef] [Green Version]
- Ganss, C. Definition of Erosion and Links to Tooth Wear. In Monographs in Oral Science; Lussi, A., Ed.; Kager: Basel, Switzerland, 2006; Volume 20, pp. 9–16. ISBN 9783318025521. [Google Scholar]
- Tabatabaei, M.H.; Arami, S.; Farahat, F. Effect of Mechanical Loads and Surface Roughness on Wear of Silorane and Methacrylate-Based Posterior Composites. J. Dent. (Tehran) 2016, 13, 407–414. [Google Scholar]
- Heymann, H.; Swift, E.J.; Ritter, A.V.; Sturdevant, C.M. Sturdevant’s Art and Science of Operative Dentistry; Elsevier/Mosby: Amsterdam, The Netherlands, 2013; ISBN 9780323170604. [Google Scholar]
- Flanagan, D. Bite force and dental implant treatment: A short review. Med. Devices Evid. Res. 2017, 10, 141–148. [Google Scholar] [CrossRef] [Green Version]
- Nejatian, T.; Sultan, Z.K.; Zafar, M.S.; Najeeb, S.; Shahab, S.; Mazafari, M.; Hopkinson, L.; Sefat, F. Dental biocomposites. In Biomaterials for Oral and Dental Tissue Engineering; Tayebi, T., Moharamzadeh, K., Eds.; Woodhead Publishing: Cambridge, UK, 2017; pp. 65–84. [Google Scholar]
- Tarle, Z.; Danijela, M.; Pandurić, V. Contemporary concept on composite materials. Rad 514 Med. Sci. 2012, 38, 23–38. [Google Scholar]
- Gopferich, A. Mechanisms of polymer degradation and erosion. Biomaterials 1996, 17, 103–114. [Google Scholar] [CrossRef]
- George, G.; Nikolić, M.; Bottle, S.; Colwell, J.M.; Gauthier, E.; Halley, P.; Laycock, B. Lifetime prediction of biodegradable polymers. Prog. Polym. Sci. 2017, 71, 144–189. [Google Scholar]
- Singh, B.; Sharma, N. Mechanistic implications of plastic degradation. Polym. Degrad. Stab. 2008, 93, 561–584. [Google Scholar] [CrossRef]
- Sandner, B.; Baudach, S.; Davy, K.W.M.; Braden, M.; Clarke, R.L. Synthesis of BISGMA derivatives, properties of their polymers and composites. J. Mater. Sci. Mater. Med. 1997, 8, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Peutzfeldt, A. Resin composites in dentistry: The monomer systems. Eur. J. Oral Sci. 1997, 105, 97–116. [Google Scholar] [CrossRef] [PubMed]
- Bellenger, V.; Verdu, J.; Morel, E. Structure-properties relationships for densely cross-linked epoxide-amine systems based on epoxide or amine mixtures. J. Mater. Sci. 1989, 24, 63–68. [Google Scholar] [CrossRef]
- Delaviz, Y.; Finer, Y.; Santerre, J.P. Biodegradation of resin composites and adhesives by oral bacteria and saliva: A rationale for new material designs that consider the clinical environment and treatment challenges. Dent. Mater. 2014, 30, 16–32. [Google Scholar] [CrossRef]
- VanLandingham, M.R.; Eduljee, R.F.; Gillespie, J.W. Moisture Diffusion in Epoxy Systems. J. Appl. Polym. Sci. 1999, 71, 787–798. [Google Scholar] [CrossRef]
- Szczepanska, J.; Poplawski, T.; Synowiec, E.; Pawlowska, E.; Chojnacki, C.J.; Chojnacki, J.; Blasiak, J. 2-Hydroxylethyl methacrylate (HEMA), a tooth restoration component, exerts its genotoxic effects in human gingival fibroblasts trough methacrylic acid, an immediate product of its degradation. Mol. Biol. Rep. 2012, 39, 1561–1574. [Google Scholar] [CrossRef] [Green Version]
- Chauncey, H. Salivary enzymes. Am. Dent. Assoc. 1961, 63, 360–368. [Google Scholar] [CrossRef]
- Kermanshahi, S.; Santerre, J.P.; Cvitkovitch, D.G.; Finer, Y. Biodegradation of resin-dentin interfaces increases bacterial microleakage. J. Dent. Res. 2010, 89, 996–1001. [Google Scholar] [CrossRef]
- Hashimoto, M.; Nagano, F.; Endo, K.; Ohno, H. A review: Biodegradation of resin-dentin bonds. Jpn. Dent. Sci. Rev. 2011, 47, 5–12. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, J.; Ishikawa, K.; Yatani, H.; Yamashita, A.; Suzuki, K. Correlation of Dentin Bond Durability with Water Absorption of Bonding Layer. Dent. Mater. J. 2011, 18, 11–18. [Google Scholar] [CrossRef]
- Amaral, F.L.B.; Colucci, V.; Palma-Dibb, R.G.; Corona, S.A.M. Assessment of in vitro methods used to promote adhesive interface degradation: A critical review. J. Esthet. Restor. Dent. 2007, 19, 340–353. [Google Scholar] [CrossRef]
- Freund, M.; Munksgaard, E.C. Enzymatic degradation of BISGMA/TEGDMA-polymers causing decreased microhardness and greater wear in vitro. Eur. J. Oral Sci. 1990, 98, 351–355. [Google Scholar] [CrossRef]
- Bourbia, M.; Finer, Y. Biochemical Stability and Interactions of Dental Resin Composites and Adhesives with Host and Bacteria in the Oral Cavity: A Review. J. Can. Dent. Assoc. 2018, 84, i1. [Google Scholar]
- Löfroth, M.; Ghasemimehr, M.; Falk, A.; Vult von Steyern, P. Bisphenol A in dental materials—existence, leakage and biological effects. Heliyon 2019, 5, e01711. [Google Scholar] [CrossRef] [Green Version]
- Ozturk, B.; Cobanoglu, N.; Cetin, A.R.; Gunduz, B. Conversion degrees of resin composites using different light sources. Eur. J. Dent. 2013, 7, 102–109. [Google Scholar]
- Santerre, J.P.; Shajii, L.; Leung, B.W. Relation of dental composite formulations to their degradation and the release of hydrolyzed polymeric-resin-derived products. Crit. Rev. Oral Biol. Med. 2001, 12, 136–151. [Google Scholar] [CrossRef] [Green Version]
- Pawłowska, E.; Loba, K.; Błasiak, J.; Szczepańska, J. Właściwości i ryzyko stosowania metakrylanu bisfenolu A i dimetakrylanu uretanu—Podstawowych monomerów kompozytów stomatologicznych *. Dent. Med. Probl. 2009, 46, 477–485. [Google Scholar]
- Buchmann, G.; Klimm, W.; Gabert, A.; Edelmann, J. Detection of microecological phenomena in filled teeth I. Phenomena in Gap between restoration and cavity wall. Microb. Ecol. Health Dis. 1990, 3, 51–57. [Google Scholar]
- Larsen, I.B.; Munksgaard, E.C. Effect of human saliva on surface degradation of composite resins. Scand. J. Dent. Res. 1991, 99, 254–261. [Google Scholar] [CrossRef]
- Cramer, N.B.; Stansbury, J.W.; Bowman, C.N. Recent Advances and Developments in Composite Dental Restorative Materials. J. Dent. Res. 2011, 90, 402–416. [Google Scholar] [CrossRef] [Green Version]
- Kundie, F.; Azhari, C.H.; Muchtar, A.; Ahmad, Z.A. Effects of filler size on the mechanical properties of polymer-filled dental composites: A review of recent developments. J. Phys. Sci. 2018, 29, 141–165. [Google Scholar] [CrossRef] [Green Version]
- Stencel, R.; Pakieła, W.; Barszczewska-Rybarek, I.; Żmudzki, J.; Kasperski, J.; Chladek, G. Effects of Different Inorganic Fillers on Mechanical Properties and Degree of Conversion of Dental Resin Composites. Arch. Metall. Mater. 2018, 63, 1361–1369. [Google Scholar]
- Klapdohr, S.; Moszner, N. Invited Review New Inorganic Components for Dental Filling Composites. Mon. Für Chem.-Chem. Mon. 2005, 136, 21–45. [Google Scholar] [CrossRef]
- Ferracane, J.L. Current trends in dental composites. Crit. Rev. Oral Biol. Med. 1995, 6, 302–318. [Google Scholar] [CrossRef] [Green Version]
- Masouras, K.; Silikas, N.; Watts, D.C. Correlation of filler content and elastic properties of resin-composites. Dent. Mater. 2008, 24, 932–939. [Google Scholar] [CrossRef]
- Ferracane, J.L. Hygroscopic and hydrolytic effects in dental polymer networks. Dent. Mater. 2006, 22, 211–222. [Google Scholar] [CrossRef]
- Moazzami, S.; Sadid Zadeh, R.; Kianoush, K.; Sarmad, M.; Barani Karbaski, F.; Amiri Daluyi, R.; Kazemi, R. Chemical Stability of Bioglass in Simulated Oral Environment. J. Dent. Biomater. 2016, 3, 261–268. [Google Scholar]
- Sabbagh, J.; Ryelandt, L.; Bacherius, L.; Biebuyck, J.J.; Vreven, J.; Lambrechts, P.; Leloup, G. Characterization of the inorganic fraction of resin composites. J. Oral Rehabil. 2004, 31, 1090–1101. [Google Scholar] [CrossRef]
- Karabela, M.M.; Sideridou, I.D. Effect of the structure of silane coupling agent on sorption characteristics of solvents by dental resin-nanocomposites. Dent. Mater. 2008, 24, 1631–1639. [Google Scholar] [CrossRef]
- Kango, S.; Kalia, S.; Celli, A.; Njuguna, J.; Habibi, Y.; Kumar, R. Surface modification of inorganic nanoparticles for development of organic-inorganic nanocomposites—A review. Prog. Polym. Sci. 2013, 38, 1232–1261. [Google Scholar] [CrossRef]
- Antonucci, J.M.; Dickens, S.H.; Fowler, B.O.; Xu, H.H.K.; McDonough, W.G. Chemistry of Silanes: Interfaces in Dental Polymers and Composites. J. Res. Natl. Inst. Stand. Technol. 2005, 110, 541–558. [Google Scholar] [CrossRef] [PubMed]
- Karmaker, A.; Prasad, A.; Sarkar, N.K. Characterization of adsorbed silane on fillers used in dental composite restoratives and its effect on composite properties. J. Mater. Sci. Mater. Med. 2007, 18, 1157–1162. [Google Scholar] [CrossRef] [PubMed]
- Zanchi, C.H.; Ogliari, F.A.; Marques e Silva, R.; Lund, R.G.; Machado, H.H.; Prati, C.; Carreño, N.L.V.; Piva, E. Effect of the silane concentration on the selected properties of an experimental microfilled composite resin. Appl. Adhes. Sci. 2015, 3, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Kuwahata, H.; Seki, H.; Fujii, K.; Inoue, K. Deterioration of Mechanical Properties of Composite Resins. Dent. Mater. J. 1995, 14, 78–83. [Google Scholar]
- Matinlinna, J.P.; Lassila, L.V.J.; Ozcan, M.; Yli-Urpo, A.; Vallittu, P.K. An introduction to silanes and their clinical applications in dentistry. Int. J. Prosthodont. 2004, 17, 155–164. [Google Scholar] [PubMed]
- Amdjadi, P.; Ghasemi, A.; Najafi, F.; Nojehdehian, H. Pivotal role of filler/matrix interface in dental composites: Review. Biomed. Res. 2017, 28, 1054–1065. [Google Scholar]
- Geurtsen, W. Substances released from dental resin composites and glass ionomer cements. Eur. J. Oral Sci. 1998, 106, 687–695. [Google Scholar] [CrossRef]
- Ortengren, U.; Wellendorf, H.; Karlsson, S.; Ruyter, I.E.E.; Örtengren, U.; Wellendorf, H.; Karlsson, S.; Ruyter, I.E.E. Water sorption and solubility of dental compositesand identication of monomers released in an aqueousenvironment. J. Oral Rehabil. 2001, 2, 1106–1115. [Google Scholar] [CrossRef]
- Shah, M.B.; Ferracane, J.L.; Kruzic, J.J. Mechanistic aspects of fatigue crack growth behavior in resin based dental restorative composites. Dent. Mater. 2009, 25, 909–916. [Google Scholar] [CrossRef]
- Krüger, J.; Maletz, R.; Ottl, P.; Warkentin, M. In vitro aging behavior of dental composites considering the influence of filler content, storage media and incubation time. PLoS ONE 2018, 13, e0195160. [Google Scholar] [CrossRef]
- Svanberg, M.; Mjör, I.A.; Ørstavik, D. Mutans Streptococci in Plaque from Margins of Amalgam, Composite, and Glass-ionomer Restorations. J. Dent. Res. 1990, 69, 861–864. [Google Scholar] [CrossRef] [PubMed]
- Beyth, N.; Bahir, R.; Matalon, S.; Domb, A.J.; Weiss, E.I. Streptococcus mutans biofilm changes surface-topography of resin composites. Dent. Mater. 2008, 24, 732–736. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.; Khalichi, P.; Cvitkovitch, D.G.; Santerre, J.P. Composite resin degradation products from BisGMA monomer modulate the expression of genes associated with biofilm formation and other virulence factors in Streptococcus mutans. J. Biomed. Mater. Res. Part A 2009, 88, 551–560. [Google Scholar] [CrossRef] [PubMed]
- Øilo, M.; Bakken, V. Biofilm and dental biomaterials. Materials (Basel) 2015, 8, 2887–2900. [Google Scholar] [CrossRef]
- Huang, B.; Sadeghinejad, L.; Adebayo, O.I.A.; Ma, D.; Xiao, Y.; Siquiera, W.L.; Cvitkovitch, D.G.; Finer, Y. Gene Expression and Protein Synthesis of Esterase from Streptococcus mutans are affected by Biodegradation Byproduct from Methacrylate Resin Composites and Adhesives. Acta Biomater. 2018, 81, 158–168. [Google Scholar] [CrossRef]
- Zhang, N.; Ma, Y.; Weir, M.D.; Xu, H.H.K.; Bai, Y.; Melo, M.A.S. Current insights into the modulation of oral bacterial degradation of dental polymeric restorative materials. Materials (Basel) 2017, 10, 507. [Google Scholar] [CrossRef] [Green Version]
- Hagio, M.; Kawaguchi, M.; Motokawa, W.; Miyazaki, K. Degradation of Methacrylate Monomers in Human Saliva. Dent. Mater. J. 2006, 25, 241–246. [Google Scholar] [CrossRef] [Green Version]
- Munksgaard, E.C.; Freund, M. Enzymatic hydrolysis of (di)methacrylates and their polymers. Eur. J. Oral Sci. 1990, 98, 261–267. [Google Scholar] [CrossRef]
- Santerre, J.P.; Shajii, L.; Tsang, H. Biodegradation of Commercial Dental Composites by Cholesterol Esterase. J. Dent. Res. 2009, 78, 1459–1468. [Google Scholar] [CrossRef]
- Yourtee, D.M.; Smith, R.E.; Russo, K.A.; Burmaster, S.; Cannon, J.M.; Eick, J.D.; Kostoryz, E.L. The stability of methacrylate biomaterials when enzyme challenged: Kinetic and systematic evaluations. J. Biomed. Mater. Res. 2001, 57, 522–531. [Google Scholar] [CrossRef]
- Konishi, N.; Torii, Y.; Kurosaki, A.; Takatsuka, T.; Itota, T.; Yoshiyama, M. Confocal laser scanning microscopic analysis of early plaque formed on resin composite and human enamel. J. Oral Rehabil. 2003, 30, 790–795. [Google Scholar] [CrossRef] [PubMed]
- Bourbia, M.; Ma, D.; Cvitkovitch, D.G.; Santerre, J.P.; Finer, Y. Cariogenic bacteria degrade dental resin composites and adhesives. J. Dent. Res. 2013, 92, 989–994. [Google Scholar] [CrossRef] [PubMed]
- Florez, F.; Hiers, R.; Smart, K.; Kreth, J.; Qi, F.; Merritt, J.; Khajotia, S. Real-time Assessment of Streptococcus mutans Biofilm Metabolism on Resin Composite. Dent. Mater. 2016, 32, 1263–1269. [Google Scholar] [CrossRef] [Green Version]
- Bauer, H.; Ilie, N. Effects of aging and irradiation time on the properties of a highly translucent resin-based composite. Dent. Mater. J. 2013, 32, 592–599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Bediwi, A.; Ebrahim, R.; Sarhan, A. Effect of Aging on Microstructure and Mechanical Properties of Some Dental Materials. Res. Rev. Biosci. 2016, 11, 1–18. [Google Scholar]
- Alshali, R.Z.; Salim, N.A.; Satterthwaite, J.D.; Silikas, N. Long-term sorption and solubility of bulk-fill and conventional resin-composites in water and artificial saliva. J. Dent. 2015, 43, 1511–1518. [Google Scholar] [CrossRef]
- Drummond, J.L.; Andronova, K.; Al-Turki, L.I.; Slaughter, L.D. Leaching and mechanical properties characterization of dental composites. J. Biomed. Mater. Res. Part B Appl. Biomater. 2004, 71, 172–180. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, J. Effect of immersion in various media on the sorption, solubility, elution of unreacted monomers, and flexural properties of two model dental composite compositions. J. Mater. Sci. Mater. Med. 2008, 19, 2477–2483. [Google Scholar] [CrossRef]
- Al Badr, R.M.; Hassan, H.A. Effect of immersion in different media on the mechanical properties of dental composite resins. Int. J. Appl. Dent. Sci. 2017, 3, 81–88. [Google Scholar]
- Vouvoudi, E.C.; Sideridou, I.D. Dental Light-Cured Polymer Nanocomposites: A Brief Review of Experimental Results Obtained from the Study of Some Physicochemical Properties. J. Compos. Biodegrad. Polym. 2014, 46–55. [Google Scholar]
- Arsecularatne, J.A.; Chung, N.R.; Hoffman, M. An in vitro study of the wear behaviour of dental composites. Biosurf. Biotribol. 2016, 2, 102–113. [Google Scholar] [CrossRef] [Green Version]
- Sideridou, I.D.; Vouvoudi, E.C.; Keridou, I.V. Sorption characteristics of oral/food simulating liquids by the dental light-cured nanohybrid composite Kalore GC. Dent. Mater. 2015, 31, e179–e189. [Google Scholar] [CrossRef] [PubMed]
- Erdemir, U.; Yildiz, E.; Eren, M.M.; Ozel, S. Surface hardness of different restorative materials after long-term immersion in sports and energy drinks. Dent. Mater. J. 2012, 31, 729–736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bagheri, R.; Burrow, M.F.; Tyas, M. Influence of food-simulating solutions and surface finish on susceptibility to staining of aesthetic restorative materials. J. Dent. 2005, 33, 389–398. [Google Scholar] [CrossRef] [PubMed]
- Wongkhantee, S.; Patanapiradej, V.; Maneenut, C.; Tantbirojn, D. Effect of acidic food and drinks on surface hardness of enamel, dentine, and tooth-coloured filling materials. J. Dent. 2006, 34, 214–220. [Google Scholar] [CrossRef]
- Han, L.; Okamoto, A.; Fukushima, M.; Okiji, T. Evaluation of Flowable Resin Composite Surfaces Eroded by Acidic and Alcoholic Drinks. Dent. Mater. J. 2008, 27, 455–465. [Google Scholar] [CrossRef] [Green Version]
- El Gezawi, M.; Kaisarl, D.; Al-Saleh, H.; ArRejaie, A.; Al-Harbi, F.; Kunzelmann, K. Degradation potential of bulk versus incrementally applied and indirect composites: Color, microhardness, and surface deterioration. Oper. Dent. 2016, 41, e195–e208. [Google Scholar] [CrossRef]
- Ayatollahi, M.R.; Yahya, M.Y.; Karimzadeh, A.; Nikkhooyifar, M.; Ayob, A. Effects of temperature change and beverage on mechanical and tribological properties of dental restorative composites. Mater. Sci. Eng. C 2015, 54, 69–75. [Google Scholar] [CrossRef]
- Marigo, L.; Nocca, G.; Fiorenzano, G.; Callà, C.; Castagnola, R.; Cordaro, M.; Paolone, G.; Sauro, S. Influences of Different Air-Inhibition Coatings on Monomer Release, Microhardness, and Color Stability of Two Composite Materials. Biomed Res. Int. 2019, 2019, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Mohammadi, E.; Pishevar, L.; Boroujeni, P.M. Effect of food simulating liquids on the flexural strength of a methacrylate and silorane-based composite. PLoS ONE 2017, 12, e0188829. [Google Scholar] [CrossRef] [Green Version]
- Eweis, A.H.; Yap, A.U.J.; Yahya, N.A. Impact of dietary solvents on flexural properties of bulk-fill composites. Saudi Dent. J. 2018, 30, 232–239. [Google Scholar] [CrossRef] [PubMed]
- Stability, C.; Beverages, C. Color Stability and Micro-Hardness of Bulk-Fill Common Beverages. Materials 2020, 13, 787. [Google Scholar] [CrossRef] [Green Version]
- Scribante, A.; Bollardi, M.; Chiesa, M.; Poggio, C.; Colombo, M. Flexural Properties and Elastic Modulus of Different Esthetic Restorative Materials: Evaluation after Exposure to Acidic Drink. Biomed. Res. Int. 2019, 2019, 5109481. [Google Scholar] [CrossRef] [PubMed]
- Poggio, C.; Viola, M.; Mirando, M.; Chiesa, M.; Beltrami, R.; Colombo, M. Microhardness of different esthetic restorative materials: Evaluation and comparison after exposure to acidic drink. Dent. Res. J. 2018, 15, 166–172. [Google Scholar] [CrossRef]
- Kaleem, M.; Khan, A.S.; Rehman, I.U.; Wong, F.S. Effect of beverages on viscoelastic properties of resin-based dental composites. Materials (Basel) 2015, 8, 2863–2872. [Google Scholar] [CrossRef] [Green Version]
- Ferracane, J.L.; Berge, H.X.; Condon, J.R. In vitro aging of dental composites in water--effect of degree of conversion, filler volume, and filler/matrix coupling. J. Biomed. Mater. Res. 1998, 42, 465–472. [Google Scholar] [CrossRef]
- Calais, J.G.; Soderholm, K.-J.M. Influence of Filler Type and Water Exposure on Flexural Strength of Experimental Composite Resins. J. Dent. Res. 1988, 67, 836–840. [Google Scholar] [CrossRef]
- Palin, W.M.; Fleming, G.J.P.; Burke, F.J.T.; Marquis, P.M.; Randall, R.C. The influence of short and medium-term water immersion on the hydrolytic stability of novel low-shrink dental composites. Dent. Mater. 2005, 21, 852–863. [Google Scholar] [CrossRef]
- Soderholm, K.; Roberts, M. Influence of Preservative on the Tensile Strength of Composite. J. Dent. Res. 1990, 69, 1812–1816. [Google Scholar] [CrossRef]
- Martos, J.; Osinaga, P.W.R.; Oliveira, E.; Castro, L.A.S. Hydrolytic Degradation of Composite Resins: Effects on the Microhardness. Psychol. Bull. 2003, 6, 599–604. [Google Scholar] [CrossRef]
- Ricci, W.A.; Alfano, P.; Pamato, S.; Cruz, C.A.D.S.; Pereira, J.R. Mechanical Degradation of Different Classes of Composite Resins Aged in Water, Air, and Oil. Biomed Res. Int. 2019, 2019, 7410759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panahandeh, N.; Torabzadeh, H.; Naderi, H.; Sheikh-Al-Eslamian, S.M. Effect of water storage on flexural strength of silorane and methacrylate-based composite resins. Restor. Dent. Endod. 2017, 42, 309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, S.; Öhman, C.; Jefferies, S.R.; Gray, H.; Xia, W.; Engqvist, H. Compressive fatigue limit of four types of dental restorative materials. J. Mech. Behav. Biomed. Mater. 2016, 61, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Al Sunbul, H.; Silikas, N.; Watts, D.C. Surface and bulk properties of dental resin- composites after solvent storage. Dent. Mater. 2016, 32, 987–997. [Google Scholar] [CrossRef] [Green Version]
- Malacarne, J.; Carvalho, R.M.; de Goes, M.F.; Svizero, N.; Pashley, D.H.; Tay, F.R.; Yiu, C.K.; Carrilho, M.R.D.O. Water sorption/solubility of dental adhesive resins. Dent. Mater. 2006, 22, 973–980. [Google Scholar] [CrossRef]
- Pashley, D.H.; Tay, F.R.; Carvalho, R.M.; Rueggeberg, F.A.; Agee, K.A.; Carrilho, M.; Donnelly, A.; García-Godoy, F. From dry bonding to water-wet bonding to ethanol-wet bonding. A review of the interactions between dentin matrix and solvated resins using a macromodel of the hybrid layer. Am. J. Dent. 2007, 20, 7–20. [Google Scholar]
- Sideridou, I.D.; Karabela, M.M.; Bikiaris, D.N. Aging studies of light cured dimethacrylate-based dental resins and a resin composite in water or ethanol/water. Dent. Mater. 2007, 23, 1142–1149. [Google Scholar] [CrossRef]
- Lee, S.Y.; Greener, E.H.; Menis, D.L. Detection of leached moieties from dental composites in fluid simulating food and saliva. Dent. Mater. 1995, 11, 348–353. [Google Scholar] [CrossRef]
- Fonseca, A.S.Q.D.S.; Gerhardt, K.M.D.F.; Pereira, G.D.D.S.; Sinhoreti, M.A.C.; Schneider, L.F.J. Do new matrix formulations improve resin composite resistance to degradation processes? Braz. Oral Res. 2017, 27, 410–416. [Google Scholar] [CrossRef] [Green Version]
- Ferracane, J.L.; Berge, H.X. Fracture Toughness of Experimental Dental Composites Aged in Ethanol. J. Dent. Res. 1995, 74, 1418–1423. [Google Scholar] [CrossRef]
- Ferracane, J.L.; Marker, V.A. Solvent Degradation and Reduced Fracture Toughness in Aged Composites. J. Dent. Res. 1992, 71, 13–19. [Google Scholar] [CrossRef] [PubMed]
- McKinney, J.E.; Wu, W. Chemical Softening and Wear of Dental Composites. J. Dent. Res. 1985, 64, 1326–1331. [Google Scholar] [CrossRef] [PubMed]
- Sajnani, A.R.; Hegde, M.N. Leaching of monomers from bulk-fill composites: An in vitro study. J. Conserv. Dent. 2016, 19, 482–486. [Google Scholar] [CrossRef] [PubMed]
- Lagocka, R.; Jakubowska, K.; Chlubek, D.; Buczkowska-Radlinska, J. The Influence of Irradiation Time and Layer Thickness on Elution of Triethylene Glycol Dimethacrylate from SDR® Bulk-Fill Composite. Biomed. Res. Int. 2016, 2016, 3481723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prakki, A.; Cilli, R.; Lia Mondelli, R.F.; Kalachandra, S.; Pereira, J.C. Influence of pH environment on polymer based dental material properties. J. Dent. 2005, 33, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, N.K. Internal corrosion in dental composite wear: Its Significance and Simulation Nikhil. J. Biomed. Mater. Res. 2000, 53, 371–380. [Google Scholar] [CrossRef]
- Moon, J.-D.; Seon, E.-M.; Son, S.-A.; Jung, K.-H.; Kwon, Y.-H.; Park, J.-K. Effect of immersion into solutions at various pH on the color stability of composite resins with different shades. Restor. Dent. Endod. 2015, 40, 270. [Google Scholar] [CrossRef] [Green Version]
- Bagheri, R.; Tyas, M.J.; Burrow, M.F. Subsurface degradation of resin-based composites. Dent. Mater. 2007, 23, 944–951. [Google Scholar] [CrossRef]
- Cilli, R.; Pereira, J.C.; Prakki, A. Properties of dental resins submitted to pH catalysed hydrolysis. J. Dent. 2012, 40, 1144–1150. [Google Scholar] [CrossRef]
- Souza, R.O.A.; Özcan, M.; Michida, S.M.A.; de Melo, R.M.; Pavanelli, C.A.; Bottino, M.A.; Soares, L.E.S.; Martin, A.A. Conversion degree of indirect resin composites and effect of thermocycling on their physical properties. J. Prosthodont. 2010, 19, 218–225. [Google Scholar] [CrossRef] [Green Version]
- Pereira, S.M.B.; Castilho, A.A.; Salazar-Marocho, S.M.; Oliveira, K.M.C.; Váquez, V.Z.C.; Bottino, M.A. Thermocycling effect on microhardness of laboratory composite resins. Braz. J. Oral Sci. 2007, 6, 1372–1375. [Google Scholar]
- Ghavami-Lahiji, M.; Firouzmanesh, M.; Bagheri, H.; Jafarzadeh Kashi, T.S.; Razazpour, F.; Behroozibakhsh, M. The effect of thermocycling on the degree of conversion and mechanical properties of a microhybrid dental resin composite. Restor. Dent. Endod. 2018, 43, e26. [Google Scholar] [CrossRef] [PubMed]
- Pieniak, D.; Przystupa, K.; Walczak, A.; Niewczas, A.M.; Krzyzak, A.; Bartnik, G.; Gil, L.; Lonkwic, P. Hydro-thermal fatigue of polymer matrix composite biomaterials. Materials (Basel) 2019, 12, 3650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pieniak, D.; Walczak, A.; Walczak, M.; Przystupa, K.; Niewczas, A.M. Hardness and Wear Resistance of Dental Biomedical Nanomaterials in a Humid Environment with Non-Stationary Temperatures. Materials (Basel) 2020, 13, 1255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pala, K.; Tekçe, N.; Tuncer, S.; Demirci, M.; öznurhan, F.; Serim, M. Flexural strength and microhardness of anterior composites after accelerated aging. J. Clin. Exp. Dent. 2017, 9, e424–e430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walczak, A.; Niewczas, A.; Pieniak, D.; Gil, L.; Kozłowski, E.; Kordos, P. Temporary Stability of Compressive Strength of Flow and Universal Type LC PMCCS Materials. Adv. Mater. Sci. 2018, 18, 22–33. [Google Scholar] [CrossRef] [Green Version]
- Belli, R.; Petschelt, A.; Lohbauer, U. Are linear elastic material properties relevant predictors of the cyclic fatigue resistance of dental resin composites. Dent. Mater. 2014, 30, 381–391. [Google Scholar] [CrossRef]
- Drummond, J.L. Degradation, fatigue and failure of resin dental composite materials. J. Dent. Res. 2008, 87, 710–719. [Google Scholar] [CrossRef] [Green Version]
- Takeshige, F.; Kawakami, Y.; Hayashi, M.; Ebisu, S. Fatigue behavior of resin composites in aqueous environments. Dent. Mater. 2007, 23, 893–899. [Google Scholar] [CrossRef]
- Baran, G.; Boberick, K.; McCool, J. Fatigue of restorative materials. J. Dent. Res. 2001, 12, 350–360. [Google Scholar] [CrossRef]
- Ornaghi, B.P.; Meier, M.M.; Lohbauer, U.; Braga, R.R. Fracture toughness and cyclic fatigue resistance of resin composites with different filler size distributions. Dent. Mater. 2014, 30, 742–751. [Google Scholar] [CrossRef] [PubMed]
- Lohbauer, U.; Belli, R.; Ferracane, J.L. Factors involved in mechanical fatigue degradation of dental resin composites. J. Dent. Res. 2013, 92, 584–591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCabe, J.F.; Wang, Y.; Braem, M.J.A. Surface contact fatigue and flexural fatigue of dental restorative materials. J. Biomed. Mater. Res. 2000, 50, 375–380. [Google Scholar] [CrossRef]
- Lohbauer, U.; Rahiotis, C.; Krämer, N.; Petschelt, A.; Eliades, G. The effect of different light-curing units on fatigue behavior and degree of conversion of a resin composite. Dent. Mater. 2005, 21, 608–615. [Google Scholar] [CrossRef] [PubMed]
- Ravindranath, V.; Gosz, M.; De Santiago, E.; Drummond, J.L.; Mostovoy, S. Effect of Cyclic Loading and Environmental Aging on the Fracture Toughness of Dental Resin Composite. J. Biomed. Mater. Res. B Appl. Biomater. 2007, 83, 340–344. [Google Scholar] [CrossRef]
- Kumar, N.; Fareed, M.A.; Zafar, M.S.; Ghani, F.; Khurshid, Z. Influence of various specimen storage strategies on dental resin-based composite properties. Mater. Technol. 2020, 13, 1–9. [Google Scholar] [CrossRef]
- Musanje, L.; Darvell, B.W. Effects of strain rate and temperature on the mechanical properties of resin composites. Dent. Mater. 2004, 20, 750–765. [Google Scholar] [CrossRef]
- Kumar, N. Inconsistency in the strength testing of dental resin-based composites among researchers. Pakistan J. Med. Sci. 2012, 29, 205–210. [Google Scholar] [CrossRef]
- Kumar, N.; Zafar, M.S.; Dahri, W.M.; Khan, M.A.; Khurshid, Z.; Najeeb, S. Effects of deformation rate variation on biaxial flexural properties of dental resin composites. J. Taibah Univ. Med. Sci. 2018, 13, 319–326. [Google Scholar] [CrossRef]
- Drubi-Filho, B.; Garcia, L.D.F.R.; Cruvinel, D.R.; Sousa, A.B.S.; Pires-de-Souza, F.D.C.P. Color stability of modern composites subjected to different periods of accelerated artificial aging. Braz. Dent. J. 2012, 23, 575–580. [Google Scholar] [CrossRef] [Green Version]
- Schulze, K.A.; Marshall, S.J.; Gansky, S.A.; Marshall, G.W. Color stability and hardness in dental composites after accelerated aging. Dent. Mater. 2003, 19, 612–619. [Google Scholar] [CrossRef]
- Shirinzad, M.; Rezaei-Soufi, L.; Mirtorabi, M.S.; Vahdatinia, F. Effect of Accelerated Artificial Aging on Translucency of Methacrylate and Silorane-Based Composite Resins. J. Dent. (Tehran) 2016, 13, 92–100. [Google Scholar]
- Penteado, R.A.P.M.; Tonholo, J.; Júnior, J.G.; de Andrade Silva, M.F.; da Silva Queiroz, C.; Cavalli, V.; do Rego, M.A.; Liporoni, P.C.S. Evaluation of surface roughness of microhybrid and nanofilled composites after pH-cycling and simulated toothbrushing. J. Contemp. Dent. Pract. 2010, 11, 17–24. [Google Scholar]
- Turssi, C.; de Magalhães, C.; Serra, M.; Rodrigues, A.J. Surface roughness assessment of resin-based materials during brushing preceded by pH-cycling simulations. Oper. Dent. 2001, 26, 576–584. [Google Scholar]
- Silva, T.M.D.; Sales, A.L.L.S.; Pucci, C.R.; Borges, A.B.; Torres, C.R.G. The combined effect of food-simulating solutions, brushing and staining on color stability of composite resins. Acta Biomater. Odontol. Scand. 2017, 3, 1–7. [Google Scholar] [CrossRef]
- Gale, M.S.; Darvell, B.W. Thermal cycling procedures for laboratory testing of dental restorations. J. Dent. 1999, 27, 89–99. [Google Scholar] [CrossRef]
- Morresi, A.L.; D’Amario, M.; Capogreco, M.; Gatto, R.; Marzo, G.; D’Arcangelo, C.; Monaco, A. Thermal cycling for restorative materials: Does a standardized protocol exist in laboratory testing? A literature review. J. Mech. Behav. Biomed. Mater. 2014, 29, 295–308. [Google Scholar] [CrossRef]
- Blumer, L.; Schmidli, F.; Weiger, R.; Fischer, J. A systematic approach to standardize artificial aging of resin composite cements. Dent. Mater. 2015, 31, 855–863. [Google Scholar] [CrossRef]
- Arola, D. Fatigue testing of biomaterials and their interfaces. Dent. Mater. 2017, 33, 367–381. [Google Scholar] [CrossRef]
Factor | Information and Main Observations | References | |
---|---|---|---|
Biological | Enzyme |
| [50,57,85,86,87,88] |
Bacteria |
| [80,89,90,91] | |
Chemical | Artificial saliva |
| [92,93,94,95,96,97,98,99,100] |
Food and drinks |
| [101,102,103,104,105,106,107,108,109,110,111,112,113] | |
Water |
| [114,115,116,117,118,119,120,121,122] | |
Ethanol solution |
| [92,95,97,100,125,126,127,128,129,130,131,132] | |
Sodium hydroxide |
| [133,134,135,136,137] | |
Physical | Temperature |
| [97,138,139,140,141,142,143,144] |
Mechanical | Fatigue tests |
| [77,145,146,147,148,149,150,151,152,153] |
Others | Wet-storage arrangement |
| [154] |
Strain rates during strength testing |
| [155,156,157] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szczesio-Wlodarczyk, A.; Sokolowski, J.; Kleczewska, J.; Bociong, K. Ageing of Dental Composites Based on Methacrylate Resins—A Critical Review of the Causes and Method of Assessment. Polymers 2020, 12, 882. https://doi.org/10.3390/polym12040882
Szczesio-Wlodarczyk A, Sokolowski J, Kleczewska J, Bociong K. Ageing of Dental Composites Based on Methacrylate Resins—A Critical Review of the Causes and Method of Assessment. Polymers. 2020; 12(4):882. https://doi.org/10.3390/polym12040882
Chicago/Turabian StyleSzczesio-Wlodarczyk, Agata, Jerzy Sokolowski, Joanna Kleczewska, and Kinga Bociong. 2020. "Ageing of Dental Composites Based on Methacrylate Resins—A Critical Review of the Causes and Method of Assessment" Polymers 12, no. 4: 882. https://doi.org/10.3390/polym12040882
APA StyleSzczesio-Wlodarczyk, A., Sokolowski, J., Kleczewska, J., & Bociong, K. (2020). Ageing of Dental Composites Based on Methacrylate Resins—A Critical Review of the Causes and Method of Assessment. Polymers, 12(4), 882. https://doi.org/10.3390/polym12040882